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Abstract: Introduction: There are several pathologic mechanisms involved in diabetic nephropathy,
but the role of oxidative stress seems to be one of the most important. Sodium-glucose cotransporter
2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs that might also have some other
effects in addition to lowering glucose. The aim of this study was to evaluate the possible effects of
the SGLT2 inhibitor empagliflozin on oxidative stress and renal function in diabetes. Methods: Male
Wistar rats were randomly divided into four groups: control, control-treated, diabetic, and diabetic-
treated (n = 8 per group). Diabetes was induced by a single intraperitoneal dose of streptozotocin
(50 mg/kg). The treated animals received empagliflozin for 5 weeks (20 mg/kg/day/po). All groups
were sacrificed on the 36th day, and blood and tissue samples were collected. Serum levels of urea,
uric acid, creatinine, and glucose levels were determined. The level of malondialdehyde (MDA)
and glutathione (GLT), as well as the activity of catalase (CAT) and superoxide dismutase (SOD),
was measured in all groups. Data were analyzed using one-way Anova and paired T-tests, and
p ≤ 0.05 was considered significant. Results: Diabetes significantly increased urea (p < 0.001), uric
acid (p < 0.001), and creatinine (p < 0.001) in the serum, while the activities of CAT (p < 0.001) and SOD
(p < 0.001) were reduced. GLT was also reduced (p < 0.001), and MDA was increased (p < 0.001) in
non-treated animals. Treatment with empagliflozin improved renal function, as shown by a reduction
in the serum levels of urea (p = 0.03), uric acid (p = 0.03), and creatinine (p < 0.001). Empagliflozin also
increased the antioxidant capacity by increasing CAT (p = 0.035) and SOD (p = 0.02) activities and GLT
content (p = 0.01) and reduced oxidative damage by lowering MDA (p < 0.001). Conclusions: It seems
that uncontrolled diabetes induces renal insufficiency by decreasing antioxidant defense mechanisms
and inducing oxidative stress. Empagliflozin might have additional benefits in addition to lowering
glucose—-reversing these processes, improving antioxidative capacity, and improving renal function.

Keywords: diabetes mellitus; diabetic nephropathy; oxidative stress; SGLT2 inhibitor; empagliflozin;
malondialdehyde

1. Introduction

The prevalence of diabetes mellitus (DM) is growing worldwide [1]. This chronic
disease has negative effects on different metabolic pathways and induces pathophysiologic
processes involved in diabetic complications [2]. Diabetic nephropathy, that develops in

J. Clin. Med. 2023, 12, 3815. https://doi.org/10.3390/jcm12113815 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12113815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-8656-1444
https://doi.org/10.3390/jcm12113815
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12113815?type=check_update&version=1


J. Clin. Med. 2023, 12, 3815 2 of 12

many patients with diabetes, is a frequent complication of this disease [3]. It is considered
the leading cause of end-stage renal disease (ESRD) and is the second cause of mortality in
patients with diabetes [4]. Therefore, preventing or reducing its progression and improving
renal function is one of the major goals in the treatment of patients with diabetes [4].
Although its exact pathophysiology is so far unclear, the role of oxidative damage seems
to be the most important [2,5]. Oxidative damage can be associated with endothelial
dysfunction in patients with diabetes, and endothelial dysfunction could be measured
through the flow-mediated dilation method [6,7]. Oxidative stress is a pathologic process
which develops as a result of an imbalance between reactive oxygen species (ROS) and
intrinsic antioxidant defense (ADS) and can be directed toward ROS [8]. ROS are short-
living but highly active biomolecules with important physiologic roles in the control of
gene expression, synaptic plasticity, cell growth, memory formation, transcription factor
activation, etc. [9]. They are produced as normal by-products of metabolic pathways, and
because they have unpaired electron(s), they are able to bind to biological targets such as
DNA, proteins, and lipids [9]. In a normal milieu, antioxidative defense systems neutralize
an excess of ROS and prevent subsequent oxidative injuries [9]. However, in the diabetic
milieu, they are hyper-produced and often overwhelm ADS, and induce extensive oxidative
damage in biomolecules [9]. Glucose metabolism disorders such as pre-diabetes and DM
are important elements in the pathogenesis of insulin resistance which is itself a potent
inducer of oxidative stress [10]. It has been shown that diabetes-induced oxidative stress
can be closely associated with diabetic nephropathy and that induces it through several
pathophysiologic pathways [5]. Therefore, the antioxidative agents may reverse these
processes and could prevent or delay renal failure development in the diabetic milieu [11].

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of an-
tidiabetic drugs that effectively reduce blood glucose levels [8]. They have inhibitory
effects on urinary glucose reabsorption by blocking SGLT2s activity in renal proximal
tubules and, therefore, induce massive urinary glucose excretion [8]. In vitro experiments
(which are not influenced by changes in the systemic milieu) with one of these drugs—
empagliflozin—also suggest that SGLT2 inhibitors may directly attenuate inflammation
and oxidative stress, determining a reduction in the superoxide production and enhanced
expression of glutathione s-reductase and catalase in the leukocytes of diabetic patients
and downregulating IKK/NFκB, MKK7/JNK and JAK2/STST1 signaling pathways in
LPS-stimulated macrophages, which could represent another pathway involved in this
process [12]. Recent evidence has suggested that SGLT2 inhibitors might have additional
benefits due to their antioxidative effects and that they could reduce oxidative damage in
the kidneys [13–19]. Some studies have suggested that treatment with SGLT2 inhibitors
could provide dual benefits: glucose lowering and nephroprotective effects [13]. However,
there is not enough evidence to confirm their benefits from the kidneys. Therefore, the aim of
this study was to evaluate the possible antioxidative effects of SGLT2 inhibitors on the kidneys
and to assess their antioxidant effects on the markers of renal function in the diabetic milieu,
thus providing more evidence to support the renal benefits of SGLT2 inhibitors.

2. Methods
2.1. Animals

Male healthy Wistar rats (200–220 g) were purchased from the animal house of the
physiology research center in Semnan, Iran. They were kept in standard polyester cages
(three rats per cage) in a laboratory room under a standard temperature (22 ± 2 ◦C) and
humidity (55 ± 5%) with 12 h of light and dark cycles. They had free access to water and
standard rodents’ chow throughout the study except before measuring the glucose levels.
They were divided randomly into four groups: control (C), control + empagliflozin (CE),
diabetes (D), and diabetes + empagliflozin (DE) (n = 8 per each group).
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2.2. Diabetes Induction and Treatment

Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ)
(Sigma Aldrich, St. Louis, MO, USA) (50 mg/kg). After 72 h, blood samples were col-
lected from the rat’s tail vein for a blood glucose assessment using a standard glucometer
(Easy Gluco, Anyang-si, Republic of Korea), and rats with blood glucose above 220 mg/dL
were considered diabetic before being randomly divided into two diabetic groups.
Empagliflozin was dissolved daily in a suspension (5%) of CMC (carboxy methyl cel-
lulose) and then was prescribed daily (20 mg/kg) by intragastric gavage with the two
treated groups (CE and DE) for 5 weeks (Figure 1). The dose and duration of empagliflozin
therapy were determined based on previous studies [20,21].
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2.3. Blood and Tissue Sampling

Blood samples were collected from the animals twice. At day zero, it was collected
from the rats’ tail veins after 10 h of overnight fasting by inducing deep anesthesia through
an intraperitoneal injection of ketamine (80 mg/kg) and xylazine (10 mg/kg). At the end of
the 5th week, and after 10 h of overnight fasting, all rats were anesthetized, again by drugs,
and were sacrificed by carbon dioxide. Then, blood (directly from the heart) and kidney
tissue samples were collected immediately. Blood serum was separated immediately by
centrifugation (3000 rpm for 10 min), and the samples were kept at −20 ◦C for biochemi-
cal tests, including glucose, creatinine, urea, and uric acid concentration measurements,
which were all performed using standard commercial kits. The removed kidneys were
kept at −20 ◦C until oxidative stress indicators such as the malondialdehyde (MDA) and
glutathione (GLT) contents could be assessed, as well as the activities of the enzyme catalase
(CAT) and superoxide dismutase (SOD).

2.4. Tissue Preparation

The collected renal tissues were weighed and homogenized on ice by a specialized
electric tool after adding a homogenization medium (phosphate buffer (0.1 mol, pH = 7.4)).
Homogenized mixtures were then centrifuged (at 4 ◦C and 4000 rpm for 20 min), and
the supernatants (as the cytosolic extract of the renal tissues) were removed and stored at
−80 ◦C for oxidative stress indicators. The following indicators were measured.

2.4.1. Superoxide Dismutase (SOD) Activity

SOD is the main element of the enzymatic antioxidant defense system. The activ-
ity of this enzyme can be assessed through the method of Winterbourn et al., which is
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based on SOD’s ability to inhibit the reduction in nitro-blue tetrazolium by superoxide
anion [22]. This method was performed as follows: a 0.067 mole of potassium phosphate
buffer (pH = 7.8) was added to 0.1 moles of EDTA (ethylenediaminetetraacetic acid) con-
taining 0.3 mM sodium cyanide, 1.5 mM nitro-blue tetrazolium and 0.1 mL of the sample.
Then, 0.12 mM riboflavin was added to each sample to activate the reaction and was
incubated for 10 min. The sample optical absorbance was recorded at 560 nm for 5 min
on a spectrophotometer. The amount of enzyme required to produce a 50% inhibition was
taken as 1 Unit (U), and the results were expressed as U/mL.

2.4.2. Catalase (CAT) Activity

CAT is another enzyme that is involved in cellular antioxidant defense. The activity of
this enzyme was calculated using the method of Abebi [23]. A mixture containing 0.85 mL
of the potassium phosphate buffer 50 mM, pH 7.0, and 0.1 mL of the homogenate was
incubated for 10 min at room temperature. The reaction was triggered by the addition
of 0.05 mL H2O2 (30 mM prepared in potassium phosphate buffer 50 mM, pH = 7.0).
Then, the optic absorbance reduction was recorded by a spectrophotometer for 3 min at
240 nm spectrum. Enzyme activity was expressed as U/mL (1 µmole H2O2).

2.4.3. Glutathione (GLT) Content

The GLT content was measured through the method of Tietze [24]. The cellular protein
content of the collected supernatant was precipitated by the addition of sulfosalicylic acid
(5%), which was added and removed by centrifugation (4000× g for 15 min). Then, the
GLT content was assessed as follows: 100 µL of the protein-free supernatant was added to
810 µL of 0.3 mM Na2HPO4 and 90 µL of DTNB (5,5′-dithiobis(2-nitrobenzoic acid) in 0.1%
sodium citrate. The DTNB absorbance was recorded at 412 nm for 5 min. A standard curve
for GLT was recorded, and the sensitivity of the measurement was determined between
1 and 100 µM. The level of the GLT was estimated in µMol/mL.

2.4.4. Malondialdehyde (MDA) Content

MDA is a toxic byproduct and marker of lipid peroxidation and oxidative damage.
Its concentration was assessed through the method of Satoh et al. [25]. In total, 0.5 mL
of the supernatant and 1.5 mL of 10% trichloroacetic acid were mixed by centrifugation
(4000× g for 10 min). Then, 1.5 mL of the supernatant and 2 mL of thiobarbituric acid
(0.67%) were added and placed in a hot water bath in sealed tubes for 30 min and afterward
allowed to chill at room temperature. Then, 2 mL of N-butanol was added, and the mixture
was centrifuged (2000× g for 5 min). The resulting supernatant was removed, and its
optic absorbance was measured at 532 nm on a spectrophotometer. The MDA content
was determined using 1,1,3,3-tetraethoxypropane as a standard. MDA’s concentration was
expressed in nMol/mL.

2.5. Data Analyses

The Kolmogorov–Smirnov test was used to examine the normal distribution of col-
lected data. Then, one-way ANOVA was used to assess the possible differences among
the analyzed factors between groups. A paired sample T-test was also used to assess the
possible differences in the groups before and after the interventions. Tukey’s test was
applied post hoc. Data were expressed as the mean ± SD (standard deviation), and p < 0.05
was considered to be a significant difference.

2.6. Ethical Considerations

All ethical protocols regarding animal rights and complying with the demands of local
and global ethics committees as well as NIH Guidelines for the care and use of experimental
animals were followed throughout the study. This study was approved by the research
ethics committee of Semnan University of medical sciences (IR.SEMUMS.RC.1400.263).
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3. Results

Table 1 shows the values of serum glucose (mg/dL) in all experimental groups at days
0 and 36 of the study. The STZ injection significantly increased it to 268 ± 22 (p = 0.002),
causing diabetes, but empagliflozin significantly decreased it to 131 ± 11 mg/dl (Table 1).

Table 1. Mean values of blood glucose in mg/dL (±SD) for all experimental groups at days 0 and 36
of the study.

Groups Serum Glucose

Day 0 Day 36

Control 97 ± 11 103 ± 8
Control + Empagliflozin 96 ± 12 100 ± 9

Diabetes 268 ± 22 160 ± 13
Diabetes + Empagliflozin 268 ± 22 131 ± 11

Figure 1 shows the changes in the mean value of serum creatinine (mg/dL) in all the
groups. In the control group, this value was at the beginning and at the end 0.605 ± 0.12
and 0.55 ± 0.15, respectively. In diabetes, the value was significantly increased to
4.67 ± 0.254 (p < 0.001, compared with the control group). Empagliflozin had no sig-
nificant effect on the blood creatinine in normal animals, but it reduced serum creatinine in
diabetic animals to 1.88 ± 0.213 (p < 0.001, compared with the diabetic group) (Figure 2).
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Figure 2. Mean values of serum creatinine (mg/dL) in all experimental groups. Diabetes induc-
tion increased this value (p < 0.001), but empagliflozin therapy reduced it (p < 0.001) at days 36th
(* (p < 0.001)) showing a significant difference when compared with the control (C) group;
# (p < 0.001) and a significant difference when compared with the diabetic (D) group (1 = day 0
or first examination, 2 = day 36). (C = control, CE = control plus empagliflozin, D = diabetes,
DE = diabetes plus empagliflozin).

Figure 3 demonstrates the changes in the mean values of serum uric acid (mg/dL)
in all the groups. There were no significant differences in the control and control-treated
groups. The induction of diabetes significantly increased serum uric acid to 7.4 ± 0.41
(p < 0.001 compared to the control group). However, empagliflozin reduced it to 5.38 ± 0.36
(p = 0.03) when compared with the D group of diabetic rats.
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Figure 3. Mean values of serum uric acid (mg/dL) in all experimental groups; diabetes induction
increased it (p < 0.001) in the D group, but empagliflozin therapy reduced it (p < 0.03) at days 36th.
(* (p < 0.001)) with a significant difference when compared to the control (C); # (p = 0.03) and a
significant difference when compared to the diabetic (D) group (1 = day 0 or first examination, 2 = day 36).
(C = control, CE = control plus empagliflozin, D = diabetes, DE = diabetes plus empagliflozin).

Changes in serum BUN (mg/dL) in all experimental groups are presented in Figure 3.
There were no significant differences in BUN levels in the control and control-treated groups.
Diabetes induction significantly increased BUN to 48.41 ± 8.21 (p < 0.001, compared to the
control group) on the 36th day. However, empagliflozin therapy decreased it to 30.1 ± 6.59
(p = 0.03) when compared with the D group of diabetic rats (Figure 4).
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Figure 4. Mean values of serum BUN (mg/dL) in all groups. Diabetes induction increased it in the
D group when compared with the control group (*, p < 0.001), but empagliflozin reduced it when
compared with the D group (**, p = 0.03) (1 = day 0 or first examination, 2 = day 36). (C = control,
CE = control plus empagliflozin, D = diabetes, DE = diabetes plus empagliflozin).

Figure 5 shows the CAT activity expressed as unit/mL in the kidney from all ex-
perimental groups. In normal and normal-treated animals, it was 0.068 ± 0.005 and
0.059 ± 0.007, respectively, with no significant difference. Diabetes induction significantly
decreased to 0.0325 ± 0.01 (p = 0.01) when compared with the control (C) group. However,
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empagliflozin therapy increased it to 0.048 ± 0.005 (p = 0.01) when compared with the
diabetic (D) group (Figure 5).
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Figure 5. Mean CAT activity (Unit/mL) in all experimental groups. Diabetes induction decreased this
parameter significantly when compared with the C group (*, p < 0.001)), but empagliflozin improved
it when compared with the D group (#, p = 0.035). (C = control, CE = control plus empagliflozin,
D = diabetes, DE = diabetes plus empagliflozin).

The changes in SOD activity (expressed as Units/mL) are presented in Figure 5. SOD
activity was 98.23 ± 15.3 and 108.25 ± 12.6 in the control and control-treated groups,
respectively, with no significant difference. Diabetes decreased significantly to 51.24 ± 8.32
(p < 0.001). However, empagliflozin significantly increased it to 82.36± 7.84 (p = 0.02) when
compared with the diabetic (D) group (Figure 6).
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Figure 6. Mean values of SOD activity (Unit/mL) levels in all experimental groups. Diabetes induc-
tion decreased it when compared with the control group (*, p < 0.001), but empagliflozin increased
it when compared with the D group (#, p = 0.02). (C = control, CE = control plus empagliflozin,
D = diabetes, DE = diabetes plus empagliflozin).

The changes in GLT concentrations (expressed as µMol/mL) are presented in Figure 7.
In normal (C) and normally treated (CE) rats, the GLT content was 0.35 ± 0.012 and
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0.41 ± 0.0215, respectively, with a significant difference (p = 0.045). Diabetes induction
significantly decreased this value to 0.12 ± 0.024 (p < 0.001). However, treatment with
empagliflozin increased it to 0.25 ± 0.014 (p = 0.01); however, this was still lower compared
to the control group (p < 0.001).
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Figure 7. Mean values of GLT contents (µMol/mL) in all experimental groups. Diabetes induction
decreased the GLT content when compared with the C group (**, p < 0.001). Empagliflozin improved
it in non-diabetic (CE) (*, p = 0.045) and diabetic (DE) (#, p = 0.01) animals. (C = control, CE = control
plus empagliflozin, D = diabetes, DE = diabetes plus empagliflozin).

The MDA contents (nMol/mL) in all groups are shown in Figure 8. In control (C)
and control-treated (CE) animals, the MDA contents were 6.32 ± 0.62 and 5.62 ± 0.68,
respectively, with no significant difference. Diabetes increased MDA significantly to
13.54 ± 1.25 (p < 0.001). However, empagliflozin reduced it to 7.54 ± 0.65 (p < 0.001).
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Figure 8. Mean values of MDA content (nMol/mL) in all groups. Diabetes induction increased it
when compared with the control group (*, p < 0.001), but empagliflozin therapy reduced it when
compared with the D group (**, p = 0.04). (C = control, CE = control plus empagliflozin, D = diabetes,
DE = diabetes plus empagliflozin).
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4. Discussion

This study demonstrated that the antidiabetic drug empagliflozin could have dual
benefits—not only lowering glucose but also providing benefits for the kidneys in diabetes.
It also showed that chronic uncontrolled hyperglycemia suppresses ADS capacity and
induces oxidative stress and toxic byproduct generation leading to renal insufficiency and
diabetic nephropathy. However, the SGLT2 inhibitor empagliflozin reversed these processes
and improve the renal function by increasing ADS and protecting against oxidative injury
in renal tissues.

Nephropathy induced by diabetes is the leading cause of ESRD and kidney failure in
patients of hemodialysis [26,27] with diabetes after a median follow-up of 15 years [28,29].
This chronic complication of diabetes was primarily characterized by an increased urinary
albumin excretion or decreased estimated glomerular filtration rate (eGFR), or both [29].
It is often accompanied by biochemical changes in the serum, such as increased creatinine,
BUN, and uric acid levels, as well as a reduced albumin concentration [30,31]. The exact
pathophysiology of this entity is so far not clear; however, the role of oxidative stress seems
to be the most important [5]. As was stated before, the diabetic milieu is usually accompa-
nied by different levels of oxidative stress due to the activation of different pathophysiologic
pathways and pro-oxidant enzymes, e.g., NOX (nicotinamide adenine dinucleotide phos-
phate oxidase) [9]. Oxidative stress has a negative impact on podocytes, and it destroys the
negative charges of the filtration barrier, allowing proteins (mostly albumin) to cross this
barrier [5]. Oxidative stress also has a significant effect on the extensive vascular network
of the kidneys, inducing vascular injury by activating the renin-angiotensin system and
causing hemodynamic changes alongside the formation of atheromatous plaques in big ves-
sels [5,32]. Therefore, suppressing it and reducing free radical levels by using antioxidants
could be an effective adjuvant approach for the treatment of diabetic nephropathy [11].

In this study, the induction of diabetes was accompanied by suppressing ADS in
the renal tissue. It reduced the activity of SOD, CAT, and GLT concentrations which are
the major elements of ADS in the kidneys. The level of MDA as a toxic byproduct of
oxidative damage was also higher in diabetic kidneys compared with non-diabetic kidneys.
This finding was in accordance with the results of our previous studies [33–35] as well
as some other reports [36,37]. Diabetes has negative impacts on ADS at several steps:
at the transcriptional, post-transcriptional, and functional levels [9]. It can change the
regulation and expression of enzymes such as SOD and CAT [38,39]; it can also reduce
GLT synthesis [40] and increase its utilization [41], which all leads to reduced levels of
antioxidants and decreased ADS which, in turn, increases the risk of oxidative stress [9].
The findings of this study showed that the diabetes-induced decrease in ADS caused ox-
idative stress in the kidneys [5]. These changes were accompanied by renal insufficiency,
which was marked by an increase in BUN, uric acid, and creatinine levels in the serum.
Treatment with the SGLT2 inhibitor empagliflozin improved diabetes-induced diabetic
nephropathy in these animals to a certain extent. In addition to improving the serum
glucose level, empagliflozin improved the ADS capacity and decreased oxidative injury
(as shown by MDA levels) in diabetic kidneys. This was in accordance with the findings
of some previous studies, which suggested that empagliflozin might increase ADS ca-
pacity [42,43]. However, since there was little evidence concerning its effects on diabetic
kidneys, this study provided such evidence. Based on the current evidence, SGLT2 inhibi-
tion by empagliflozin increased ADS capacity and provided antioxidative beneficial effects
in diabetic kidneys. These effects were accompanied by an improvement in renal function,
as shown by the improved serum levels of BUN, uric acid, and creatinine. However, the
net effect of empagliflozin in non-diabetic animals was not significant. Diabetes induction
increased uric acid, and empagliflozin reduced it. This is important to mention since in
the plasma, uric acid has antioxidant properties while, on the contrary, in the cytoplasm
or in the atherogenic plaque, it has a pro-oxidative role promoting oxidative stress and
thus contributing to the development of cardiovascular disease. [44]. The limitations of this
study include a lack of assessment of the evaluated factors using PCR, Western blotting,
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or ELISA. Nevertheless, previous studies [45,46] have indicated these effects at molecular
levels. There is also a need for additional evaluations using genetic techniques, which
should be used in further studies which are already planned. However, the findings of
this study have demonstrated the effects of diabetes induction and empagliflozin ther-
apy on the examined parameters. Another limitation is that the streptozotocin model is
not the best one to evaluate the development of diabetic nephropathy in type 2 diabetes.
The duration of the study was short, and the changes observed in such a limited time inter-
val might not reflect the long-term changes in type 2 diabetes. The strength of this study is
that its results suggest the anti-oxidative properties of SGLT2 inhibitor empagliflozin and
its benefits on the kidneys in the diabetic milieu.

5. Conclusions

Uncontrolled diabetes significantly decreased ADS and induced renal insufficiency.
However, treatment with empagliflozin could provide dual benefits, not only in serum
glucose reduction but also with beneficial effects on the kidneys. Empagliflozin improved
ADS in the kidney tissue and protected it against oxidative damage. It could improve the
parameters of renal function by providing antioxidative benefits in the diabetic milieu.
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