The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agostinis, C.; Toffoli, M.; Spazzapan, M.; Balduit, A.; Zito, G.; Mangogna, A.; Zupin, L.; Salviato, T.; Maiocchi, S.; Romano, F.; et al. SARS-CoV-2 Modulates Virus Receptor Expression in Placenta and Can Induce Trophoblast Fusion, Inflammation and Endothelial Permeability. Front. Immunol. 2022, 13, 957224. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardenbrook, N.J.; Zhang, P. A Structural View of the SARS-CoV-2 Virus and Its Assembly. Curr. Opin. Virol. 2022, 52, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Li, M.-Y.; Li, L.; Zhang, Y.; Wang, X.-S. Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- Qi, J.; Zhou, Y.; Hua, J.; Zhang, L.; Bian, J.; Liu, B.; Zhao, Z.; Jin, S. The ScRNA-Seq Expression Profiling of the Receptor ACE2 and the Cellular Protease TMPRSS2 Reveals Human Organs Susceptible to SARS-CoV-2 Infection. Int. J. Environ. Res. Public Health 2021, 18, 284. [Google Scholar] [CrossRef]
- Montano, M.; Victor, A.R.; Griffin, D.K.; Duong, T.; Bolduc, N.; Farmer, A.; Garg, V.; Hadjantonakis, A.-K.; Coates, A.; Barnes, F.L.; et al. SARS-CoV-2 Can Infect Human Embryos. Sci. Rep. 2022, 12, 15451. [Google Scholar] [CrossRef]
- Jing, Y.; Run-Qian, L.; Hao-Ran, W.; Hao-Ran, C.; Ya-Bin, L.; Yang, G.; Fei, C. Potential Influence of COVID-19/ACE2 on the Female Reproductive System. Mol. Hum. Reprod. 2020, 26, 367–373. [Google Scholar] [CrossRef]
- Lanza, K.; Perez, L.G.; Costa, L.B.; Cordeiro, T.M.; Palmeira, V.A.; Ribeiro, V.T.; Simões E Silva, A.C. COVID-19: The Renin-Angiotensin System Imbalance Hypothesis. Clin. Sci. 2020, 134, 1259–1264. [Google Scholar] [CrossRef]
- Li, K.; Chen, G.; Hou, H.; Liao, Q.; Chen, J.; Bai, H.; Lee, S.; Wang, C.; Li, H.; Cheng, L.; et al. Analysis of Sex Hormones and Menstruation in COVID-19 Women of Child-Bearing Age. Reprod. Biomed. Online 2021, 42, 260–267. [Google Scholar] [CrossRef]
- Phelan, N.; Behan, L.A.; Owens, L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front. Endocrinol. 2021, 12, 642755. [Google Scholar] [CrossRef] [PubMed]
- Madaan, S.; Jaiswal, A.; Kumar, S.; Talwar, D.; Halani, D. Premature Ovarian Failure—A Long COVID Sequelae. Med. Sci. 2021, 25, 1286–1290. [Google Scholar]
- Maher, M.; Owens, L. SARS-CoV-2 Infection and Female Reproductive Health: A Narrative Review. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 101760. [Google Scholar] [CrossRef]
- Ata, B.; Vermeulen, N.; Mocanu, E.; Gianaroli, L.; Lundin, K.; Rautakallio-Hokkanen, S.; Tapanainen, J.S.; Veiga, A. SARS-CoV-2, Fertility and Assisted Reproduction. Hum. Reprod. Update 2023, 29, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Balachandren, N.; Davies, M.C.; Hall, J.A.; Stephenson, J.M.; David, A.L.; Barrett, G.; O’Neill, H.C.; Ploubidis, G.B.; Yasmin, E.; Mavrelos, D. SARS-CoV-2 Infection in the First Trimester and the Risk of Early Miscarriage: A UK Population-Based Prospective Cohort Study of 3041 Pregnancies Conceived during the Pandemic. Hum. Reprod. 2022, 37, 1126–1133. [Google Scholar] [CrossRef]
- Shams, T.; Alhashemi, H.; Madkhali, A.; Noorelahi, A.; Allarakia, S.; Faden, Y.; Alhasani, A.; Alzahrani, K.; Alrefai, A.; Al Ghilan, N.; et al. Comparing Pregnancy Outcomes between Symptomatic and Asymptomatic COVID-19 Positive Unvaccinated Women: Multicenter Study in Saudi Arabia. J. Infect. Public Health 2022, 15, 845–852. [Google Scholar] [CrossRef]
- Orvieto, R.; Segev-Zahav, A.; Aizer, A. Does COVID-19 Infection Influence Patients’ Performance during IVF-ET Cycle?: An Observational Study. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2021, 37, 895–897. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Q.; Ren, X.; Hu, J.; Li, Z.; Long, R.; Xi, Q.; Zhu, L.; Jin, L. Investigating the Impact of Asymptomatic or Mild SARS-CoV-2 Infection on Female Fertility and in Vitro Fertilization Outcomes: A Retrospective Cohort Study. EClinicalMedicine 2021, 38, 101013. [Google Scholar] [CrossRef]
- Prasad, S.; Tiwari, M.; Pandey, A.N.; Shrivastav, T.G.; Chaube, S.K. Impact of Stress on Oocyte Quality and Reproductive Outcome. J. Biomed. Sci. 2016, 23, 36. [Google Scholar] [CrossRef] [Green Version]
- Youngster, M.; Avraham, S.; Yaakov, O.; Landau Rabbi, M.; Gat, I.; Yerushalmi, G.; Sverdlove, R.; Baum, M.; Maman, E.; Hourvitz, A.; et al. IVF under COVID-19: Treatment Outcomes of Fresh ART Cycles. Hum. Reprod. 2022, 37, 947–953. [Google Scholar] [CrossRef]
- Gorman, C.N.; Abdalla, T.E.; Sultan, Y.; Grabois, S.A.; Wood, E.G. Transient Premature Ovarian Insufficiency Post-COVID-19 Infection. Cureus 2023, 15, e37379. [Google Scholar] [CrossRef] [PubMed]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.S.; Caricchio, R.; Casanova, J.-L.; Combes, A.J.; Diamond, B.; Fox, S.E.; Hanauer, D.A.; James, J.A.; Kanthi, Y.; Ladd, V.; et al. The Intersection of COVID-19 and Autoimmunity. J. Clin. Investig. 2021, 131, e154886. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Zhang, S.; Porritt, R.A.; Noval Rivas, M.; Paschold, L.; Willscher, E.; Binder, M.; Arditi, M.; Bahar, I. Superantigenic Character of an Insert Unique to SARS-CoV-2 Spike Supported by Skewed TCR Repertoire in Patients with Hyperinflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 25254–25262. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B Cell Responses Correlate with Neutralizing Antibodies and Morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef]
- Mobasheri, L.; Nasirpour, M.H.; Masoumi, E.; Azarnaminy, A.F.; Jafari, M.; Esmaeili, S.-A. SARS-CoV-2 Triggering Autoimmune Diseases. Cytokine 2022, 154, 155873. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, W.B. Culture and Transfer of Human Blastocysts. Curr. Opin. Obstet. Gynecol. 1999, 11, 307–311. [Google Scholar] [CrossRef]
- Ding, T.; Wang, T.; Zhang, J.; Cui, P.; Chen, Z.; Zhou, S.; Yuan, S.; Ma, W.; Zhang, M.; Rong, Y.; et al. Analysis of Ovarian Injury Associated with COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front. Med. 2021, 8, 286. [Google Scholar] [CrossRef]
- Kolanska, K.; Hours, A.; Jonquière, L.; Mathieu d’Argent, E.; Dabi, Y.; Dupont, C.; Touboul, C.; Antoine, J.-M.; Chabbert-Buffet, N.; Daraï, E. Mild COVID-19 Infection Does Not Alter the Ovarian Reserve in Women Treated with ART. Reprod. Biomed. Online 2021, 43, 1117–1121. [Google Scholar] [CrossRef]
- Herrero, Y.; Pascuali, N.; Velázquez, C.; Oubiña, G.; Hauk, V.; de Zúñiga, I.; Peña, M.G.; Martínez, G.; Lavolpe, M.; Veiga, F.; et al. SARS-CoV-2 Infection Negatively Affects Ovarian Function in ART Patients. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166295. [Google Scholar] [CrossRef]
- Caso, F.; Costa, L.; Ruscitti, P.; Navarini, L.; Del Puente, A.; Giacomelli, R.; Scarpa, R. Could Sars-Coronavirus-2 Trigger Autoimmune and/or Autoinflammatory Mechanisms in Genetically Predisposed Subjects? Autoimmun. Rev. 2020, 19, 102524. [Google Scholar] [CrossRef] [PubMed]
- Gougeon, A. Human Ovarian Follicular Development: From Activation of Resting Follicles to Preovulatory Maturation. Ann. Endocrinol. 2010, 71, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H.; et al. COVID-19 and Autoimmunity. Autoimmun. Rev. 2020, 19, 102597. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, M.C.; Tamiazzo, S.; Stobbione, P.; Agatea, L.; De Gaspari, P.; Stecca, A.; Lauritano, E.C.; Roveta, A.; Tozzoli, R.; Guaschino, R.; et al. SARS-CoV-2 Infection as a Trigger of Autoimmune Response. Clin. Transl. Sci. 2021, 14, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Dolgushina, N.V.; Menzhinskaya, I.V.; Beznoshchenko, O.S.; Mullabaeva, S.M.; Gorodnova, E.A.; Krechetova, L.V. The Profile of Antiphospholipid Antibodies and Complement System in COVID-19 Patients of Different Severity. Med. Immunol. 2022, 2, 355–370. [Google Scholar] [CrossRef]
- Foret, T.; Dufrost, V.; Salomon Du Mont, L.; Costa, P.; Lefevre, B.; Lacolley, P.; Regnault, V.; Zuily, S.; Wahl, D. Systematic Review of Antiphospholipid Antibodies in COVID-19 Patients: Culprits or Bystanders? Curr. Rheumatol. Rep. 2021, 23, 65. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, A.; Fortunati, V.; Cherubini, F.; Bernardini, S.; Nuccetelli, M. Anti-Phospholipids Antibodies and Immune Complexes in COVID-19 Patients: A Putative Role in Disease Course for Anti-Annexin-V Antibodies. Clin. Rheumatol. 2021, 40, 2939–2945. [Google Scholar] [CrossRef]
- Vance, J.E. Historical Perspective: Phosphatidylserine and Phosphatidylethanolamine from the 1800s to the Present. J. Lipid Res. 2018, 59, 923–944. [Google Scholar] [CrossRef] [Green Version]
- Žarković, N.; Orehovec, B.; Baršić, B.; Tarle, M.; Kmet, M.; Lukšić, I.; Tatzber, F.; Wonisch, W.; Skrzydlewska, E.; Łuczaj, W. Lipidomics Revealed Plasma Phospholipid Profile Differences between Deceased and Recovered COVID-19 Patients. Biomolecules 2022, 12, 1488. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Sugi, T.; Arai, T.; Shida, M.; Kondo, A.; Suzuki, T.; Izumi, S.; McIntyre, J.A. IgG-Antiphospholipid Antibodies in Follicular Fluid of IVF-ET Patients Are Related to Low Fertilization Rate of Their Oocytes. Am. J. Reprod. Immunol. 2006, 55, 341–348. [Google Scholar] [CrossRef]
- Sato, Y.; Sugi, T.; Sakai, R. Autoantibodies to Factor XII and Kininogen-Dependent Antiphosphatidylethanolamine Antibodies in Patients with Recurrent Pregnancy Loss Augment Platelet Aggregation. Am. J. Reprod. Immunol. 2015, 74, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Bećarević, M. The IgG and IgM Isotypes of Anti-Annexin A5 Antibodies: Relevance for Primary Antiphospholipid Syndrome. J. Thromb. Thrombolysis 2016, 42, 552–557. [Google Scholar] [CrossRef]
- Gao, R.; Zeng, R.; Qing, P.; Meng, C.; Cheng, K.; Zhang, S.; Chen, H.; Jin, X.; Qin, L.; Li, T. Antiphospholipid Antibodies and Pregnancy Outcome of Assisted Reproductive Treatment: A Systematic Review and Meta-Analysis. Am. J. Reprod. Immunol. 2021, 86, e13470. [Google Scholar] [CrossRef] [PubMed]
- Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Grigoriadis, S.; Giannelou, P.; Rapani, A.; Tsioulou, P.; Pantou, A.; Kalampokas, T.; Vlahos, N.; et al. The Impact of Autoantibodies on IVF Treatment and Outcome: A Systematic Review. Int. J. Mol. Sci. 2019, 20, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, M.; Wen, P.; Duan, J. Association of Antinuclear Antibody with Clinical Outcome of Patients Undergoing in Vitro Fertilization/Intracytoplasmic Sperm Injection Treatment: A Meta-Analysis. Am. J. Reprod. Immunol. 2019, 82, e13158. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L.; Liu, X.; Jiang, Y.; Teng, Y. Antinuclear Antibodies in Follicular Fluid May Be a Risk Factor in Vitro Fertilization and Embryo Transfer. Am. J. Reprod. Immunol. 2022, 88, e13560. [Google Scholar] [CrossRef]
- Fan, J.; Zhong, Y.; Chen, C. Impacts of Anti-DsDNA Antibody on In Vitro Fertilization-Embryo Transfer and Frozen-Thawed Embryo Transfer. J. Immunol. Res. 2017, 2017, 8596181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, D.T.W.; Lee, C.H.; Chow, W.S.; Lee, A.C.H.; Tam, A.R.; Fong, C.H.Y.; Law, C.Y.; Leung, E.K.H.; To, K.K.W.; Tan, K.C.B.; et al. Thyroid Dysfunction in Relation to Immune Profile, Disease Status, and Outcome in 191 Patients with COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e926–e935. [Google Scholar] [CrossRef]
- Busnelli, A.; Paffoni, A.; Fedele, L.; Somigliana, E. The Impact of Thyroid Autoimmunity on IVF/ICSI Outcome: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2016, 22, 775–790. [Google Scholar] [CrossRef] [Green Version]
- Toulis, K.A.; Goulis, D.G.; Venetis, C.A.; Kolibianakis, E.M.; Tarlatzis, B.C.; Papadimas, I. Thyroid Autoimmunity and Miscarriages: The Corpus Luteum Hypothesis. Med. Hypotheses 2009, 73, 1060–1062. [Google Scholar] [CrossRef]
Parameter | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | |||
Patient age, years | 34 (30–36) | 34 (31–37) | 0.396 * | |
35 (32–37) | 33 (30–36) | 0.088 * | ||
Patient age > 35 years | 31 (29.5%) | 48(35.6%) | 0.320 ** | |
33 (38.8%) | 15 (30.0%) | 0.298 ** | ||
BMI, kg/m2 | 21.9 (20.0–24.5) | 22.9 (20.4–25.5) | 0.009 * | |
22.4 (20.1–25.3) | 23.4 (21.2–26.4) | 0.003 * | ||
IgG to the SARS-CoV-2 spike protein, PI | 0.13 (0.12–0.96) | 6.08 (2.80–10.79) | <0.0001 * | |
6.06 (2.88–10.53) | 6.39 (2.80–11.43) | <0.0001 * | ||
Gravidity | 0 (0–6) | 0 (0–5) | 0.752 *** | |
0 (0–5) | 0 (0–5) | 0.656 *** | ||
Parity | 0 (0–2) | 0 (0–3) | 0.992 ** | |
0 (0–3) | 0 (0–3) | 0.988 ** | ||
Recurrent abortion | 3 (2.8%) | 10 (7.4%) | 0.122 ** | |
8 (9.4%) | 2 (4%) | 0.123 ** | ||
Endometriosis | 25 (23.8%) | 38 (28.1%) | 0.448 ** | |
27 (31.7%) | 11 (22%) | 0.345 ** | ||
Adenomyosis | 14 (13.3%) | 6 (4.4%) | 0.013 ** | |
3 (3.5%) | 3 (6%) | 0.041 ** | ||
Uterine fibroids | 21 (20%) | 33 (24.4%) | 0.413 ** | |
25 (29.4%) | 8 (16%) | 0.141 ** | ||
Chronic endometritis | 11 (10.5%) | 8 (5.6%) | 0.195 ** | |
5 (5.9%) | 3 (6%) | 0.432 ** | ||
Chronic salpingoophoritis | 13 (12.4%) | 15 (11.1%) | 0.761 ** | |
8 (9.4%) | 7 (14%) | 0.692 ** | ||
Primary infertility | 61 (58.1%) | 79 (58.5%) | 0.947 ** | |
49 (57.6%) | 30 (60%) | 0.962 ** | ||
Secondary infertility | 44 (41.9%) | 56 (41.5%) | 0.95 ** | |
36 (42.4%) | 20 (40%) | 0.963 ** | ||
Duration of infertility, years | 4 (3–6.5) | 5 (3–6) | 0.631** | |
5 (3–6) | 5 (2–6) | 0.839 ** | ||
Number of ART cycles | 1 (1–5) | 1 (1–8) | 0.370 *** | |
1 (1–8) | 1 (1–4) | 0.429 *** | ||
ENT diseases | 9 (8.6%) | 24 (17.8%) | 0.039 ** | |
15 (17.6%) | 9 (18%) | 0.120 ** | ||
Endocrine diseases | 31 (29.5%) | 27 (20%) | 0.087 ** | |
17 (20%) | 10 (20%) | 0.231 ** | ||
Allergic diseases | 9 (8.6%) | 23 (17%) | 0.055 ** | |
11 (12.9%) | 12 (24%) | 0.030 ** |
Parameter | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | |||
Total oocytes * | 10 (6–13) | 9 (6–14) | 0.366 | |
8 (5–14) | 10 (6–16) | 0.334 | ||
MII stage oocytes * | 8 (5–11) | 7 (4–11) | 0.262 | |
7 (4–10) | 7 (5–12) | 0.367 | ||
MII stage oocytes/total oocytes ** | 83 (70–100)% | 82 (70–95)% | 0.518 | |
82 (71–100)% | 80 (70–87)% | 0.265 | ||
Fertilization * | 6 (4–9) | 6 (4–10) | 0.375 | |
6 (4–9) | 6 (4–10) | 0.443 | ||
Fertilization rate ** | 90 (75–100)% | 92 (80–100)% | 0.391 | |
90 (80–100)% | 100 (83–100)% | 0.501 | ||
Total blastocysts * | 3 (1–5) | 3 (1–5) | 0.324 | |
3 (1–5) | 3 (1–6) | 0.513 | ||
Blastulation rate ** | 50 (33–66)% | 50 (25–71)% | 0.980 | |
50 (25–75)% | 54 (30–66)% | 0.948 | ||
Blastocyst grade ** | ||||
A | 72 (68.6%) | 85 (63%) | 0.37 | |
53 (62.4%) | 32 (64%) | 0.651 | ||
B | 10 (9.5%) | 10 (7.4%) | 0.56 | |
8 (9.4%) | 2 (4%) | 0.46 | ||
C | 11 (10.5%) | 18 (13.3%) | 0.51 | |
11 (12.9%) | 7 (14%) | 0.784 | ||
Grade A blastocysts * | 1 (0–3) | 1 (0–2) | 0.188 | |
1 (0–2) | 1 (0–2) | 0.235 | ||
Grade A blastocysts/total blastocysts ** | 40 (0–67)% | 33 (0–67)% | 0.336 | |
33 (0–67)% | 33 (0–67)% | 0.572 | ||
Grade C blastocysts * | 1 (0–2) | 1 (0–2) | 0.994 | |
1 (0–2) | 1 (0–2) | 0.999 | ||
Grade C blastocysts/total blastocysts ** | 33 (0–50)% | 33 (0–67)% | 0.468 | |
33 (0–67)% | 29 (0–55)% | 0.530 |
Parameter | Time Interval ≤180 Days (n = 85) | Time Interval >180 Days (n = 50) | p-Value |
---|---|---|---|
Total oocytes * | 8 (6–15) | 9.5 (6–11) | 0.749 |
MII stage oocytes * | 7 (5–11) | 6.5 (4–9) | 0.338 |
MII stage oocytes/total oocytes ** | 83 (71–92)% | 75 (60–100)% | 0.249 |
Fertilization rate ** | 100 (80–100)% | 90 (77–100)% | 0.349 |
Total blastocysts * | 3 (1–5) | 3 (1–5) | 0.456 |
Blastulation rate ** | 54 (30–71)% | 50 (25–68)% | 0.655 |
Grade A blastocysts * | 1 (0–2) | 1 (0–2) | 0.665 |
Grade A blastocysts/total blastocysts ** | 33 (0–60)% | 32 (0–66)% | 0.998 |
Grade C blastocysts * | 1 (1–2) | 1 (0–2) | 0.075 |
Grade C blastocysts/total blastocysts ** | 37 (14–71)% | 18 (0–40)% | 0.006 |
Parameter | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | |||
Biochemical pregnancy | 32 (30.5%) | 39 (28.9%) | 0.789 | |
22 (25.8%) | 17 (34%) | 0.586 | ||
Clinical pregnancy | 30 (28.6%) | 39 (28.9%) | 0.957 | |
22 (25.8%) | 17 (34%) | 0.602 | ||
Twin pregnancy | 0 | 4 (2.9%) | 0.134 | |
2 (2.3%) | 2 (4%) | 0.158 | ||
Childbirth | 27 (25.7%) | 30 (22.2%) | 0.528 | |
19 (22.3%) | 11 (22%) | 0.217 | ||
Spontaneous miscarriage | 3 (2.9%) | 9 (6.7%) | 0.179 | |
3 (3.5%) | 6 (12%) | 0.037 0.792 (1 vs. 2) 0.024 (1 vs. 3) 0.056 (2 vs. 3) | ||
Miscarriages/clinical pregnancies | 10% | 23.1% | 0.18 | |
13.6% | 35.3% | 0.038 |
Parameter | Reference Values | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | ||||
anti-CL IgM | <7 MPL-U/mL | 3 (2.9%) | 4 (2.9%) | 0.96 | |
3 (5.2%) | 1 (2.0%) | 0.877 | |||
anti-CL IgG | <10 GPL-U/mL | 0 (0.0%) | 0 (0.0%) | - | |
0 (0.0%) | 0 (0.0%) | - | |||
anti-β2-GP-I IgM | <8 U/mL | 1 (0.95%) | 2 (1.5%) | 0.75 | |
1 (1.2%) | 1 (2.0%) | 0.858 | |||
anti-β2-GP-I IgG | <8 U/mL | 1 (0.95%) | 2 (1.5%) | 0.75 | |
1 (1.2%) | 1 (2.0%) | 0.858 | |||
anti-AnV IgM | <8 U/mL | 4 (3.8%) | 2 (1.5%) | 0.259 | |
1 (1.2%) | 1 (2.0%) | 0.496 | |||
anti-AnV IgG | <8 U/mL | 2 (1.9%) | 11 (8.1%) | 0.035 | |
6 (7.1%) | 5 (10%) | 0.081 | |||
anti-PE IgM | <18 U/mL | 21 (20%) | 25 (18.5%) | 0.55 | |
13 (15.3%) | 12 (24%) | 0.444 | |||
anti-PE IgG | <18 U/mL | 1 (0.95%) | 9 (6.7%) | 0.028 | |
5 (5.9%) | 4 (8%) | 0.075 | |||
anti-PS/PT IgM | <18 U/mL | 3 (2.9%) | 2 (1.5%) | 0.455 | |
2 (2.4%) | 0 (0.0%) | 0.496 | |||
anti-PS/PT IgG | <18 U/mL | 4 (3.8%) | 4 (2.9%) | 0.699 | |
4 (4.7%) | 0 (0.0%) | 0.317 | |||
ANA (IgG) | <1.2 PI | 3 (2.9%) | 0 (0.0%) | 0.047 | |
0 (0.0%) | 0 (0.0%) | 0.142 | |||
anti-dsDNA IgG | <20 IU/mL | 8 (7.6%) | 7 (5.2%) | 0.441 | |
3 (5.2%) | 4 (8%) | 0.434 | |||
anti-TPO IgG | <50 IU/mL | 5 (4.7%) | 10 (7.4%) | 0.401 | |
6 (7.1%) | 4 (8%) | 0.686 | |||
anti-TSHr IgG | <1.5 IU/mL | 2 (1.9%) | 11 (8.2%) | 0.033 | |
9 (10.6%) | 2 (4%) | 0.028 | |||
anti-TG IgG | <100 IU/mL | 4 (3.8%) | 8 (5.9%) | 0.455 | |
5 (5.9%) | 3 (6%) | 0.757 |
Parameter | Reference Values | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | ||||
anti-CL IgM | <7 MPL-U/mL | 3.03 (1.94–4.05) | 2.52 (1.59–3.91) | 0.137 * | |
2.43 (1.59–1.04) | 3.04 (1.50–3.8) | 0.303 ** | |||
anti-CL IgG | <10 GPL-U/mL | 1.87 (1.41–2.56) | 2.10 (1.59–3.01) | 0.063 | |
2.01 (1.50–2.86) | 2.14 (1.68–3.31) | 0.083 | |||
anti-β2-GP-I IgM | <8 U/mL | 1.51 (0.81–2.43) | 1.41 (0.98–2.17) | 0.871 | |
1.41 (0.95–2.38) | 1.42 (1.06–2.07) | 0.957 | |||
anti-β2-GP-I IgG | <8 U/mL | 2.98 (2.12–3.59) | 2.37 (1.21–3.26) | 0.001 | |
2.09 (0.94–2.30) | 2.52 (1.94–3.54) | 0.0004 | |||
anti-AnV IgM | <8 U/mL | 2.52 (1.76–3.52) | 2.22 (1.23–3.22) | 0.030 | |
2.22 (1.26–3.18) | 2.25 (1.45–3.35) | 0.068 | |||
anti-AnV IgG | <8 U/mL | 2.91 (2.27–3.94) | 3.34 (2.13–4.60) | 0.238 | |
3.37 (2.20–4.95) | 3.23 (2.00–4.58) | 0.253 | |||
anti-PE IgM | <18 U/mL | 12.23 (8.70–16.98) | 11.85 (8.67–15.58) | 0.544 | |
11.93 (7.78–15.2) | 11.61 (9.09–7.89) | 0.513 | |||
anti-PE IgG | <18 U/mL | 6.57 (5.78–7.77) | 7.82 (6.25–9.74) | 0.0002 | |
7.39 (6.20–8.89) | 8.20 (6.74–10.93) | 0.0027 | |||
anti-PS/PT IgM | <18 U/mL | 1.72 (1.10–3.28) | 2.39 (1.47–3.58) | 0.009 | |
2.39 (1.53–3.73) | 2.33 (1.28–3.55) | 0.027 | |||
anti-PS/PT IgG | <18 U/mL | 4.24 (3.00–5.36) | 3.38 (2.28–5.31) | 0.027 | |
3.43 (2.32–5.48) | 3.02 (2.24–5.11) | 0.057 | |||
ANA (IgG) | <1.2 PI | 0.30 (0.30–0.40) | 0.30 (0.30–0.40) | 0.505 | |
0.40 (0.30–0.40) | 0.30 (0.30–0.40) | 0.626 | |||
anti-dsDNA IgG | <20 IU/mL | 13.65 (10.24–16.77) | 13.34 (10.34–6.23) | 0.531 | |
12.33 (10.30–15.75) | 14.06 (10.42–17.23) | 0.467 | |||
anti-TPO IgG | <50 IU/mL | 12.04 (5.31–16.44) | 14.35 (5.91–20.07) | 0.064 | |
14.35 (6.58–20.54) | 14.51 (5.26–19.26) | 0.162 | |||
anti-TSHr IgG | <1.5 IU/mL | 0.49 (0.28–0.96) | 0.76 (0.41–1.16) | 0.002 | |
0.83 (0.43–1.21) | 0.68 (0.37–1.02) | 0.004 | |||
anti-TG IgG | <100 IU/mL | 9.13 (4.13–27.22) | 18.18 (6.84–36.98) | 0.008 | |
20.6 (6.29–35.81) | 17.85 (7.97–37.67) | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgushina, N.V.; Menzhinskaya, I.V.; Ermakova, D.M.; Frankevich, N.A.; Vtorushina, V.V.; Sukhikh, G.T. The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients. J. Clin. Med. 2023, 12, 4370. https://doi.org/10.3390/jcm12134370
Dolgushina NV, Menzhinskaya IV, Ermakova DM, Frankevich NA, Vtorushina VV, Sukhikh GT. The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients. Journal of Clinical Medicine. 2023; 12(13):4370. https://doi.org/10.3390/jcm12134370
Chicago/Turabian StyleDolgushina, Nataliya V., Irina V. Menzhinskaya, Daria M. Ermakova, Natalia A. Frankevich, Valentina V. Vtorushina, and Gennady T. Sukhikh. 2023. "The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients" Journal of Clinical Medicine 12, no. 13: 4370. https://doi.org/10.3390/jcm12134370
APA StyleDolgushina, N. V., Menzhinskaya, I. V., Ermakova, D. M., Frankevich, N. A., Vtorushina, V. V., & Sukhikh, G. T. (2023). The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients. Journal of Clinical Medicine, 12(13), 4370. https://doi.org/10.3390/jcm12134370