Making Sense of Composite Endpoints in Clinical Research
Abstract
:1. Introduction
2. Unveiling the Advantages and Limitations of Composite Outcomes: Representative Examples
Area | Trial | Composite Outcome | Interpretation | Impact on Patient Care | Reference |
---|---|---|---|---|---|
Cardiovascular | PLATO | MACE: death from vascular causes, MI, or stroke | Treatment with ticagrelor compared with clopidogrel reduced the rate of the composite endpoint | -Current guidelines for the treatment of NSTEMI and STEMI recommend the use of ticagrelor over clopidogrel | [9,10,11] |
TRITON-TIMI-38 | MACE: death from cardiovascular causes, nonfatal MI, or nonfatal stroke | Treatment with prasugrel compared with clopidogrel reduced the rate of the composite endpoint | -Current guidelines for the treatment of NSTEMI and STEMI recommend the use of prasugrel over clopidogrel | [9,10,21] | |
PARADIGM-HF trial | Death from cardiovascular causes or a first hospitalization for heart failure | Treatment with sacubitril–valsartan versus enalapril in patients with heart failure significantly reduced the rate of the composite outcome | -Served as the basis to justify the regulatory approval and the clinical use of sacubitril–valsartan for the treatment of heart failure | [22] | |
Oncology | KEYNOTE | Progression-free survival (considered as the time from randomization to first disease progression according to RECIST, or death from any cause) | Significant improvement in PFS for patients randomized to pembrolizumab compared with chemotherapy | In patients with non-operable metastatic colorectal cancer with deficient DNA mismatch repair/microsatellite-unstable tumors, the use of pembrolizumab as monotherapy is recommended as a first-line treatment option over cytotoxic chemotherapy | [16,17,23] |
Nephrology | DAPA-CKD | ≥50% reduction in eGFR, end-stage kidney disease, and death from a kidney or cardiovascular cause | Treatment with dapagliflozin reduced the hazard of the primary composite | Dapagliflozin was approved for the indication to reduce the risk of kidney function decline, end-stage kidney disease, cardiovascular death, and hospitalization for heart failure in adults with CKD at risk of progression | [24,25] |
3. A Concise Guide to Interpreting Composite Outcomes in Clinical Practice
4. What Is the Point of View of Regulatory Agencies?
5. New Perspectives for the Statistical Analysis of Composite Endpoints
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rauch, G.; Schüler, S.; Kieser, M. Planning and Analyzing Clinical Trials with Composite Endpoints; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- McKenna, S.P.; Heaney, A. Composite Outcome Measurement in Clinical Research: The Triumph of Illusion over Reality? J. Med. Econ. 2020, 23, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Guideline on Multiplicity Issues in Clinical Trials—For Publication. Available online: www.ema.europa.eu/contact (accessed on 20 January 2023).
- Hyder, A.A.; Puvanachandra, P.; Morrow, R.H. Measuring the Health of Populations: Explaining Composite Indicators. J. Public Health Res. 2012, 1, 222. [Google Scholar] [CrossRef] [Green Version]
- Freemantle, N.; Calvert, M.; Wood, J.; Eastaugh, J.; Griffin, C. Composite Outcomes in Randomized Trials: Greater Precision but with Greater Uncertainty? JAMA 2003, 289, 2554–2559. [Google Scholar] [CrossRef]
- Patel, R.B.; Ter Maaten, J.M.; Ferreira, J.P.; McCausland, F.R.; Shah, S.J.; Rossignol, P.; Solomon, S.D.; Vaduganathan, M.; Packer, M.; Thompson, A.; et al. Challenges of Cardio-Kidney Composite Outcomes in Large-Scale Clinical Trials. Circulation 2021, 143, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Barberà, J.A.; Frost, A.E.; Ghofrani, H.-A.; Hoeper, M.M.; McLaughlin, V.V.; Peacock, A.J.; Simonneau, G.; Vachiery, J.-L.; Grünig, E.; et al. Initial Use of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension. N. Engl. J. Med. 2015, 373, 834–844. [Google Scholar] [CrossRef]
- Food and Drug Administration. Surrogate Endpoint Resources for Drug and Biologic Development|FDA. Available online: https://www.fda.gov/drugs/development-resources/surrogate-endpoint-resources-drug-and-biologic-development (accessed on 20 April 2023).
- Ibáñez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. Guía ESC 2017 Sobre El Tratamiento Del Infarto Agudo de Miocardio En Pacientes Con Elevación Del Segmento ST. Rev. Esp. Cardiol. 2017, 70, 1082.e1–1082.e61. [Google Scholar] [CrossRef]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. Guía ESC 2020 Sobre El Diagnóstico y Tratamiento Del Síndrome Coronario Agudo Sin Elevación Del Segmento ST. Rev. Esp. Cardiol. 2021, 74, 544.e1–544.e73. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; et al. Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2009, 361, 1045–1057. [Google Scholar] [CrossRef]
- Montori, V.M.; Permanyer-Miralda, G.; Ferreira-González, I.; Busse, J.W.; Pacheco-Huergo, V.; Bryant, D.; Alonso, J.; Akl, E.A.; Domingo-Salvany, A.; Mills, E.; et al. Validity of Composite End Points in Clinical Trials. BMJ 2005, 330, 594–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miltenberger, R.; Götte, H.; Schüler, A.; Jahn-Eimermacher, A. Progression-Free Survival in Oncological Clinical Studies: Assessment Time Bias and Methods for Its Correction. Pharm. Stat. 2021, 20, 864–878. [Google Scholar] [CrossRef]
- Jazic, I.; Schrag, D.; Sargent, D.J.; Haneuse, S. Beyond Composite Endpoints Analysis: Semicompeting Risks as an Underutilized Framework for Cancer Research. JNCI J. Natl. Cancer Inst. 2016, 108, djw154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Table of Surrogate Endpoints That Were the Basis of Drug Approval or Licensure|FDA. Available online: https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure (accessed on 20 January 2023).
- Food and Drug Administration. FDA Approves Pembrolizumab for First-Line Treatment of MSI-H/DMMR Colorectal Cancer|FDA. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-first-line-treatment-msi-hdmmr-colorectal-cancer (accessed on 20 January 2023).
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.M.; Eisenhauer, E.A. Progression-Free Survival: Meaningful or Simply Measurable? J. Clin. Oncol. 2012, 30, 1030–1033. [Google Scholar] [CrossRef]
- Haslam, A.; Hey, S.P.; Gill, J.; Prasad, V. A Systematic Review of Trial-Level Meta-Analyses Measuring the Strength of Association between Surrogate End-Points and Overall Survival in Oncology. Eur. J. Cancer 2019, 106, 196–211. [Google Scholar] [CrossRef]
- Gyawali, B.; Eisenhauer, E.; Tregear, M.; Booth, C.M. Progression-Free Survival: It Is Time for a New Name. Lancet Oncol. 2022, 23, 328–330. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Braunwald, E.; Mccabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.-J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [Green Version]
- McMurray, J.; Packer, M.; Desai, A.; Gong, J.; Lefkowitz, M. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef]
- Waijer, S.W.; Vart, P.; Cherney, D.Z.I.; Chertow, G.M.; Jongs, N.; Langkilde, A.M.; Mann, J.F.E.; Mosenzon, O.; McMurray, J.J.V.; Rossing, P.; et al. Effect of Dapagliflozin on Kidney and Cardiovascular Outcomes by Baseline KDIGO Risk Categories: A Post Hoc Analysis of the DAPA-CKD Trial. Diabetologia 2022, 65, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- FDA. Approves Treatment for Chronic Kidney Disease|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-treatment-chronic-kidney-disease (accessed on 23 April 2023).
- Ferreira-Gonzalez, I.; Alonso-Coello, P.; Sola, I.; Pacheco-Huergo, V. Composite Endpoints in Clinical Trials. Available online: https://www.sciencedirect.com/science/article/pii/S1885585708601164 (accessed on 20 January 2023).
- Ferreira-González, I.; Permanyer-Miralda, G.; Busse, J.W.; Bryant, D.M.; Montori, V.M.; Alonso-Coello, P.; Walter, S.D.; Guyatt, G.H. Methodologic Discussions for Using and Interpreting Composite Endpoints Are Limited, but Still Identify Major Concerns. J. Clin. Epidemiol. 2007, 60, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, G.; Schwartz, L.; Woloshin, S.; Bae, H.; Gøtzsche, P.C. Definition, Reporting, and Interpretation of Composite Outcomes in Clinical Trials: Systematic Review. BMJ 2010, 341, 381. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-González, I.; Busse, J.W.; Heels-Ansdell, D.; Montori, V.M.; Akl, E.A.; Bryant, D.M.; Alonso, J.; Jaeschke, R.; Schünemann, H.J.; Permanyer-Miralda, G.; et al. Problems with Use of Composite End Points in Cardiovascular Trials: Systematic Review of Randomised Controlled Trials. BMJ 2007, 334, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastrati, A.; Neumann, F.-J.; Mehilli, J.; Byrne, R.A.; Iijima, R.; Büttner, H.J.; Khattab, A.A.; Schulz, S.; Blankenship, J.C.; Pache, J.; et al. Bivalirudin versus Unfractionated Heparin during Percutaneous Coronary Intervention. N. Engl. J. Med. 2008, 359, 688–696. [Google Scholar] [CrossRef]
- Food and Drug Administration. Highlights of Prescribing Information ANGIOMAX® (Bivalirudin); FDA: Silver Spring, MD, USA, 2016.
- Palileo-Villanueva, L.M.; Dans, A.L. Composite Endpoints. J. Clin. Epidemiol. 2020, 128, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W.; Westerhout, C.M. Composite End Points in Clinical Research: A Time for Reappraisal. Circulation 2017, 135, 2299–2307. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Yusuf, S.; Holman, R.R.; Bosch, J.; Anand, S.; Avezum, A.; Budaj, A.; Chiasson, J.; Conget, I.; Dagenais, G.; et al. Effect of Rosiglitazone on the Frequency of Diabetes in Patients with Impaired Glucose Tolerance or Impaired Fasting Glucose: A Randomised Controlled Trial. Lancet 2006, 368, 1096–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, V.S.; Kelly, T.L.; Pratt, N.; Graves, S.E.; Buchbinder, R.; Adie, S.; Cashman, K.; Ackerman, I.; Bastiras, D.; Brighton, R.; et al. Effect of Aspirin vs Enoxaparin on Symptomatic Venous Thromboembolism in Patients Undergoing Hip or Knee Arthroplasty: The CRISTAL Randomized Trial. JAMA 2022, 328, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Corti, M.; Trinchero, A.; Picchi, C.; Ambaglio, C.; Konstantinides, S.V.; Dentali, F.; Barone, M. Survival and Recurrent Venous Thromboembolism in Patients with First Proximal or Isolated Distal Deep Vein Thrombosis and No Pulmonary Embolism. J. Thromb. Haemost. 2017, 15, 1436–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikdeli, B.; Caraballo, C.; Trujillo-Santos, J.; Galanaud, J.P.; di Micco, P.; Rosa, V.; Cusidó, G.V.; Schellong, S.; Mellado, M.; del Valle Morales, M.; et al. Clinical Presentation and Short- and Long-Term Outcomes in Patients With Isolated Distal Deep Vein Thrombosis vs Proximal Deep Vein Thrombosis in the RIETE Registry. JAMA Cardiol. 2022, 7, 857–865. [Google Scholar] [CrossRef]
- Dahlöf, B.; Devereux, R.B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; De Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristiansson, K.; Lederballe-Pedersen, O.; et al. Cardiovascular Morbidity and Mortality in the Losartan Intervention For Endpoint Reduction in Hypertension Study (LIFE): A Randomised Trial against Atenolol. Lancet 2002, 359, 995–1003. [Google Scholar] [CrossRef]
- Altman, R.; Carreras, L.; Diaz, R.; Figueroa, E.; Paolasso, E.; Parodi, J.C.; Cade, J.F.; Donnan, G.; Eadie, M.J.; Gavaghan, T.P.; et al. Collaborative Overview of Randomised Trials of Antiplatelet Therapy--I: Prevention of Death, Myocardial Infarction, and Stroke by Prolonged Antiplatelet Therapy in Various Categories of Patients. Antiplatelet Trialists’ Collaboration. BMJ 1994, 308, 81. [Google Scholar]
- Webster, J.; Clarke, S.; Paterson, D.; Hutton, A.; Van Dyk, S.; Gale, C.; Hopkins, T. Routine Care of Peripheral Intravenous Catheters versus Clinically Indicated Replacement: Randomised Controlled Trial. BMJ 2008, 337, 157–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, S.; Sleight, P.; Pogue, J.F.; Bosch, J.; Davies, R.; Dagenais, G. Effects of an Angiotensin-Converting-Enzyme Inhibitor, Ramipril, on Cardiovascular Events in High-Risk Patients. N. Engl. J. Med. 2000, 342, 145–153. [Google Scholar] [CrossRef]
- Lim, E.; Brown, A.; Helmy, A.; Mussa, S.; Altman, D.G. Composite Outcomes in Cardiovascular Research: A Survey of Randomized Trials. Ann. Intern. Med. 2008, 149, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials Regulation|European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/clinical-trials/clinical-trials-regulation (accessed on 21 April 2023).
- FDA. Multiple Endpoints in Clinical Trials Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry (accessed on 23 April 2023).
- Pocock, S.J.; Ariti, C.A.; Collier, T.J.; Wang, D. The Win Ratio: A New Approach to the Analysis of Composite Endpoints in Clinical Trials Based on Clinical Priorities. Eur. Heart J. 2012, 33, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, H.; van Klaveren, D.; Kogame, N.; Chichareon, P.; Modolo, R.; Tomaniak, M.; Ono, M.; Kawashima, H.; Takahashi, K.; Capodanno, D.; et al. Statistical Methods for Composite Endpoints. EuroIntervention 2021, 16, E1484–E1495. [Google Scholar] [CrossRef]
- Anker, S.D.; McMurray, J.J.V. Time to Move on from ‘Time-to-First’: Should All Events Be Included in the Analysis of Clinical Trials? Eur. Heart J. 2012, 33, 2764–2765. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, U.M.; Gong, J.; Jhund, P.S.; Shen, L.; Køber, L.; Desai, A.S.; Lefkowitz, M.P.; Packer, M.; Rouleau, J.L.; Solomon, S.D.; et al. Effect of Sacubitril/Valsartan on Recurrent Events in the Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial (PARADIGM-HF). Eur. J. Heart Fail. 2018, 20, 760–768. [Google Scholar] [CrossRef]
- Neaton, J.D.; Gray, G.; Zuckerman, B.D.; Konstam, M.A. Key Issues in End Point Selection for Heart Failure Trials: Composite End Points. J. Card. Fail. 2005, 11, 567–575. [Google Scholar] [CrossRef]
- Andersen, P.; Gill, R. Cox’s Regression Model for Counting Processes: A Large Sample Study. Inst. Math. Stat. 1982, 10, 1100–1120. [Google Scholar] [CrossRef]
- Ozga, A.K.; Rauch, G. Weighted Composite Time to Event Endpoints with Recurrent Events: Comparison of Three Analytical Approaches. BMC Med. Res. Methodol. 2022, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Capodanno, D.; Gargiulo, G.; Buccheri, S.; Chieffo, A.; Meliga, E.; Latib, A.; Park, S.J.; Onuma, Y.; Capranzano, P.; Valgimigli, M.; et al. Computing Methods for Composite Clinical Endpoints in Unprotected Left Main Coronary Artery Revascularization: A Post Hoc Analysis of the DELTA Registry. JACC Cardiovasc. Interv. 2016, 9, 2280–2288. [Google Scholar] [CrossRef]
- Bakal, J.A.; Roe, M.T.; Ohman, E.M.; Goodman, S.G.; Fox, K.A.A.; Zheng, Y.; Westerhout, C.M.; Hochman, J.S.; Lokhnygina, Y.; Brown, E.B.; et al. Applying Novel Methods to Assess Clinical Outcomes: Insights from the TRILOGY ACS Trial. Eur. Heart J. 2015, 36, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Van Klaveren, D.; Takahashi, K.; Kogame, N.; Chichareon, P.; Modolo, R.; Tomaniak, M.; Ono, M.; Kawashima, H.; Wang, R.; et al. Comparative Methodological Assessment of the Randomized GLOBAL LEADERS Trial Using Total Ischemic and Bleeding Events. Circ. Cardiovasc. Qual. Outcomes 2020, 13, E006660. [Google Scholar] [CrossRef] [PubMed]
- Vranckx, P.; Valgimigli, M.; Odutayo, A.; Serruys, P.W.; Hamm, C.; Steg, P.G.; Heg, D.; Fadden, E.P.M.; Onuma, Y.; Benit, E.; et al. Efficacy and Safety of Ticagrelor Monotherapy by Clinical Presentation: Pre-Specified Analysis of the GLOBAL LEADERS Trial. J. Am. Heart Assoc. 2021, 10, 15560. [Google Scholar] [CrossRef]
- Redfors, B.; Gregson, J.; Crowley, A.; Mcandrew, T.; Ben-Yehuda, O.; Stone, G.W.; Pocock, S.J. The Win Ratio Approach for Composite Endpoints: Practical Guidance Based on Previous Experience. Eur. Heart J. 2020, 41, 4391–4399. [Google Scholar] [CrossRef]
- Brunner, E.; Vandemeulebroecke, M.; Mütze, T. Win Odds: An Adaptation of the Win Ratio to Include Ties. Stat. Med. 2021, 40, 3367–3384. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.B.; Xu, Y.; Tan, S.H.; Cutts, F.; Milligan, P. Estimation of Intervention Effects Using First or Multiple Episodes in Clinical Trials: The Andersen-Gill Model Re-Examined. Stat. Med. 2010, 29, 328–336. [Google Scholar] [CrossRef]
- Bakal, J.A.; Westerhout, C.M.; Cantor, W.J.; Fernández-Avilés, F.; Welsh, R.C.; Fitchett, D.; Goodman, S.G.; Armstrong, P.W. Evaluation of Early Percutaneous Coronary Intervention vs. Standard Therapy after Fibrinolysis for ST-Segment Elevation Myocardial Infarction: Contribution of Weighting the Composite Endpoint. Eur. Heart J. 2013, 34, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, P.W.; Westerhout, C.M.; Van De Werf, F.; Califf, R.M.; Welsh, R.C.; Wilcox, R.G.; Bakal, J.A. Refining Clinical Trial Composite Outcomes: An Application to the Assessment of the Safety and Efficacy of a New Thrombolytic-3 (ASSENT-3) Trial. Am. Heart J. 2011, 161, 848–854. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
|
|
Endpoint | Bivalirudin Group (n = 2289) | Unfractionated-Heparin Group (n = 2281) | Relative Risk (95% CI) |
---|---|---|---|
Death, MI, urgent target-vessel revascularization, or major bleeding | 190 (8.3%) | 199 (8.7%) | 0.94 (0.77–1.15) |
Death | 3 (0.1%) | 4 (0.2%) | |
MI | 128 (5.6%) | 110 (4.8%) | |
Major bleeding | 70 (3.1%) | 104 (4.6%) | 0.66 (0.49–0.90) |
Urgent target-vessel revascularization | 19 (0.8%) | 17 (0.7%) |
Endpoint | Rosiglitazone Group (n = 2635) | Placebo Group (n = 2634) | HR (95%CI) | p |
---|---|---|---|---|
Composite primary outcome | 306 (11.6%) | 686 (26.0%) | 0.40 (0.35–0.46) | <0.0001 |
Diabetes | 280 (10.6%) | 658 (25.0%) | 0.38 (0.33–0.44) | <0.0001 |
Death | 30 (1.1%) | 33 (1.3%) | 0.91 (0.55–1.49) | 0.7 |
Endpoint | No./Total (%) Aspirin (n = 5416) | No./Total (%) Enoxaparin (n = 3787) | Estimated Treatment Difference, % (95% CI) | p Value |
---|---|---|---|---|
Composite primary outcome | 187/5416 (3.5) | 69/3787 (1.8) | 1.97 (0.54 to 3.41) | 0.007 |
Pulmonary embolism within 90 d | 58/5416 (1.1) | 21/3787 (0.6) | 0.44 (−0.19 to 1.08) | 0.17 |
Any deep venous thrombosis within 90 d | 140/5416 (2.6) | 50/3787 (1.3) | 1.61 (0.54 to 2.68) | 0.003 |
Both pulmonary embolism and deep venous thrombosis within 90 d | 11/5416 (0.2) | 2/3787 (0.1) | 0.10 (−0.10 to −0.30) | 0.32 |
Above-knee deep venous thrombosis within 90 d | 12/5415 (0.2) | 6/3787 (0.2) | 0.06 (−0.11 to 0.23) | 0.49 |
Below-knee deep venous thrombosis within 90 d | 129/5415 (2.4) | 45/3787 (1.2) | 1.49 (0.48 to 2.50) | 0.004 |
Endpoint | Losartan (n = 4605) | Atenolol (n = 4588) | Adjusted Hazard Ratio (95% CI) | p |
---|---|---|---|---|
Primary CEP | 508 (11%) | 588 (13%) | 0.87 (0.77–0.98) | 0.021 |
Cardiovascular mortality | 204 (4%) | 234 (5%) | 0.89 (0.73–1.07) | 0.206 |
Stroke | 232 (5%) | 309 (7%) | 0.75 (0.63–0.89) | 0.001 |
MI | 198 (4%) | 188 (4%) | 1.07 (0.88–1.31) | 0.491 |
Endpoint | Intervention Group (n = 379) | Control Group (n = 376) | Relative Risk (95% CI) |
---|---|---|---|
Catheter failure per person | 143 (38%) | 123 (33%) | 1.15 (0.95 to 1.40) |
Phlebitis | 16 (4%) | 12 (3%) | 1.32 (0.63 to 2.76) |
Infiltration | 135 (36%) | 120 (32%) | 1.12 (0.91 to 1.36) |
Endpoint | Ramipril Group (n = 4645) | Placebo Group (n = 4652) | Relative Risk (95% CI) | p Value |
---|---|---|---|---|
MI, stroke, or death from cardiovascular causes | 651 (14.0) | 826 (17.8) | 0.78 (0.70–0.86) | <0.001 |
Death from cardiovascular causes | 282 (6.1) | 377 (8.1) | 0.74 (0.64–0.87) | <0.001 |
MI | 459 (9.9) | 570 (12.3) | 0.80 (0.70–0.90) | <0.001 |
Stroke | 156 (3.4) | 226 (4.9) | 0.68 (0.56–0.84) | <0.001 |
Questions | Importance for Interpretation |
---|---|
Are the components of the CEP of similar importance to patients? | Similar importance of each component of the composite would allow the assumption that the effect of the intervention is comparable on each component of the composite |
Did the endpoints with different importance occur with similar frequency? | If the occurrence of the components is not similar, then the CEP will be mostly determined by the predominant event |
Are the component end points likely to have similar relative risk reductions? | This question allows to see if the treatment effect was similar in all components. |
Novel Statistical Method | Advantages | Limitations | |
---|---|---|---|
Win ratio |
|
| [54,56,57] |
Negative binomial regression |
|
| [54] |
Andersen–Gill Model |
|
| [50,58] |
Weighted composite endpoint |
|
| [51,53,54,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baracaldo-Santamaría, D.; Feliciano-Alfonso, J.E.; Ramirez-Grueso, R.; Rojas-Rodríguez, L.C.; Dominguez-Dominguez, C.A.; Calderon-Ospina, C.A. Making Sense of Composite Endpoints in Clinical Research. J. Clin. Med. 2023, 12, 4371. https://doi.org/10.3390/jcm12134371
Baracaldo-Santamaría D, Feliciano-Alfonso JE, Ramirez-Grueso R, Rojas-Rodríguez LC, Dominguez-Dominguez CA, Calderon-Ospina CA. Making Sense of Composite Endpoints in Clinical Research. Journal of Clinical Medicine. 2023; 12(13):4371. https://doi.org/10.3390/jcm12134371
Chicago/Turabian StyleBaracaldo-Santamaría, Daniela, John Edwin Feliciano-Alfonso, Raul Ramirez-Grueso, Luis Carlos Rojas-Rodríguez, Camilo Alberto Dominguez-Dominguez, and Carlos Alberto Calderon-Ospina. 2023. "Making Sense of Composite Endpoints in Clinical Research" Journal of Clinical Medicine 12, no. 13: 4371. https://doi.org/10.3390/jcm12134371
APA StyleBaracaldo-Santamaría, D., Feliciano-Alfonso, J. E., Ramirez-Grueso, R., Rojas-Rodríguez, L. C., Dominguez-Dominguez, C. A., & Calderon-Ospina, C. A. (2023). Making Sense of Composite Endpoints in Clinical Research. Journal of Clinical Medicine, 12(13), 4371. https://doi.org/10.3390/jcm12134371