Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Food Intake Regulation
3.1.1. Homeostatic Brain System
3.1.2. Reward System
3.1.3. Emotion/Memory Systems
3.1.4. Attention System
3.1.5. Cognitive Control System
3.1.6. Control of Glucose Effectiveness
3.2. The Role of Brain Imaging in Obesity
3.3. Obesity-Induced Changes in the Brain
3.4. Functional Magnetic Resonance Changes in Obesity
3.5. The Gut–Brain Axis
3.6. Weight Loss Interventions
4. Future Directions and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Makaronidis, J.M.; Batterham, R.L. Obesity, body weight regulation and the brain: Insights from fMRI. Br. J. Radiol. 2018, 91, 20170910. [Google Scholar] [CrossRef]
- Stopyra, M.A.; Friederich, H.C.; Lavandier, N.; Mönning, E.; Bendszus, M.; Herzog, W.; Simon, J.J. Homeostasis and food craving in obesity: A functional MRI study. Int. J. Obes. 2021, 45, 2464–2470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, G.W.; Yu, F.X.; Liu, Y.; Li, M.Y.; Wang, Z.; Ding, H.Y.; Li, X.S.; Wang, H.; Jin, M.; et al. Abnormal Regional Neural Activity and Reorganized Neural Network in Obesity: Evidence from Resting-State fMRI. Obesity 2020, 28, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Drelich-Zbroja, A.; Matuszek, M.; Kaczor, M.; Kuczyńska, M. Functional Magnetic Resonance Imaging and Obesity-Novel Ways to Seen the Unseen. J. Clin. Med. 2022, 11, 3561. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 3 May 2023).
- Kerem, L.; Hadjikhani, N.; Holsen, L.; Lawson, E.A.; Plessow, F. Oxytocin reduces the functional connectivity between brain regions involved in eating behavior in men with overweight and obesity. Int. J. Obes. 2020, 44, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.; Grosshans, M.; Koopmann, A.; Kienle, P.; Vassilev, G.; Otto, M.; Bumb, J.M.; Kiefer, F. Reliability of neural food cue-reactivity in participants with obesity undergoing bariatric surgery: A 26-week longitudinal fMRI study. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 951–962. [Google Scholar] [CrossRef]
- Lizarbe, B.; Campillo, B.; Guadilla, I.; López-Larrubia, P.; Cerdán, S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J. Cereb. Blood Flow Metab. 2020, 40, 2135–2151. [Google Scholar] [CrossRef]
- Zeighami, Y.; Iceta, S.; Dadar, M.; Pelletier, M.; Nadeau, M.; Biertho, L.; Lafortune, A.; Tchernof, A.; Fulton, S.; Evans, A.; et al. Spontaneous neural activity changes after bariatric surgery: A resting-state fMRI study. Neuroimage 2021, 241, 118419. [Google Scholar] [CrossRef]
- Dekkers, I.A.; Jansen, P.R.; Lamb, H.J. Obesity, Brain Volume, and White Matter Microstructure at MRI: A Cross-sectional UK Biobank Study. Radiology 2019, 291, 763–771. [Google Scholar] [CrossRef]
- CDC. Available online: https://www.cdc.gov/cancer/obesity/index.htm (accessed on 3 May 2023).
- Smeets, P.A.M.; Dagher, A.; Hare, T.A.; Kullmann, S.; van der Laan, L.N.; Poldrack, R.A.; Preissl, H.; Small, D.; Stice, E.; Veldhuizen, M.G. Good practice in food-related neuroimaging. Am. J. Clin. Nutr. 2019, 109, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Hermann, P.; Gál, V.; Kóbor, I.; Kirwan, C.B.; Kovács, P.; Kitka, T.; Lengyel, Z.; Bálint, E.; Varga, B.; Csekő, C.; et al. Efficacy of weight loss intervention can be predicted based on early alterations of fMRI food cue reactivity in the striatum. Neuroimage Clin. 2019, 23, 101803. [Google Scholar] [CrossRef] [PubMed]
- Sewaybricker, L.E.; Melhorn, S.J.; Rosenbaum, J.L.; Askren, M.K.; Tyagi, V.; Webb, M.F.; De Leon, M.R.B.; Grabowski, T.J.; Schur, E.A. Reassessing relationships between appetite and adiposity in people at risk of obesity: A twin study using fMRI. Physiol. Behav. 2021, 239, 113504. [Google Scholar] [CrossRef] [PubMed]
- Van Opstal, A.M.; Wijngaarden, M.A.; van der Grond, J.; Pijl, H. Changes in brain activity after weight loss. Obes. Sci. Pract. 2019, 5, 459–467. [Google Scholar] [CrossRef] [Green Version]
- De Macedo, I.C.; de Freitas, J.S.; da Silva Torres, I.L. The Influence of Palatable Diets in Reward System Activation: A Mini Review. Adv. Pharmacol. Sci. 2016, 2016, 7238679. [Google Scholar] [CrossRef] [Green Version]
- Leigh, S.J.; Morris, M.J. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol. Psychol. 2018, 131, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Farr, O.M.; Li, C.R.; Mantzoros, C.S. Central nervous system regulation of eating: Insights from human brain imaging. Metabolism 2016, 65, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Alonge, K.M.; D’Alessio, D.A.; Schwartz, M.W. Brain control of blood glucose levels: Implications for the pathogenesis of type 2 diabetes. Diabetologia 2021, 64, 5–14. [Google Scholar] [CrossRef]
- Morettini, M.; Di Nardo, F.; Ingrillini, L.; Fioretti, S.; Göbl, C.; Kautzky-Willer, A.; Tura, A.; Pacini, G.; Burattini, L. Glucose effectiveness and its components in relation to body mass index. Eur. J. Clin. Investig. 2019, 49, e13099. [Google Scholar] [CrossRef]
- Fehrenbach, U.; Jadan, A.; Auer, T.A.; Kreutz, K.; Geisel, D.; Ziagaki, A.; Bobbert, T.; Wiener, E. Obesity and pituitary gland volume—A correlation study using three-dimensional magnetic resonance imaging. Neuroradiol. J. 2020, 33, 400–409. [Google Scholar] [CrossRef]
- Guzzardi, M.A.; Iozzo, P. Brain functional imaging in obese and diabetic patients. Acta Diabetol. 2019, 56, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Morys, F.; García-García, I.; Dagher, A. Is obesity related to enhanced neural reactivity to visual food cues? A review and meta-analysis. Soc. Cogn. Affect. Neurosci. 2020, 18, nsaa113. [Google Scholar] [CrossRef]
- Van Opstal, A.M.; Hafkemeijer, A.; van den Berg-Huysmans, A.A.; Hoeksma, M.; Blonk, C.; Pijl, H.; Rombouts, S.A.R.B.; van der Grond, J. Brain activity and connectivity changes in response to glucose ingestion. Nutr. Neurosci. 2020, 23, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.J.; Stopyra, M.A.; Mönning, E.; Sailer, S.; Lavandier, N.; Kihm, L.P.; Bendszus, M.; Preissl, H.; Herzog, W.; Friederich, H.C. Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity. J. Clin. Investig. 2020, 130, 4094–4103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, C.L.; Melhorn, S.J.; Elfers, C.T.; Scholz, K.; De Leon, M.R.B.; Rowland, M.; Kearns, S.; Aylward, E.; Grabowski, T.J.; Saelens, B.E.; et al. Central Nervous System and Peripheral Hormone Responses to a Meal in Children. J. Clin. Endocrinol. Metab. 2019, 104, 1471–1483. [Google Scholar] [CrossRef]
- Stice, E.; Burger, K. Neural vulnerability factors for obesity. Clin. Psychol. Rev. 2019, 68, 38–53. [Google Scholar] [CrossRef]
- Devoto, F.; Zapparoli, L.; Bonandrini, R.; Berlingeri, M.; Ferrulli, A.; Luzi, L.; Banfi, G.; Paulesu, E. Hungry brains: A meta-analytical review of brain activation imaging studies on food perception and appetite in obese individuals. Neurosci. Biobehav. Rev. 2018, 94, 271–285. [Google Scholar] [CrossRef]
- Steward, T.; Miranda-Olivos, R.; Soriano-Mas, C.; Fernández-Aranda, F. Neuroendocrinological mechanisms underlying impulsive and compulsive behaviors in obesity: A narrative review of fMRI studies. Rev. Endocr. Metab. Disord. 2019, 20, 263–272. [Google Scholar] [CrossRef]
- Filbey, F.M.; Myers, U.S.; Dewitt, S. Reward circuit function in high BMI individuals with compulsive overeating: Similarities with addiction. Neuroimage 2012, 63, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Rodríguez, O.; Martín-Pérez, C.; Vilar-López, R.; Verdejo-Garcia, A. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain. Biol. Psychiatry 2017, 81, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Roitzsch, C.; Horstmann, A.; Pössel, M.; Hummel, T. Increased Brain Reward Responsivity to Food-Related Odors in Obesity. Obesity 2021, 29, 1138–1145. [Google Scholar] [CrossRef]
- Bragulat, V.; Dzemidzic, M.; Bruno, C.; Cox, C.A.; Talavage, T.; Considine, R.V.; Kareken, D.A. Food-related odor probes of brain reward circuits during hunger: A pilot FMRI study. Obesity 2010, 18, 1566–1571. [Google Scholar] [CrossRef]
- Sun, X.; Veldhuizen, M.G.; Babbs, A.E.; Sinha, R.; Small, D.M. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chem. Senses 2016, 41, 233–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Grundeis, F.; Brand, C.; Hwang, H.J.; Mehnert, J.; Pleger, B. Differences in Insula and Pre-/Frontal Responses during Reappraisal of Food in Lean and Obese Humans. Front. Hum. Neurosci. 2016, 10, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, C.J.; Reichelt, A.C.; Hall, P.A. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends Cogn. Sci. 2019, 23, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Althubeati, S.; Avery, A.; Tench, C.R.; Lobo, D.N.; Salter, A.; Eldeghaidy, S. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2022, 136, 104603. [Google Scholar] [CrossRef]
- Zanchi, D.; Depoorter, A.; Egloff, L.; Haller, S.; Mählmann, L.; Lang, U.E.; Drewe, J.; Beglinger, C.; Schmidt, A.; Borgwardt, S. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci. Biobehav. Rev. 2017, 80, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Pannacciulli, N.; Le, D.S.; Salbe, A.D.; Chen, K.; Reiman, E.M.; Tataranni, P.A.; Krakoff, J. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage 2007, 35, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, E.; Martinez, M.D.; Roncero, I.; Chowen, J.A.; Garcia-Cuartero, B.; Gispert, J.D.; Sanz, C.; Vazquez, P.; Maldonado, A.; de Caceres, J.; et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J. Neurochem. 2005, 92, 798–806. [Google Scholar] [CrossRef]
- Yeung, A.W.K. Neural Correlates of Anti-appetite Medications: An fMRI Meta-analysis. Curr. Neuropharmacol. 2021, 19, 2049–2056. [Google Scholar] [CrossRef]
- Wang, G.J.; Tomasi, D.; Volkow, N.D.; Wang, R.; Telang, F.; Caparelli, E.C.; Dunayevich, E. Effect of combined naltrexone and bupropion therapy on the brain’s reactivity to food cues. Int. J. Obes. 2014, 38, 682–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolau, J.; Pujol, A.; Tofé, S.; Bonet, A.; Gil, A. Short term effects of semaglutide on emotional eating and other abnormal eating patterns among subjects living with obesity. Physiol. Behav. 2022, 257, 113967. [Google Scholar] [CrossRef] [PubMed]
- Farr, O.M.; Sofopoulos, M.; Tsoukas, M.A.; Dincer, F.; Thakkar, B.; Sahin-Efe, A.; Filippaios, A.; Bowers, J.; Srnka, A.; Gavrieli, A.; et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: A crossover, randomised, placebo-controlled trial. Diabetologia 2016, 59, 954–965. [Google Scholar] [PubMed] [Green Version]
- Bach, P.; Grosshans, M.; Koopmann, A.; Pfeifer, A.M.; Vollstädt-Klein, S.; Otto, M.; Kienle, P.; Bumb, J.M.; Kiefer, F. Predictors of weight loss in participants with obesity following bariatric surgery—A prospective longitudinal fMRI study. Appetite 2021, 163, 105237. [Google Scholar] [CrossRef]
Study | No. of Participants | Methodology | fMRI Protocol | Main Findings |
---|---|---|---|---|
Stopyra et al. [2] | 50 25 normal-weight and 25 obese | Water vs. glucose injected into the stomach | Event-related fMRI paradigm |
|
Zhang et al. [3] | 46 23 normal-weight and 23 obese | Analysis of amplitude of low-frequency fluctuation and functional connectivity | Resting-state fMRI |
|
Karem et al. [7] | 10 All participants were obese | Intranasal oxytocin administration | Event-related fMRI paradigm |
|
Bach et al. [8] | 11 All participants were obese | Longitudinal reliability of neural food-cue-induced brain activation and subjective food craving ratings before and after bariatric surgery | Event-related fMRI paradigm |
|
Zeighami et al. [10] | 57 All participants were obese | Assessing spontaneous neural activity before and after bariatric surgery | Resting-state fMRI |
|
Hermann et al. [14] | 68 All participants were obese | fMRI examinations during the six-month-long intervention period with a low-calorie diet | Event-related fMRI paradigm and resting-state fMRI |
|
Sewaybricker et al. [15] | 84 Monozygotic twins 54 Dizygotic twins 30 | To test if appetitive drive varies in direct proportion to the level of body adiposity after accounting for genetic factors that contribute to both brain response and obesity risk | Event-related fMRI paradigm |
|
Simon et al. [26] | 76 24 with anorexia nervosa 28 normal-weight 24 obese | Investigation of the responsivity of the hypothalamus after intragastric infusion of glucose and water | Resting-state fMRI |
|
Filbey et al. [31] | 26 All participants were obese | Assessment of hyper-responsivity to reward in individuals exhibiting binge-eating behavior | Event-related fMRI paradigm |
|
Bragulat et al. [34] | 10 participants 5 normal-weight and 5 obese | After 24 h of food deprivation, all individuals underwent fMRI examination while smelling four food-related odors | Event-related fMRI paradigm |
|
Wang et al. [43] | 36 16 after treatment with naltrexone and SR bupropion (NB) 20 placebo | Evaluation of the effects of naltrexone and SR bupropion on functional connectivity (FC) density | Resting-state fMRI |
|
Farr et al. [45] | 22 All participants were obese and had diabetes | To investigate if GLP-1 receptors are expressed in human brains and whether liraglutide administration affects neural responses to food cues in diabetic individuals | Event-related fMRI paradigm |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmygin, H.; Szmygin, M.; Cheda, M.; Kłobuszewski, B.; Drelich-Zbroja, A.; Matyjaszek-Matuszek, B. Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity. J. Clin. Med. 2023, 12, 4379. https://doi.org/10.3390/jcm12134379
Szmygin H, Szmygin M, Cheda M, Kłobuszewski B, Drelich-Zbroja A, Matyjaszek-Matuszek B. Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity. Journal of Clinical Medicine. 2023; 12(13):4379. https://doi.org/10.3390/jcm12134379
Chicago/Turabian StyleSzmygin, Hanna, Maciej Szmygin, Mateusz Cheda, Bartosz Kłobuszewski, Anna Drelich-Zbroja, and Beata Matyjaszek-Matuszek. 2023. "Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity" Journal of Clinical Medicine 12, no. 13: 4379. https://doi.org/10.3390/jcm12134379
APA StyleSzmygin, H., Szmygin, M., Cheda, M., Kłobuszewski, B., Drelich-Zbroja, A., & Matyjaszek-Matuszek, B. (2023). Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity. Journal of Clinical Medicine, 12(13), 4379. https://doi.org/10.3390/jcm12134379