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Abstract: Given the various ocular manifestations of limbal stem cell insufficiency, an awareness
of the genetic, acquired, and immunological causes and associated additional treatments of limbal
stem cell deficiency (LSCD) is essential for providers. We performed a comprehensive review of
the literature on the various etiologies and specific therapies for LSCD. The resources utilized in
this review included Medline (PubMed), Embase, and Google Scholar. All English-language articles
and case reports published from November 1986 through to October 2022 were reviewed in this
study. There were collectively 99 articles on these topics. No other exclusion criteria were applied.
Depending on the etiology, ocular manifestations of limbal stem cell deficiency range from dry
eye syndrome and redness to more severe outcomes, including corneal ulceration, ocular surface
failure, and vision loss. Identifying the source of damage for LSCD is critical in the treatment process,
given that therapy may extend beyond the scope of the standard protocol, including artificial tears,
refractive surgery, and allogeneic stem cell transplants. This comprehensive review of the literature
demonstrates the various genetic, acquired, and immunological causes of LSCD and the spectrum of
supplemental therapies available.

Keywords: limbal stem cells; limbal stem cell deficiency; Palisades of Vogt; aniridia; xeroderma
pigmentosum; dry eye syndrome; meibomian gland dysfunction; contact lens-induced LSCD; ocular
burn-induced LSCD; limbal stem cell transplantation

1. Introduction

Ocular homeostasis is maintained by several processes involving the eye’s structural
layers, cell populations, and immunoregulatory responses. These processes involve the
corneal stromal stem cells (CSSCs) and limbal epithelial stem cells (LESCs), each of which
contributes to the regeneration of the corneal stromal layer and corneal surface, respec-
tively [1]. Disruption to the corneal limbus, a well-defined layer of corneal stem cells
between the sclera and cornea, often results in corneal epithelium irregularity and opac-
ity, neovascularization, stromal scarring, and ulceration [2]. The likely etiology for this
pathogenic process, termed limbal stem cell deficiency, includes a diverse array such as
genetic, acquired, and immunologic. Etiologies of limbal stem cell deficiency have also
been categorized as either LSC aplasia secondary to destruction or decreased function
of LSC due to insufficient stromal support [3]. Figure 1 summarizes the many etiologies
linked to LSCD. This comprehensive review of the literature discusses the diverse causes of
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limbal stem cell deficiency, the various diagnostic criteria, and the associated additional
management options.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 2 of 18 
 

 

due to insufficient stromal support [3]. Figure 1 summarizes the many etiologies linked to 
LSCD. This comprehensive review of the literature discusses the diverse causes of limbal 
stem cell deficiency, the various diagnostic criteria, and the associated additional manage-
ment options. 

 
Figure 1. Etiologies of Limbal Stem Cell Deficiency. 

2. Limbal Stem Cells 
The cornea can be separated into five distinct layers: corneal epithelial layer, Bow-

man’s membrane, corneal stroma layer, Descemet’s membrane, and corneal endothelium, 
from superficial to deep [4]. The limbus is a highly vascular and cellular-rich layer at the 
interface of the scleral and corneal layers. Within the limbus, rippling and folding of the 
basement membrane reveal crypts of the pluripotent stem cells, termed the Palisades of 
Vogt [5]. These limbal epithelial crypts are concentrated in the superior and inferior limbi 
and contain a high density of limbal epithelial stem cells [6]. LESCs function to maintain 
and restore the corneal surface following physical trauma or chemical insult [7]. The pro-
posed mechanism for cellular turnover, known as the XYZ hypothesis, suggests that lim-
bal stem cells proliferate and differentiate to give rise to cells that migrate centripetally 
along the basement membrane to the basal layers of the cornea before moving superfi-
cially to replace the epithelial cells that are shed [3,8,9]. The division and migration of 
limbal epithelial crypts to the cornea form a barrier to prevent encroachment of the con-
junctival epithelium, maintaining the avascular and transparent conditions vital to corneal 
homeostasis. Corneal stromal-derived mesenchymal stem cells (CS-MSCs) inhabit the ba-
sal layer of the corneal epithelium and promote stromal support via extracellular matrix 
deposition, the expression of anti-apoptotic transcription factors, and the reinforcement 
of reconstruction and corneal repair of the limbus [4]. These mesenchymal stem cells can 

Figure 1. Etiologies of Limbal Stem Cell Deficiency.

2. Limbal Stem Cells

The cornea can be separated into five distinct layers: corneal epithelial layer, Bowman’s
membrane, corneal stroma layer, Descemet’s membrane, and corneal endothelium, from
superficial to deep [4]. The limbus is a highly vascular and cellular-rich layer at the interface
of the scleral and corneal layers. Within the limbus, rippling and folding of the basement
membrane reveal crypts of the pluripotent stem cells, termed the Palisades of Vogt [5].
These limbal epithelial crypts are concentrated in the superior and inferior limbi and
contain a high density of limbal epithelial stem cells [6]. LESCs function to maintain and
restore the corneal surface following physical trauma or chemical insult [7]. The proposed
mechanism for cellular turnover, known as the XYZ hypothesis, suggests that limbal stem
cells proliferate and differentiate to give rise to cells that migrate centripetally along the
basement membrane to the basal layers of the cornea before moving superficially to replace
the epithelial cells that are shed [3,8,9]. The division and migration of limbal epithelial
crypts to the cornea form a barrier to prevent encroachment of the conjunctival epithelium,
maintaining the avascular and transparent conditions vital to corneal homeostasis. Corneal
stromal-derived mesenchymal stem cells (CS-MSCs) inhabit the basal layer of the corneal
epithelium and promote stromal support via extracellular matrix deposition, the expression
of anti-apoptotic transcription factors, and the reinforcement of reconstruction and corneal
repair of the limbus [4]. These mesenchymal stem cells can differentiate into keratinocytes
and are found adjacent to LSCs within the stromal layer [4]. Studies have shown their
corneal protective actions and proximity to LSCs significantly influence the health of the
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LSC microenvironment. Thus, disruption of the limbus and subsequent stromal support
via injury to the CS-MSCs impairs the repair and reconstruction of the cornea [4]. Following
disruption to the delicate stromal layer, the corneal epithelium is displaced by conjunctival
epithelial cells (conjunctivalization), leading to neovascularization, corneal opacity, and
subsequent loss in visual acuity [2].

3. Pathophysiology

A deficiency of limbal epithelial stem cells occurs in two ways: first, as limbal stem cell
aplasia secondary to destruction via chemical burns, contact lens use, Stevens–Johnson syn-
drome (SJS), microbial keratitis, multiple surgeries or procedures; and second, insufficient
stromal support, or an “abnormal microenvironment”, causing the decreased function of
the limbal epithelial crypts [10]. The latter is seen in conditions such as aniridia, peripheral
inflammatory disorder, chronic limbitis, or neurotrophic keratopathy [3]. Classification of
LSCD falls under partial and complete deficiency, depending on the amount of residual
LSCs present in the stromal layer and the degree of conjunctivalization of the corneal
surface. Partial LSCD is defined by the presence of residual LSCs within the stromal layer,
maintaining little stromal function and partial conjunctivalization of the corneal surface.
In contrast, complete LSCD is characterized by a complete lack of LSCs in the limbus and
the complete conjunctivalization of the corneal surface [11]. The most reliable indicator of
limbal stem cell deficiency, conjunctivalization, refers to the migration or overgrowth of the
conjunctival epithelial and goblet cells on the corneal surface, resulting in opacification and
vision loss [3,9]. Compromise of the avascular state of the cornea occurs with neovascular-
ization, where the balance between pro-angiogenic and anti-angiogenic factors is disrupted,
resulting in a shift towards a pro-angiogenic state [12]. Recurrent corneal erosions, ulcers,
or perforation of the cornea may also be seen [2,13].

4. Incidence and Prevalence

The current literature on LSCD shows that the leading cause is ocular surface burns [14].
Global trends for LSCD show that unilateral LSCD is more common than bilateral LSCD,
with the most common causes being ocular surface burns for unilateral LSCD, while allergic
conjunctivitis, SJS, toxic epidermal necrolysis (TEN), aniridia, and mucous membrane pem-
phigoid are seen for bilateral LSCD [14]. Provided the diversity in etiology for unilateral
and bilateral LSCD, specialized approaches to treatment are required [14]. Gender-specific
prevalence for LSCD is not definitive, considering a lack of agreement on the disease’s
definition and diagnostic criteria; however, a higher prevalence of disease in young males
is documented, with a majority suffering from total LSCD (male 2:1). Significant male
predominance for chemical and thermal causes and a female predominance for contact
lens-associated LSCD are also reported in the literature [14]. Age-related prevalence of
LSCD demonstrates that patients presenting with the disease are, on average, middle-aged
(42.9 years) and range from 24 to 43 years old, without sex predominance [15].

5. Clinical Presentation

Presentation of LSCD differs according to the etiology, and symptoms are often due
to poor epithelial healing, resulting in decreased vision, pain from epithelial breakdown,
foreign body sensation, conjunctival redness, and tearing [2,16]. Early symptoms of LSCD
include irregular corneal epithelium and changes to or loss of Palisades of Vogt [16].
Depending on the degree of the limbus and LSC destruction, termed partial and complete,
patients may present asymptomatically (in the case of partial LSCD) or with severe damage
to the entire corneal surface (complete), resulting in functional blindness [16]. Awareness of
the following clinical signs of a possible LSCD diagnosis includes symptoms secondary to
reduced corneal epithelial repair and erosions, such as chronic conjunctival redness, foreign
body sensation, photophobia, tearing, discomfort/pain, and decreased visual acuity [17,18].
This comprehensive review will discuss the different clinical presentations of LSCD.
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6. Diagnosis and Prognosis

Diagnostic tools for LSCD include patient history, impression cytology for the pres-
ence of goblet cells on the cornea, in vivo laser scanning confocal microscopy (IVCM) of
the limbus, anterior segment optical coherence tomography (AS-OCT) to measure the
epithelial thickness and assess corneal vasculature, and direct histological staining (H&E
and Papanicolaou staining) to assess the morphology of the epithelium [2,16]. The sever-
ity of LSCD is determined using a staging model based on the extent of the corneal and
limbal involvement upon examination [19]. In the first stage, only the peripheral cornea is
involved. Stage two involves the peripheral cornea in addition to the central 5 mm of the
cornea, and in stage three, the entire cornea is affected. The ocular examination includes
whether the visual axis, central 5 mm of the cornea, is involved (stages II and III) and
whether greater than 50% of the LSC are intact [19]. Suitable treatment plans can be made,
provided the diagnosis and staging are precise in determining the amount of residual LSCs
remaining. Studies show that host LSCs had reconstructed injured corneal epithelium
following allogeneic LSC transplantation [2]. However, no definitive prognosis exists for
LSCD, given the different etiologies present [16].

7. Treatment Overview

Management of LSCD primarily follows a stepwise approach, focused on addressing
the standard presentations seen in the disease and employing less invasive strategies first.
Treatment starts with the discontinuation or limitation of the offending agent (e.g., contact
lenses, medication, irritant exposures); next is the administration of corticosteroids for
ocular surface inflammation, and thereafter, support to the residual limbal stem cells is
offered via preservative-free lubricants and amniotic membrane transplants, and in severe
cases, the restoration of stem cell reserves via a limbal stem cell transplant and penetrating
keratoplasty is attempted [20]. LSC transplantations can be autologous from the fellow eye
or allogenic from a donor. The graft may be directly transplanted in a single-stage procedure,
or cells may be cultivated in a lab to be expanded and then transplanted at a later date
in a two-stage procedure [21]. Furthermore, grafts may be obtained from various tissues,
including a conjunctival limbal graft, keratolimbal graft, and simple limbal epithelial
graft [21]. The specific details for which graft and surgery to implement will be indicated
by the underlying etiology and stage of progression in each patient. Investigations on LSC
transplantation and avenues of improvement are ongoing. Masood et al. described several
therapeutic strategies to improve LSCD interventions, including the use of non-limbal stem
cells to potentially restore LSC function. They described the potential to reconstitute mature
corneal epithelial cells into LSC-like cells for transplantation via autologous cultivation [22].
An area of recent inquiry is the use of simple LSC transplantation vs. cultivated LSC
transplantation. Both have been shown to have similar clinical efficacy [23]. However,
Thokala et al. propose that simple LSC transplantation is superior and will be more
common in the future compared to cultivated LSC transplantation due to the difficulties
that accompany tissue cultures, including facilities, commercial cell-culture services, and
the costs to maintain and expand cultures [24]. Despite the difficulties in cell cultivation,
Jurkunas et al. have developed a novel and consistent manufacturing process for cultivated
LSC transplantation, which may prove beneficial in the culture process [25]. In addition to
the standard of care, therapies that specifically address the cause of the LSCD can be added
to the management plan to further promote resolution. Etiologies and their additional
therapies are discussed below.

8. Etiologies and Additional Treatments
8.1. Genetic Etiologies of LSCD

Genetic etiologies of LSCD include aniridia or aniridic keratopathy, ectrodactyly–
ectodermal dysplasia–clefting syndrome (EEC), keratitis–ichthyosis–deafness (KID) syn-
drome, xeroderma pigmentosum, keratitis, and dyskeratosis congenita. The mechanism
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of injury and management associated with each genetic cause of LSCD is referenced in
Figures 2 and 3, respectively.
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8.1.1. Aniridic Keratopathy

LSCD from aniridic keratopathy is characterized by insufficient PAX6 protein expres-
sion, leading to severe congenital and corneal epithelial dysfunction and subsequent LSC
deficiency. The PAX6 protein is a transcription factor expressed in embryonic ocular tissues
and is involved in the regulation of corneal epithelial cell differentiation [26]. Evidence
of aniridia keratopathy appears in the first decade of life, with symptoms ranging from
decreased vision, foveal hypoplasia, nystagmus, amblyopia, and glaucoma [27]. A thicken-
ing and vascularization of the peripheral cornea, recurrent corneal erosions, ulcerations,
and opacification result from reduced PAX6 gene expression [28]. In the early stages of the
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disease process, perseverative-free lubricants and amniotic membrane transplants help to
support the residual limbal stem cells. In the case of severe LSCD by aniridic keratopathy,
limbal stem cell transplants are the recommended course of intervention [28].

8.1.2. Autosomal Dominant Keratitis

A variant of aniridia, hereditary keratitis is an autosomal-dominant disorder often
diagnosed in childhood by recurrent stromal keratitis and vascularization of the anterior
cornea [29]. It is a corneal degenerative ocular disease that develops early in life [29]. The
pathogenesis of keratitis-induced LSCD involves the presence of a circumferential band of
opacification and vascularization of the Bowman’s membrane adjacent to the stromal layer
of the limbus, leading to the depletion of LSCs present therein [30]. Studies report that the
addition of penetrating keratoplasty yields the most promising results in the treatment of
the aniridia variant following compromised visual acuity [30].

8.1.3. Ectrodactyly–Ectodermal Dysplasia–Clefting Syndrome

Ectrodactyly–ectodermal dysplasia–clefting syndrome (EEC) is an autosomal-dominant
condition characterized by mutations in the p63 gene, belonging to a protein family tran-
scriptionally responsible for the stem cell differentiation and embryogenesis in stratified
epithelia [31]. The ocular defects involved in EEC include meibomian gland defects, re-
duced lacrimal gland secretion, evaporative dry eye, progressive corneal keratinocyte loss,
and LSCD [32]. The pathogenesis behind EEC-induced LSCD concerns gene p63′s role in
limbal cell migration, corneal differentiation, and corneal wound healing. Without p63
expression, corneal epithelial attenuation and atrophy are marked, leading to the devel-
opment of LSCD [31]. Di Iorio et al. discuss that no such relationship exists between LSC
failure and the severity of EEC and that LSCD is the major cause of visual morbidity in
60% of cases [31]. Management of EEC-induced LSCD is multimodal, considering the
systemic effects of the disease on hair, skin, teeth, and sweat glands. Ocular treatment
options include controlling ocular surface disease and supporting residual stromal stem
cells via the standard methods of preservative-free lubricants and amniotic membrane
transplants [33].

8.1.4. Keratitis–Ichthyosis–Deafness Syndrome

Keratitis–ichthyosis–deafness (KID) syndrome is an autosomal-dominant condition
resulting from mutations in the GJB2 gene encoding for connexin 26, a gap junction protein
found in the epithelium of the inner ear and cornea [34]. KID syndrome is often diagnosed
by the presence of sensorineural hearing loss, vascularizing keratitis, and skin manifesta-
tions, termed ichthyosis [34]. LSCD is a major pathologic outcome in KID by the corneal
manifestations of vascularizing keratitis, pannus formation, and corneal neovasculariza-
tion in the literature, all of which lead to the depletion of LSCs [35]. Management of the
ocular surface manifestations of KID syndrome includes lubrication and anti-inflammatory
agents [34].

8.1.5. Xeroderma Pigmentosum

Xeroderma pigmentosum is an autosomal recessive condition characterized by cuta-
neous pigmentary abnormalities and neurological and systemic manifestations. Ocular
defects in this condition include neovascularization, keratitis, and ocular surface neopla-
sia [31,36]. Common clinical presentations include photophobia, dry eyes, severe keratitis,
pigmentation and atrophy of the lids, loss of lashes, and ocular surface neoplasms [37,38].
The source of LSCD in patients stems from a deficiency in the enzyme responsible for
UV light-induced DNA damage repair, resulting in LSC exposure to UV radiation and a
disruption of the stromal microenvironment [31]. Additional management for UV radiation-
induced LSCD is currently a living-related conjunctival limbal allogenic transplant followed
by penetrating keratoplasty. Avoidance and elimination of UV exposure in frequently vis-
ited environments are also recommended to prevent further damage [37].
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8.1.6. Dyskeratosis Congenita

The genetic etiology of LSCD, dyskeratosis congenita, also known as Zinsser–Cole–
Engman syndrome, is a rare hereditary disease distinguished by a triad of reticulate
hyperpigmentation, nail dystrophy, and leukoplakia [39]. In dyskeratosis congenita, muta-
tions in 19 genes are linked to an absence of telomerase activity and premature telomere
shortening [40]. Chen et al. discuss positive telomerase activity within the corneal limbal
tissues, indicating the regenerative capability of the cells found within [41]. It is postulated
that the absence of telomerase activity in dyskeratosis congenita results in the formation
of LSCD and may be used as a biomarker for its diagnosis [41]. Additional treatment op-
tions are broad and concern the systemic manifestations of the disease, including atrophic
wrinkled skin, eye disease, and bone marrow failure, and require surveillance for possible
complications [42].

8.2. Acquired Etiologies of LSCD

Acquired etiologies of LSCD include ocular surface disease, contact lens-induced
injury or trauma-induced (ocular burns, radiation, ocular surgery), atopic and vernal
keratoconjunctivitis, and bullous keratopathy. Figures 2 and 3 summarize the mechanism
of injury and management associated with each acquired cause of LSCD.

8.2.1. Dry Eye Syndrome and Meibomian Gland Dysfunction

Ocular surface diseases, dry eye syndrome (DES), and meibomian gland dysfunction
(MGD) are major causes of LSCD, given their effects on ocular surface health. DES is a loss
in tear film homeostasis following a disruption to the components of tears: mucin, lipids, or
aqueous constituents, resulting in an ocular surface unfit to protect against environmental
insult [43]. The clinical presentation of DES includes decreased tear production, irritation,
and inflammation. Studies report damage to the central cornea and stressed LSCs in pa-
tients with DES, resulting in LSCD [43]. Santos et al. describe dry eye syndrome as the
most important prognostic factor in corneal restorative procedures, such as conjunctival
limbal grafts, concerning its effects on the ocular surface and the health of LSCs [44]. Ad-
vances in the supplementary treatments of DES-induced LSCD include topical medications
such as cyclosporine or glycoprotein-containing products, blood products, and amniotic
membranes to speed the healing of the cornea and decrease ocular surface inflammation, as
well as intranasal tear neurostimulator devices to increase tear production [45]. Meibomian
gland dysfunction (MGD), characterized by a disruption in the tear film layer, results in a
reduced rate of tear evaporation, causing subsequent dry eye disease [46]. The clinical pre-
sentation and diagnosis of MGD overlap with DES and its implications in LSCD. Treatment
of MGD comprises meibomian gland expression, intense pulsed therapy, and intraductal
meibomian gland probing [43,47,48].

8.2.2. Contact Lens-Induced LSCD

One of the most common but easily missed etiologies of LSCD is contact lens-induced
LSCD (CL-LSCD). CL-LSCD is distinguished by its whorl-like epitheliopathy (opaque)
extending from the superior limbus of the cornea and neovascularization, frequently
diagnosed with a fluorescein stain and cobalt blue filter [17,49]. The clinical presentation
for CL-LSCD in some patients is asymptomatic but can include blurred vision, eye pain,
hyperemia, corneal conjunctivalization, and decreased visual acuity [17]. The proposed
pathogenesis of CL-LSCD is three-part: first, due to a disruption in the tear film, there
is a loss of lubrication and increased friction between the CL and the surface; secondly,
harmful preservatives present in contact lenses irritate the corneal surface; lastly, CL-
induced inflammation, hypoxia, and hyperosmolarity results in the reversible loss of
normal limbal niche [50]. Deng et al. discuss the low oxygen permeability of CLs that
result in an increased sensitivity of the corneal surface and the possibility to reverse
LSCD if CL usage is decreased [51,52]. Corneal staining was also reported with silicone
hydrogel lenses and multipurpose solutions resulting in irritation and damage to the ocular
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surface [53]. Conservative supplementary therapies for CL-LSCD include the termination
of soft contact lens usage, reduction in the frequency of contact lens usage, topical steroids,
and artificial tears [49]. Additional surgical and refractive treatments of CL-LSCD include
mechanical debridement, amniotic membrane transplant, autologous limbal stem cell
transplant, phototherapeutic keratectomy, and penetrating keratoplasty [50]. Termote et al.
suggest that patients recovering from treatment utilize daily disposable contact lenses (if
the patient insists on contacts) and avoid silicone hydrogel lenses and lens storage and
cleaning solutions [49].

8.2.3. Ocular Burn-Induced LSCD

Injury to the ocular surface via chemical or thermal burns, radiation, or ocular surgery
is a serious and vision-threatening cause of LSCD. Chemical and thermal burns to the
ocular surface, classified under chemical insults, are the leading cause of LSCD [54] and
produce corneal edema and limbal ischemia, resulting in corneal neovascularization and
conjunctivalization. One chemical noted to cause delayed LSCD is total body exposure
to sulfur mustard [55]. Progression of a corneal burn leads to increased vascularization
and disruption of the limbal layer, resulting in LSCD [54]. The severity of the burn to
the ocular surface depends upon the degree of surface contact and penetration [56]. Dua
et al. expanded upon the Roper–Hall classification on burn severity and the prognostic
guidelines and described grade I injuries as little to no loss of LSCs, grade II as a subtotal
loss of LSCs, while grade III refers to a complete loss of LSCs with residual conjunctival
epithelium and vascularity in the proximal regions, and a grade IV injury wherein there is a
complete loss of LSCs and proximal conjunctival epithelium [57]. Additional treatments for
ocular burn-induced LSCD include autologous platelet-rich plasma (PRP), which prevents
the progression of stromal melting, and autologous simple limbal epithelial transplantation
(SLET) [23]. Moreover, it has been proposed that the anti-VEGF medication bevacizumab
may play a role in the treatment of delayed LSCD in chemical insults by sulfur mustard [58].

8.2.4. Radiation-Induced LSCD

Damage to the ocular surface from radiation therapy utilized in treating many sys-
temic cancers has been documented to reduce the functioning of LSCs [59]. Fujishima et al.
report on a case of corneal epithelial abnormality associated with conjunctival and corneal
inflammation after radiation therapy for maxillary cancer in a 44-year-old male. Conjuncti-
val epithelialization and goblet cells were identified in the superior and inferior areas of the
cornea, resulting in stem cell dysfunction and loss of vision. The course of treatment, in this
case, alongside standard therapies, included artificial tears and an antibiotic ophthalmic
ointment resulting in the resolution of lost visual acuity and corneal abnormalities [59].

8.2.5. Ocular Surgery-Induced LSCD

The destruction of the limbus and deficiency of limbal epithelial stem cells may be
due to ocular surgical procedures, including the excision of limbal and conjunctival tumors,
trabeculectomy, and pterygium surgery [19]. This form of surgically induced LSCD is
termed iatrogenic and is confined to the sectors of the procedure.

8.2.6. Atopic and Vernal Keratoconjunctivitis

Atopic and vernal keratoconjunctivitis are allergic conjunctival diseases characterized
by ocular edema, thickening of the eyelid, corneal scarring and neovascularization, and
tear film instability [60]. Atopic keratoconjunctivitis (AKC) is the most severe form of
allergic conjunctival disease and is defined by bilateral atopic traits such as itchiness,
dryness, redness, and blurred vision. Vernal keratoconjunctivitis (VKC) is a rarer and
seasonal form of allergic conjunctivitis that presents with ocular pruritus, foreign body
sensation, and photophobia [61]. VKC has been documented to include early age onset
in teenagers, whereas AKC does not show an age-related differentiation and is more
closely linked with asthma, rhinitis, and dermatitis [62]. AKC and VKC pathogeneses are
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mediated by inflammatory cells, such as T-helper cells and immunoglobulin E-mediated
mast cells [60]. In VKC, the classification is based on the area of ocular involvement,
including palpebral, limbal, and mixed (both palpebral and limbal) [62]. In AKC and VKC-
induced LSCD, hyperplasia of the conjunctival epithelium, inflammatory cell infiltration,
and limbal inflammation damage the limbal niche and progress to a loss of LSCs [60–62].
Supplemental management for AKC/VKC-induced LSCD includes topical antihistamine
eye drops, topical corticosteroids, topical immunomodulators such as cyclosporin, and
systemic immunosuppressive therapy [62,63]. Singh et al. also report on the promising
management of partial LSCD in patients with AKC/VKC using a “doughnut” amniotic
membrane transplantation with penetrating keratoplasty [64].

8.2.7. Bullous Keratopathy

Bullous keratopathy (BK) is defined by a reduction in corneal endothelial cells (CEC),
resulting in corneal thickening, haziness, and a subsequent loss of vision [61]. BK can
be triggered by several corneal endothelial cell disorders, including Fuchs’s endothelial
corneal dystrophy, wherein a progressive decline of CEC and the buildup of extracellular
matrix in Descemet’s membrane results in corneal edema and a loss of visual acuity [65,66].
The clinical manifestations of LSCD in 16 patients with BK were the conjunctivalization
of the peripheral cornea and delayed postoperative epithelialization in a study published
in 2006 [67]. Other studies identified conjunctival goblet cells on the surface of the cornea
and corneal neovascularization in patients with advanced cases of BK and suspected
LSCD [68]. Additional management of BK-induced LSCD includes penetrating keratoplasty
and endothelial keratoplasty of Descemet’s membrane, all of which require a corneal
donor [65].

8.3. Immunologic Etiologies of LSCD

Immunological etiologies of LSCD include medication toxicity, severe infection (her-
pes, microbial keratitis, and trachoma), Stevens–Johnson syndrome (SJS), toxic epidermal
necrolysis (TEN), mucous membrane pemphigoid, pterygium and pterygium excision, and
rosacea. The mechanism of injury and management associated with each immunological
cause of LSCD are summarized in Figures 2 and 3, respectively.

8.3.1. Medication Toxicity-Induced LSCD

Medication toxicity from Mitomycin C, 5-fluorouracil, and systemic chemotherapy
with hydroxycarbamide have been proposed as causes of LSCD. Knowledge of these ad-
verse reactions may be useful to ophthalmologists with patients at risk for limbal stem cell
insufficiency in generating treatment plans. Sauder et al. discuss the link between LSCD
and medication toxicity in an interventional case series following subconjunctival injections
of Mitomycin C for the surgical treatment of glaucoma. The study documented corneal
thinning and scleral melting in 43% of the patients following the injection, suggesting LSCD
as a complication of subconjunctival Mitomycin C [69]. Similar associations have been
demonstrated with the 5-fluorouracil application following glaucoma surgeries, wherein
reduced vision and corneal surface breakdown were identified by impression cytology.
Both partial and total LSCDs were confirmed in these cases involving 5-fluorouracil [70].
Finally, a few cases have been reported linking LSCD with the systemic chemotherapy
drugs S-1 (an oral fluoropyrimidine derivative) and hydroxycarbamide. Histological exam-
inations revealed a loss of the Palisades of Vogt at the superior limbus and irregular corneal
epithelium in patients treated with S-1, as well as neovascularization of the peripheral
cornea in patients treated with hydroxycarbamide [71,72]. Management of medication
toxicity-induced LSCD follows a standard treatment protocol by avoidance/cessation of
the medication, amniotic membrane transplantation, and limbal transplantation for Mito-
mycin C and 5-fluorouracil toxicity, and aggressive anti-inflammatory therapy in the case
of anticancer drug toxicity [70–72].
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8.3.2. Severe Infection-Induced LSCD

Severe infection of the ocular surface and LSCD have been linked in numerous reports
within the literature. Of those reports, herpes simplex keratitis and herpes zoster ophthalmi-
cus, microbial keratitis, and trachoma were the most referenced infections to cause limbal
stem cell insufficiency. Herpes simplex virus type 1 keratitis (HSK) is an infectious disease
characterized by epithelial keratitis, which may progress to corneal opacification, corneal
scarring, neovascularization, and loss of vision [73]. HSV’s counterpart, the herpes zoster
ophthalmicus infection (HZO) from the varicella-zoster virus, is distinguished by its ocular
manifestations, including conjunctivitis, uveitis, episcleritis, keratitis, and retinitis [74].
Liu et al. reported in their study from 2021 that patients with unilateral HSK and HZO
demonstrated an absence of Palisades of Vogt following damage from inflammation and a
significant loss in limbal stem cells [75]. Current supplemental management options include
antiviral therapies to decrease the disease’s duration and severity [69]. Microbial keratitis
is another infectious disease targeting ocular surface tissue via bacteria, fungi, and protist
pathogens. In microbial keratitis, severe ocular surface inflammation and damage from
the infectious agent promote necrosis of the limbal stem cells, resulting in LSCD [19]. The
clinical presentation for microbial keratitis most commonly includes redness, pain, tearing,
blurred vision, and inflammation [76]. Finally, trachoma, an infection of the conjunctiva
by chlamydia trachomatis, results in corneal opacity, corneal abrasions from inverted
eyelashes (trichiasis), scarring of the tarsal conjunctiva, and a possible loss of vision [77].
Trachoma-induced LSCD occurs following chronic microtrauma to the corneal surface
from inverted eyelashes (trichiasis) and the subsequent disruption of the limbal niche [19].
Additional interventions for trachoma-induced LSCD are still being studied today but
include antibiotics, face washing, and the control of environmental factors promoting the
spread of the chlamydia trachomatis virus [77].

8.3.3. Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis-Induced LSC

Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe
medication-induced inflammatory reactions of the skin and mucosa in the eyes, mouth,
and genitals [78]. SJS and TEN manifest first with flu-like symptoms and progress to
severe mucous membrane lesions in the eyes, mouth, and genitals [79]. The clinical
presentation includes dry eye, lid-margin keratinization, corneal neovascularization, and
eventually LSCD [80]. Ueta et al. discuss how multi-ingredient cold medications and non-
steroidal anti-inflammatory drugs are the major eliciting drugs in patients with SJS/TEN
and can be used as predictive factors alongside age [81]. Both inflammatory reactions
can be classified under the acute and chronic stages according to what parts of the ocular
surface are involved [78]. The severity of SJS/TEN can be determined by a grading system
proposed by Sotozono et al., based on the presence of conjunctivitis, corneal epithelial
defect, and pseudo membrane formation: 0 (zero) being no ocular involvement and 3, being
the presence of both an ocular surface defect and pseudo membrane formation [81]. A
positive correlation between acute systemic involvement and the development of LSCD was
discussed in a retrospective case series by Choi et al., where corneal LSCD occurred in 32%
of patients with SJS/TEN. Cytokines, such as interleukin (IL)-1B, matrix metalloproteinases,
tumor necrosis factor-alpha, and vascular endothelial growth factor (VEGF), are increased
in these inflammatory reactions and promote the destruction of the limbal niche via corneal
neovascularization and conjunctivalization [82]. Additional management options for
SJS/TEN-induced LSCD are difficult, considering that many cases report irreversible
damage to the ocular surface [81]. However, in the case of acute SJS/TEN, amniotic
membrane grafting, systemic corticosteroids, immunoglobulins, and cyclosporin A have
been implicated as viable treatment options to further prevent further damage [79,80].

8.3.4. Pemphigoid-Related LSCD

Ocular mucous membrane pemphigoid (OcMMP) is an immunological condition
of the conjunctiva, wherein blisters form between the conjunctival epithelium and sub-
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epithelium and where significant scarring of the conjunctiva develops. OcMMP damages
mucous membranes by IgA, IgG, and C3 deposition [19]. As the condition progresses,
damage to the cornea manifests as corneal vascularization and opacification, ulceration,
and perforation [83]. The clinical presentation depends on how quickly the conjunctivitis
progresses, ranging from acute conjunctivitis and limbitis to ocular surface failure [84].
Regarding LSCD, OcMMP may include lacrimal duct scarring, which causes severe dry
eye syndrome, and results in worsening LSC functioning [85]. Auxiliary treatment of
OcMMP-induced LSCD includes the management of ocular surface disease, systemic
immunosuppression medications, and the prevention of conjunctival fibrosis [84].

8.3.5. Pterygium-Related LSCD

A pterygium is an ocular surface lesion postulated to derive from UV-exposed lim-
bal stem cells. These lesions often invade tissues between the Bowman’s membrane and
corneal epithelium and lead to epithelial proliferation, goblet cell hyperplasia, stromal
plaques, inflammation, and Bowman’s membrane dissolution [86]. The pathology behind
pterygium, as reported by Das et al., proposed that hyperproliferative epithelial cells within
the limbal microenvironment cause the formation of pterygia within the corneal epithe-
lium [87]. Thus, the removal of pterygia may induce LSCD and increase the ocular surface
damage associated with the excision [19]. Proposed additional treatments mentioned in the
literature include limbal stem cell and conjunctival transplantations [88].

8.3.6. Rosacea-Induced LSCD

As discussed in the literature, physical injury to the stroma, as seen in ocular burns,
SJS/TEN, OcMMP, contact lens wear, and severe infections to the ocular surface, results in
the destruction of limbal stem cells and the disruption of the limbal niche, termed secondary
LSCD. Ocular rosacea, a chronic inflammatory disease, is characterized by inflammation of
the ocular surface, blepharitis, tear film instability, conjunctivitis and, in the most severe
cases, corneal neovascularization and vision loss [89]. Corneal neovascularization, seen
in patients with ocular rosacea, is commonly found growing from the superior limbus,
suggesting damage to and the insufficiency of LSCs [89]. Supplemental treatment options
for LSCD secondary to ocular rosacea, proposed in the literature, include limbal autograft
transplantation or autologous serum eye drops to enhance corneal epithelialization [90].

8.3.7. Graft vs. Host Disease

For patients with hematologic malignancies and diseases, a hematopoietic stem cell
transplantation (HSCT) has curative potential. One of the major complications of a HSCT is
graft vs. host disease (GVHD), which occurs due to a donor T-cell response against the host
tissues, most commonly, minor histocompatibility antigens [91]. Ocular manifestations
of GVHD include new-onset dry eye with inflammation of the ocular surface, which
includes the cornea, conjunctiva, eyelids, meibomian glands, and lacrimal glands. This
may lead to keratoconjunctivitis, cicatricial conjunctivitis, areas of punctate keratopathies
or more severe complications, such as ulceration, perforation, or LSCD [92]. Allogenic
LSC transplantation is the foremost treatment for bilateral LSCD, though it carries the risk
of immunorejection [92]. In an effort to avoid rejection, two cases of LSCD secondary to
GVHD were reported using a paired LSC and conjunctival transplant that was harvested
from the same bone marrow donor. After successful LSC and conjunctival transplantation,
immunosuppression was not indicated following one-year post-operation, at which time
the grafts were stable [93]. Therefore, in cases of patients with LSCD secondary to GVHD,
an allogenic LSC transplantation from the same bone marrow donor may be the most
appropriate treatment.

8.3.8. Ocular Surface Squamous Neoplasia

Ocular surface squamous neoplasia (OSSN) is a term that includes the following spec-
trum of conditions: conjunctival intraepithelial neoplasia, corneal intraepithelial neoplasia,
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and squamous cell carcinoma of the conjunctiva. OSSN is an extremely rare disease, with
only 17–20 per million new diagnoses each year [94]. Symptoms may include minor to
severe pain and changes in vision, including a total loss of vision [95]. The progression to
carcinoma occurs when dysplastic epithelial cells obtain more malignant characteristics
until they can invade through the basement membrane. The disease may originate from
different locations within the corneal and conjunctival epithelium but is most commonly
derived from the limbus [95], where a disruption of the Palisades of Vogt may occur [96].
While extremely rare, OSSN has been reported as a cause of LSCD [96–99]. For patients with
OSSN-induced LSCD, additional management options focus on treating the underlying
disease. Excision of the malignancy with clear margins is the preferred form of treatment
for OSSN [95]. After neoplastic tissue excision, an autologous LSC transplantation is the
most suitable for unilateral cases of LSCD secondary to OSSN; otherwise, an allogenic LSC
transplantation is the most appropriate for bilateral LSCD secondary to bilateral OSSN.
Bilateral OSSN has been reported alongside infections of human papillomavirus type 16
and xeroderma pigmentosa, although instances of this are rare [95].

9. Conclusions

Limbal epithelial stem cells are a complex component of the ocular surface, vulnerable
to a multitude of cellular processes and environmental insults. Upon diagnosis of LSCD,
the source of damage is key to providing the appropriate plan of treatment, given the nature
of damage that each etiology ensues. Injury via genetic causes, such as aniridic keratopa-
thy, keratitis, EEC, KID syndrome, xeroderma pigmentosum, and dyskeratosis congenita,
convey the following treatments in addition to the standard protocol: limbal stem cell
transplantation, penetrating keratoplasty, supportive care to residual LSCs and the ocular
surface, lubrication and anti-inflammatory agents, and a UV exposure protocol, respectively.
Injury via acquired causes, including DES and MGD, contact lens-induced, trauma-induced
(ocular burns, radiation, ocular trauma), atopic and vernal keratoconjunctivitis, and bullous
keratopathy indicate the following supplemental treatments: DES topical medications,
MGD expression and probing, topical steroids and surgical/refractive procedures, autol-
ogous platelet-rich-plasma, antihistamine therapies, and penetrating/endothelial kerato-
plasty, respectively. Lastly, injury via the immunological processes include medication
toxicity, severe infections, SJS/TEN, OcMMP, pterygium-induced, rosacea, GVHD-induced,
and OSSN-associated LSCD suggest the following therapies in addition to the standard:
amniotic membrane transplantation and anti-inflammatory therapy, antibiotics and an-
tiviral medications, systemic corticosteroids and immunoglobulins, ocular surface disease
therapies, limbal stem cell and conjunctival transplantations, autologous serum eye drops,
allogenic LSC transplantations from the same bone marrow donor, and neoplastic excision
with autologous/allogenic LSC transplantations, respectively.

10. Literature Search

The following resources were used to search the peer-reviewed literature: Medline
(PubMed), Embase, and Google Scholar. The keywords used in the search included: limbal
stem cells, LSCD, cornea, cornea stromal layer, genetics of limbal stem cells, aniridic ker-
atopathy, keratitis, ectrodactyly-ectodermal-dysplasia-clefting syndrome, keratitis-ichthyosis-
deafness syndrome, xeroderma pigmentosum, dyskeratosis congenita, dry eye syndrome,
meibomian gland dysfunction, contact lens limbal deficiency, ocular burn limbal deficiency,
radiation limbal stem cells, trabeculectomy, pterygium surgery, atopic/vernal keratocon-
junctivitis, bullous keratopathy, mitomycin c limbal stem cell, herpes limbal stem cell,
microbial keratitis, trachoma, Stevens-Johnson syndrome, toxic epidermal necrolysis, pem-
phigoid, rosacea, graft vs. host disease limbal stem cell, and squamous cell conjunctival
carcinoma limbal stem cell. All English-language articles and case reports published
from November 1986 through to October 2022 were reviewed in this study. There were
collectively 93 articles on these topics.
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