Drug Retention Rates of Janus Kinase Inhibitors in Rheumatoid Arthritis Patients with Therapy-Induced Lymphopenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Clinical Evaluations
2.3. Drug Retention Rates
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Changes in Lymphocyte Subsets
3.3. Drug Retention Rates and Reasons for Discontinuation
3.4. Drug Retention Rates between RA Patients with or without Lymphocytopenia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
JAKi | Janus kinase inhibitors |
RA | Rheumatoid arthritis |
ALC | Absolute lymphocyte count |
DAS28 | the disease activity score of 28 joints |
CRP | C-reactive protein |
ESR | erythrocyte sedimentation rate |
CDAI | Clinical Disease Activity Index |
AEs | adverse events |
ACR | American College of Rheumatology |
ACPA | anti-citrullinated protein/peptide antibody |
MACE | major adverse cardiovascular events |
MTX | methotrexate |
bDMARD | Biological disease-modifying antirheumatic drug. |
CVD | cardiovascular disease |
References
- You, H.; Xu, D.; Zhao, J.; Li, J.; Wang, Q.; Tian, X.; Li, M.; Zeng, X. JAK Inhibitors: Prospects in Connective Tissue Diseases. Clin. Rev. Allergy Immunol. 2020, 59, 334–351. [Google Scholar] [CrossRef]
- Benucci, M.; Bernardini, P.; Coccia, C.; De Luca, R.; Levani, J.; Economou, A.; Damiani, A.; Russo, E.; Amedei, A.; Guiducci, S.; et al. JAK inhibitors and autoimmune rheumatic diseases. Autoimmun. Rev. 2023, 22, 103276. [Google Scholar] [CrossRef]
- Fragoulis, G.E.; McInnes, I.B.; Siebert, S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology 2019, 58, i43–i54. [Google Scholar] [CrossRef] [Green Version]
- Kerschbaumer, A.; Sepriano, A.; Bergstra, S.A.; Smolen, J.S.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.E.; et al. Efficacy of synthetic and biological DMARDs: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Kragstrup, T.W.; Glintborg, B.; Svensson, A.L.; McMaster, C.; Robinson, P.C.; Deleuran, B.; Liew, D.F. Waiting for JAK inhibitor safety data. RMD Open 2022, 8, e002236. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Koops, H.; Strand, V.; Nduaka, C.; DeMasi, R.; Wallenstein, G.; Kwok, K.; Wang, L. Analysis of haematological changes in tofacitinib-treated patients with rheumatoid arthritis across phase 3 and long-term extension studies. Rheumatology 2017, 56, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Yamaoka, K. Benefit and Risk of Tofacitinib in the Treatment of Rheumatoid Arthritis: A Focus on Herpes Zoster. Drug Saf. 2016, 39, 823–840. [Google Scholar] [CrossRef]
- Winthrop, K.; Isaacs, J.; Calabrese, L.; Mittal, D.; Desai, S.; Barry, J.; Strengholt, S.; Galloway, J. Opportunistic infections associated with Janus kinase inhibitor treatment for rheumatoid arthritis: A structured literature review. Semin. Arthritis Rheum. 2023, 58, 152120. [Google Scholar] [CrossRef]
- Warny, M.; Helby, J.; Nordestgaard, B.G.; Birgens, H.; Bojesen, S.E. Incidental lymphopenia and mortality: A prospective cohort study. Cmaj 2020, 192, E25–E33. [Google Scholar] [CrossRef] [Green Version]
- Zidar, D.A.; Al-Kindi, S.G.; Liu, Y.; Krieger, N.I.; Perzynski, A.T.; Osnard, M.; Nmai, C.; Anthony, D.D.; Lederman, M.M.; Freeman, M.L.; et al. Association of Lymphopenia With Risk of Mortality Among Adults in the US General Population. JAMA Netw. Open 2019, 2, e1916526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham III, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S. Molecular dissection of Janus kinases as drug targets for inflammatory diseases. Front. Immunol. 2022, 13, 1075192. [Google Scholar] [CrossRef]
- Liu, K.D.; Gaffen, S.L.; Goldsmith, M.A. JAK/STAT signaling by cytokine receptors. Curr. Opin. Immunol. 1998, 10, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Yamaoka, K. JAK inhibitor tofacitinib for treating rheumatoid arthritis: From basic to clinical. Mod. Rheumatol. 2013, 23, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Bechman, K.; Subesinghe, S.; Norton, S.; Atzeni, F.; Galli, M.; Cope, A.P.; Winthrop, K.L.; Galloway, J.B. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology 2019, 58, 1755–1766. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Cohen, S.B. Oral surveillance and JAK inhibitor safety: The theory of relativity. Nat. Rev. Rheumatol. 2022, 18, 301–304. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- van Vollenhoven, R.; Lee, E.B.; Strengholt, S.; Mojcik, C.; Valdez, H.; Krishnaswami, S.; Biswas, P.; Lazariciu, I.; Hazra, A.; Clark, J.D.; et al. Evaluation of the Short-, Mid-, and Long-Term Effects of Tofacitinib on Lymphocytes in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Sonomoto, K.; Yamaoka, K.; Kubo, S.; Hirata, S.; Fukuyo, S.; Maeshima, K.; Suzuki, K.; Saito, K.; Tanaka, Y. Effects of tofacitinib on lymphocytes in rheumatoid arthritis: Relation to efficacy and infectious adverse events. Rheumatology 2014, 53, 914–918. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; McInnes, I.B.; Taylor, P.C.; Byers, N.L.; Chen, L.; de Bono, S.; Issa, M.; Macias, W.L.; Rogai, V.; Rooney, T.P.; et al. Characterization and Changes of Lymphocyte Subsets in Baricitinib-Treated Patients With Rheumatoid Arthritis: An Integrated Analysis. Arthritis Rheumatol. 2018, 70, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.; Harigai, M.; Rancourt, J.; Dickson, C.; Melby, T.; Issa, M.; de la Torre, I.; Isaka, Y.; Cardoso, A.; Saifan, C.; et al. Changes in selected haematological parameters associated with JAK1/JAK2 inhibition observed in patients with rheumatoid arthritis treated with baricitinib. RMD Open 2020, 6, e001370. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H. Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology 2019, 58, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosaka, T.; van Deursen, J.M.; Tripp, R.A.; Thierfelder, W.E.; Witthuhn, B.A.; McMickle, A.P.; Doherty, P.C.; Grosveld, G.C.; Ihle, J.N. Defective lymphoid development in mice lacking Jak3. Science 1995, 270, 800–802. [Google Scholar] [CrossRef]
- Lange, A.; Kostadinova, L.; Damjanovska, S.; Gad, I.; Syed, S.; Siddiqui, H.; Yousif, P.; Kowal, C.M.; Shive, C.; Burant, C.; et al. Red Cell Distribution Width and Absolute Lymphocyte Count Associate With Biomarkers of Inflammation and Subsequent Mortality in Rheumatoid Arthritis. J. Rheumatol. 2023, 50, 166–174. [Google Scholar] [CrossRef]
- Wang, D.; Yeo, A.L.; Dendle, C.; Morton, S.; Morand, E.; Leech, M. Severe infections remain common in a real-world rheumatoid arthritis cohort: A simple clinical model to predict infection risk. Eur. J. Rheumatol. 2021, 8, 133–138. [Google Scholar] [CrossRef]
Characteristic | n = 112 |
---|---|
Age (years) | 71.2 ± 14.0 |
Female, n (%) | 87 (77.7) |
JAKi use, n | TOF 38, BAR 74 |
Disease duration (years) | 9.2 ± 10.5 |
RF-positive, n (%) | 69/107 (64.5) |
ACPA-positive, n (%) | 71/107 (66.4) |
CRP (mg/dL) | 3.07 ± 3.43 |
MMP-3 (ng/mL) | 240.0 ± 299.4 |
Lymphocyte count (/μL) | 1361.9 ± 538.7 |
DAS28-CRP | 3.60 ± 1.12 |
DAS28-ESR | 4.43 ± 1.29 |
CDAI | 17.9 ± 12.9 |
eGFR (mL/min) | 73.1 ± 22.6 |
CKD (eGFR < 60), n (%) | 26 (23.2) |
Interstitial lung disease, n (%) | 19 (16.9) |
MTX use, n (%) | 46 (41.3) |
MTX dose (mg/week) | 6.7 ± 2.1 |
GC use, n (%) | 23 (20.5) |
GC dose (mg/day) | 3.0 ± 23.7 |
Prior bDMARDs use, n (%) | 43 (38.4) |
Follow up periods (month) | 27.4 ± 15.8 |
Characteristic | Baricitinib (n = 74) | Tofacitinib (n = 38) | p-Value |
---|---|---|---|
Age (years) | 70.8 ± 15.2 | 72.0 ± 11.3 | 0.943 |
Female, n (%) | 59 (79.7) | 28 (73.7) | 0.467 |
Disease duration (years) | 9.4 ± 11.0 | 9.0 ± 9.4 | 0.965 |
RF-positive, n (%) | 45/71 (63.4) | 24/36 (66.7) | 0.296 |
ACPA-positive, n (%) | 47/71 (66.2) | 24/36 (66.7) | 0.961 |
CRP (mg/dL) | 3.0 ± 3.5 | 3.2 ± 3.4 | 0.342 |
DAS28-CRP | 3.5 ± 1.0 | 3.7 ± 1.3 | 0.795 |
eGFR (mL/min) | 73.4 ± 23.6 | 72.6 ± 20.9 | 0.943 |
Interstitial lung disease, n (%) | 13 (17.6) | 6 (15.8) | 0.812 |
MTX use, n (%) | 26 (35.1) | 20 (52.6) | 0.075 |
GC use, n (%) | 15 (20.3) | 8 (21.1) | 0.923 |
Prior bDMARDs use, n (%) | 25 (33.8) | 18 (47.4) | 0.162 |
Follow up periods (month) | 24.0 ± 15.2 | 29.4 ± 16.9 | 0.110 |
Adverse Events | Total n = 22 | Baricitinib n = 9 | Tofacitinib n = 13 |
---|---|---|---|
Infection | 10 | 4 (Pneumonia 3, Herpes Zoster 1) | 6 (Pneumonia 4, Pyothorax 1, Cholecystitis) |
Malignancy | 8 | 3 (Lymphoma 2, Lung 1) | 5 (Lymphoma 2, Lung 2, Colon 1) |
Liver impairment | 2 | 1 | 1 |
Exacerbation of interstitial pneumonia | 1 | 1 | 0 |
Cardiovascular disease | 1 | 0 | 1 |
(Cerebral hemorrhage) |
Lymphopenia (+) | Baricitinib n = 14/78 (17.9%) | Tofacitinib n = 16/38 (42.1%) |
---|---|---|
Discontinued of JAKi | 10 (71.4%) | 13 (81.3%) |
Cause | ||
Lack of effectiveness | 9 (64.3%) | 4 (25.0%) |
Adverse events | 1 (7.1%) | 9 (56.3%) |
Infection | 1 (7.1%) | 6 (37.5%) |
Malignancy | 0 | 2 (12.5%) |
Liver damage | 0 | 1 (6.3%) |
(Continued) | 4 (28.6%) | 3 (18.7%) |
Lymphocytopenia (+) (n = 30) | Lymphocytopenia (−) (n = 82) | p-Value | |
---|---|---|---|
Age (years) | 71.6 ± 14.0 | 71.0 ± 14.1 | 0.851 |
Female, n (%) | 25 (83.3) | 62 (75.6) | 0.385 |
Disease duration (years) | 9.4 ± 12.2 | 9.2 ± 9.9 | 0.917 |
RF-positive, n (%) | 21/29 (72.4) | 48/78 (61.5) | 0.296 |
ACPA-positive, n (%) | 21/28 (75.0) | 50/79 (63.3) | 0.260 |
CRP (mg/dL) | 3.3 ± 4.0 | 3.0 ± 3.2 | 0.713 |
DAS28-CRP | 3.9 ± 1.1 | 3.5 ± 1.1 | 0.184 |
CDAI | 19.0 ± 14.4 | 17.6 ± 12.5 | 0.698 |
eGFR (mL/min) | 74.3 ± 24.7 | 72.7 ± 21.9 | 0.748 |
Interstitial lung disease, n (%) | 6 (20.0) | 13 (15.9) | 0.605 |
MTX use, n (%) | 10 (33.3) | 36 (43.9) | 0.314 |
GC use, n (%) | 9 (30.0) | 14 (17.1) | 0.134 |
Prior bDMARDs use, n (%) | 14 (46.7) | 29 (35.4.) | 0.276 |
Follow up periods (month) | 31.2 ± 16.8 | 34.1 ± 16.8 | 0.487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temmoku, J.; Miyata, M.; Suzuki, E.; Sumichika, Y.; Saito, K.; Yoshida, S.; Matsumoto, H.; Fujita, Y.; Matsuoka, N.; Asano, T.; et al. Drug Retention Rates of Janus Kinase Inhibitors in Rheumatoid Arthritis Patients with Therapy-Induced Lymphopenia. J. Clin. Med. 2023, 12, 4827. https://doi.org/10.3390/jcm12144827
Temmoku J, Miyata M, Suzuki E, Sumichika Y, Saito K, Yoshida S, Matsumoto H, Fujita Y, Matsuoka N, Asano T, et al. Drug Retention Rates of Janus Kinase Inhibitors in Rheumatoid Arthritis Patients with Therapy-Induced Lymphopenia. Journal of Clinical Medicine. 2023; 12(14):4827. https://doi.org/10.3390/jcm12144827
Chicago/Turabian StyleTemmoku, Jumpei, Masayuki Miyata, Eiji Suzuki, Yuya Sumichika, Kenji Saito, Shuhei Yoshida, Haruki Matsumoto, Yuya Fujita, Naoki Matsuoka, Tomoyuki Asano, and et al. 2023. "Drug Retention Rates of Janus Kinase Inhibitors in Rheumatoid Arthritis Patients with Therapy-Induced Lymphopenia" Journal of Clinical Medicine 12, no. 14: 4827. https://doi.org/10.3390/jcm12144827
APA StyleTemmoku, J., Miyata, M., Suzuki, E., Sumichika, Y., Saito, K., Yoshida, S., Matsumoto, H., Fujita, Y., Matsuoka, N., Asano, T., Sato, S., Watanabe, H., & Migita, K. (2023). Drug Retention Rates of Janus Kinase Inhibitors in Rheumatoid Arthritis Patients with Therapy-Induced Lymphopenia. Journal of Clinical Medicine, 12(14), 4827. https://doi.org/10.3390/jcm12144827