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Abstract: A considerable number of patients with angina or myocardial ischemia have no significant
coronary artery disease on invasive angiography. In recent years, several steps towards a better
comprehension of the pathophysiology of these conditions, angina or ischemia with non-obstructive
coronary arteries (ANOCA/INOCA), have been made. Nevertheless, several gaps in knowledge
still remain. This review is intended to provide a comprehensive overview of ANOCA and INOCA,
with a particular focus on pathophysiology, recent diagnostic innovations, gaps in knowledge and
treatment modalities.

Keywords: ANOCA; INOCA; MINOCA; vasospastic angina; microvascular angina; coronary
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1. Introduction

A considerable number of patients with anginal symptoms or myocardial ischemia
on noninvasive testing present no significant coronary artery stenosis on coronary an-
giography [1]. The absence of significant coronary artery disease (CAD) often terminates
the diagnostic workup for cardiac causes. In some cases, symptoms are attributed to
non-cardiac conditions such as gastrointestinal or psychiatric disorders, leading to erro-
neous diagnoses and inappropriate treatments [2]. In recent years, the pathophysiology of
angina or ischemia with non-obstructive coronary arteries (ANOCA/INOCA) have been
investigated, and several steps have been made towards a better comprehension of these
conditions. Nevertheless, several gaps in knowledge still remain. In this review, we aim to
provide an overview of ANOCA and INOCA, with a special focus on pathogenesis, recent
innovations in diagnostic modalities, evolving concepts and treatment updates.

2. Definitions

The concomitant presence of typical angina and absence of significant stenosis on
coronary angiography has been historically defined as “Cardiac Syndrome X” (CSX) due to
uncertainty about its mechanism [3]. The better understanding of this condition led to the
replacement of the term “CSX” with microvascular angina (MVA) [4], which encompasses
patients with coronary vasomotor dysfunction consisting of microvascular spasm and/or
impaired vasodilatation [5,6]. While microvascular spasm can be inferred in patients with
typical angina and ischemic electrocardiogram (ECG) changes during a spasm provocative
test [7], impaired vasodilator reserve due to coronary microvascular dysfunction (CMD) is
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characterized by a low coronary flow reserve (CFR) [5]. Differently, a transient reduction
in coronary blood flow (CBF) secondary to a spasm in the epicardial coronary arteries,
previously referred to as “Prinzmetal” or “variant” angina, defines the condition of va-
sospastic angina (VSA) [7–10]. The pathophysiological mechanisms of these conditions are
addressed later in this review.

Recently, the term “ANOCA” has been coined to include all the clinical conditions
determined by anginal symptoms without evidence of significant CAD on coronary an-
giography. When anginal symptoms are associated with documented myocardial ischemia,
the term “INOCA” applies. Finally, in the presence of a universal criteria-defined my-
ocardial infarction (MI) with no significant coronary stenosis and no other overt cause at
presentation, the definition of “myocardial infarction with non-obstructive coronary artery”
(MINOCA) can be used [11]. A comprehensive diagram including the abovementioned
definitions is provided by Figure 1.
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Figure 1. Coronary vascular dysfunction—clinical settings and pathophysiological mechanisms. Ab-
breviations: ANOCA, angina with non-obstructive coronary arteries; CMD, coronary microvascular
dysfunction: INOCA, ischemia with non-obstructive coronary arteries; MINOCA, myocardial with
non-obstructive coronary arteries; MVA, microvascular angina; VSA, vasospastic angina.
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3. Epidemiology and Prognostic Implications

The absence of significant coronary obstruction is frequent in patients experiencing
angina and myocardial ischemia. With regard to ANOCA, numerous data show that
its prevalence ranges from 30% to 50% among patients undergoing coronary angiogra-
phy [1,12–14], with a female preponderance [14–16]. Interestingly, these percentages seem
to remain stable over time despite improvements in the definition and detection of this
condition [12]. Nevertheless, the correct characterization of symptoms has a central role,
since the presence of typical angina is a predictor of significant CAD, while atypical symp-
toms are more often associated with the absence of coronary obstruction [1,13]. When a
non-invasive stress test confirms the presence of significant myocardial ischemia in patients
with angina, the percentage of patients without significant CAD decreases [1,17]. The
prevalence of MINOCA has been reported to range between 2% and 10% of all Mis [18–22],
while coronary obstruction is found in more than 90% [23]. Interestingly, women have a
higher chance of a negative coronary angiography than men also in the setting of MI [18].

Notably, none of these conditions is benign. In addition to impaired quality of life,
several studies reported an increased risk of adverse events in patients with ANOCA
and INOCA [24–26]. The available data show a 1.3 higher risk of death and a 3–4-fold
higher risk of hospitalization for cardiovascular events in ANOCA patients as compared
with asymptomatic individuals [14,25], while the Women’s Ischemia Syndrome Evaluation
(WISE) study demonstrated a 10-year risk of all-cause death of 13% and 2.8% in patients
with INOCA and in control healthy individuals, respectively [27]. In MINOCA patients,
the prognosis is influenced by the underlying mechanism and the extent of myocardial
dysfunction. Overall, the risk of mortality in patients with MINOCA is estimated to be
about 1%, 3% and 4% in hospital, at 1 year and at 3 years, respectively [22,28,29]. Finally,
the absence of significant coronary obstruction on coronary angiography may lead the
treating physician to wrongly reassure patients or discontinue the medical therapy, with a
potential negative impact on symptoms and quality of life.

4. Pathophysiology

Among the main pathophysiological mechanisms deemed responsible for ANOCA/
INOCA and MINOCA, vascular spasm and CMD play an important role.

4.1. Epicardial and Microvascular Vasospasm

Epicardial vasospasm is a pathologic condition characterized by a transient reduction
of CBF due to a spasm in the epicardial coronary arteries. This phenomenon is responsible
for recurrent attacks of chest pain similar to those occurring in patients with obstructive
CAD; however, these episodes often happen at rest rather than under exertion, and effort
tolerance is generally preserved [30]. While initially referred to as “Prinzmetal” or “vari-
ant” angina due to its differences from classical effort angina, the exact definition of the
pathophysiology of this phenomenon led to the introduction of the term “VSA”.

The hyperreactivity of vascular smooth cells (VSCs) is thought to play a central role in
the pathophysiology of VSA. VSCs’ contraction is mediated by the phosphorylation and
dephosphorylation of myosin light chains (MLCs). MLC dephosphorylation, in particular,
is inhibited by rho-kinase, which has been shown to be hyper-expressed in the spastic
cells [31,32]. This hypothesis is supported by preliminary studies suggesting that the use of
rho-kinase inhibitors effectively prevents acetylcholine (Ach)-induced coronary spasms [33].
The occurrence of anginal symptoms at night, when the vagal tone is higher, and the induc-
tion of spasm by Ach suggest that dysregulation in the autonomic nervous system may
be involved as well in the pathophysiology of VSA [8,34]. Other potential mechanisms in-
clude endothelial dysfunction with dysregulation of the nitric oxide synthases, magnesium
deficiency, oxidative stress, inflammation and genetic polymorphisms [8]. Coronary spasm
often occurs at the level of an atherosclerotic plaque, probably because the endothelial
dysfunction, leading to an imbalance between vasodilator and vasopressor stimuli [35],
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can act as a trigger for local injury, ischemic damage and MI [36]. However, even healthy
vessels can be affected.

Several studies suggest that a spasm can also occur at the level of the microcirculation.
Mohri et al. showed that lactate was produced during a spasm provocation test in patients
with angina attack and ischemic ECG changes without significant epicardial coronary
obstruction [37]. Sun et al. confirmed these findings demonstrating the occurrence of my-
ocardial ischemia (typical angina, ischemic ECG changes and lactate production) in patients
undergoing the spasm provocative test without angiographic evidence of an epicardial
spasm [38]. These data support the hypothesis that, in the absence of an epicardial spasm,
patients with chest pain and ECG changes during the spasm provocative test suffer from
microvascular spasm. Of note, it should be considered that patients with non-diagnostic
Ach-test results may be affected by CMD [7]. Finally, one of the main characteristics of both
epicardial and microvascular vasospasms is the resolution of symptoms due to vasodilation
in response to nitrates.

4.2. Coronary Microvascular Dysfunction

CMD is a condition that is characterized by reduced CFR either due to increased
minimal microvascular resistance (MVR) or high resting flow due to the altered non-
endothelial-dependent vasomotion of the coronary microvasculature (<500 µm) [39–42].
Based on the underlying mechanism, two clinical entities can be distinguished, structural
and functional CMD. The main structural changes associated with CMD are the thickening
of the arterioles’ wall with a reduction in the lumen area, the increase in perivascular
fibrous tissue and the decrease in the vascular density (capillary rarefaction), leading to
high MVR. Additionally, non-endothelial-dependent mechanisms such as the impaired
relaxation of VSCs, higher susceptibility of VSCs to vasoconstrictor stimuli and abnormal
autonomic activity may be involved [43,44]. These abnormalities lead to an increase in the
MVR and an insufficient increase in CBF under physiological stress, contributing to an
imbalance between oxygen demand and supply, resulting in myocardial ischemia [5,41].

The parameter that expresses the ability of the coronary microcirculation to increase
CBF under stress conditions is the CFR, defined as the ratio of the CBF during maximal
vasodilation to the corresponding value at rest. Unlike other parameters used to assess the
hemodynamic significance of a coronary stenosis, such as fractional flow reserve (FFR) and
instantaneous wave-free ratio (iFR), CFR provides complementary information about the
overall functional status of the coronary circulation. There can be a correlation between FFR,
iFR and CFR in certain cases; for example, if a coronary stenosis is severe enough to limit
CBF, then FFR, iFR and CFR may all be found to be altered. By contrast, other conditions,
such as the presence of collateral circulation or CMD, may alter this relationship. In the case
of well-developed collaterals supplying adequate CBF to the affected territory, CFR may
remain preserved even in the case of an FFR and/or iFR significant stenosis. Furthermore,
an altered CFR may suggest CMD in symptomatic patients with non-hemodynamically
significant coronary stenosis at FFR and/or iFR assessment [45,46].

Typically, patients with CMD due to altered microvascular architecture present with
low CFR and high MVR values. However, a proportion of patients with functional CMD
may exhibit low CFR/low MVR and high resting CBF values. The mechanism responsible
for this specific subset of CMD is still unclear, as this might be due to either a reduced my-
ocardial efficiency or uncoupled CBF [47]. Structural changes in the coronary microvascular
have been shown to be more prevalent in patients with classical cardiovascular risk factors,
including hypertension, hyperlipidemia, smoking and diabetes mellitus (DM). Moreover,
they have been correlated with other conditions, including renal impairment, coronary
atherosclerosis, ventricular hypertrophy, and other cardiomyopathies [5,48].

While different findings on the coronary function tests (CFTs) may suggest that coro-
nary microvascular spasm and CMD might represent two separated entities, an anomalous
vasodilatory response has been proven in patients presenting the abovementioned risk
factors and predisposition for structural abnormalities [48], suggesting that both non-
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endothelial-dependent and endothelial-dependent alterations may coexist in patients with
MVA. Importantly, the coexistence of CMD and VSA portends a worse prognosis.

5. Diagnosis

Both non-invasive and invasive tests have a role in assessing coronary vascular func-
tion. While the discussion regarding non-invasive diagnostic tests is beyond the scope of
this review, in the following paragraphs, the main invasive CFTs are discussed.

5.1. Spasm Provocation Test

The spasm provocation test is executed by injecting a spasm-inducing drug in esca-
lating doses in the coronary arteries through a guiding catheter. Ach, which binds to the
muscarinic cholinergic receptors, is the most widely used drug; however, ergonovine (ER)
or methylergonovine can be employed too. There are few reports on the different responses
to Ach and ER in patients with suspected VSA; however, it has been suggested that ER
tends to provoke a more focal and proximal spasm, while Ach-induced spasm is more
distal and diffuse [49].

Notably, Ach normally acts as a mild vasodilator on epicardial coronary arteries
and dilates resistance arterioles, resulting in increases in CBF. In patients with normal
endothelial function, blood flow increases >50% during low Ach doses. By contrast, the
vasodilator response is attenuated at higher Ach doses in patients with VSA due to an
imbalance between vasodilator and vasopressor agents, leading to vasoconstriction [50].

The spasm provocation test is performed by firstly engaging the target coronary artery.
Of note, when performing the procedure via a radial artery access, the “radial cocktail”
(namely Ca2+ channel blockers and nitrates) should be avoided. In the case of small radial
arteries or marked spasm, 5F catheters are also considered a valid option to perform
this assessment.

If there is no particular suspicion regarding a specific coronary segment involved in the
spasm, the left coronary artery is normally the vessel of choice. During the entire duration
of the test, a 12 leads ECG and the arterial blood pressure are continuously monitored. After
a selective engagement of the left main, increasing doses of Ach are administered through
the guiding catheter. Normally, four steps at the doses of 2, 20, 100 and 200 µg are sufficient
to establish the diagnosis [51]. Ach is diluted in a 5, 10 or 20 mL syringe of 0.9% saline
solution and is administered in 30–120 s based on the amount of solution used. A first cine
acquisition is obtained before starting the injections; therefore, one is acquired after 20–30 s
after each administration or in the case of new-onset angina or ECG changes. Intra-arterial
nitrates should not be administered before starting the spasm provocation test, as they may
alter the endothelial response, while they should be given at the end of the test. The test
is safe, with an incidence of major complication < 1% [52]. In rare cases of acute spasm
refractory to nitrates, atropine can be used. According to the COVADIS group [30], VSA
is diagnosed if nitrate-responsive angina is accompanied by ECG changes and coronary
spasm. Typical ECG changes include ST segment elevation or depression ≥ 0.1 mV or
new-onset negative U waves, while the constriction in the epicardial arteries should be
>90%. By contrast, the induction of typical angina and ECG changes in the absence of >90%
epicardial spasm is highly suggestive of MVA due to a microvascular spasm.

Figure 2 provides an example of a positive vasospasm provocative test, while Figure 3
provides an exemplificative case of a coronary spasm that occurred at the level of a mild
coronary plaque in a patient with resuscitated cardiac arrest.
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Figure 2. Spasm provocative test suggestive of vasospastic angina. (A) Baseline coronary angi-
ography revealing no significant stenosis. (B,C) Repeated coronary angiography after administra-
tion of 2 µg and 20 µg of Ach showing significant spasm with >90% induced stenosis in the circum-
flex artery. (D) Repeated coronary angiography after administration of intracoronary nitrates re-
vealing complete regression of coronary spasm. (E) Baseline electrocardiogram. (F) Electrocardio-
gram after administration of intracoronary Ach and during anginal symptoms, showing new-onset 
ischemic alterations in anterolateral position. 

 
Figure 3. Representative case of coronary spasm on a mild coronary plaque in a patient presenting 
with out of hospital cardiac arrest. (A) Electrocardiogram at hospital presentation showing anterol-
ateral ST segment elevation and biphasic T waves. (B) Coronary angiography revealing no signifi-
cant stenosis. (C) Coronary computed tomography revealing a mild plaque with calcific core in the 
proximal LAD (white arrow). (D) Repeated coronary angiography showing significant spasm oc-
curring on the proximal LAD at the passage of the OCT probe (white arrow). (E) OCT image show-
ing coronary spasm. (F) Coronary angiography after administration of intracoronary nitrates show-
ing the regression of the spasm (white arrow). Abbreviations: MLA, minimal lumen area. 

Figure 2. Spasm provocative test suggestive of vasospastic angina. (A) Baseline coronary angiography
revealing no significant stenosis. (B,C) Repeated coronary angiography after administration of
2 µg and 20 µg of Ach showing significant spasm with >90% induced stenosis in the circumflex
artery. (D) Repeated coronary angiography after administration of intracoronary nitrates revealing
complete regression of coronary spasm. (E) Baseline electrocardiogram. (F) Electrocardiogram after
administration of intracoronary Ach and during anginal symptoms, showing new-onset ischemic
alterations in anterolateral position.
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Figure 3. Representative case of coronary spasm on a mild coronary plaque in a patient present-
ing with out of hospital cardiac arrest. (A) Electrocardiogram at hospital presentation showing
anterolateral ST segment elevation and biphasic T waves. (B) Coronary angiography revealing no
significant stenosis. (C) Coronary computed tomography revealing a mild plaque with calcific core in
the proximal LAD (white arrow). (D) Repeated coronary angiography showing significant spasm
occurring on the proximal LAD at the passage of the OCT probe (white arrow). (E) OCT image
showing coronary spasm. (F) Coronary angiography after administration of intracoronary nitrates
showing the regression of the spasm (white arrow). Abbreviations: MLA, minimal lumen area.
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5.2. Assessing CMD—General Concepts

In patients with suspected CMD, a comprehensive diagnostic test should include
the measurement of specific indices reflecting the microvascular capacity to increase CBF
under stress conditions and MVR. According to the COVADIS recommendations [7], these
parameters include the CFR and the index of microvascular resistance (IMR). While CFR
represents the extent to which CBF can increase above its baseline value, IMR is a dimen-
sionless index that expresses the resistance of the microvasculature [53]. CFR reflects the
status of both epicardial arteries and microcirculation, while IMR investigates the microvas-
cular function [54]. Both of these parameters can be derived with the bolus thermodilution
method; however, recent advances in the field of coronary physiology led to the develop-
ment of a new diagnostic tool, the continuous thermodilution method, introducing new
indices and overcoming some of the limitations of the bolus thermodilution method.

In addition to thermodilution, CFR and MVR can be estimated by applying the Doppler
technique with a dedicated velocity-measuring wire [55]. Altered values of Doppler-
derived CFR assessed with the Flowire (Philips Volcano, San Diego, CA, USA) have been
correlated with markers of endothelial dysfunction, such as the albumin-to-creatinine
ratio [56] and subendocardial viability ratio [57], in hypertensive patients. Several studies
compared the thermodilution and the Doppler techniques in assessing CMD, leading to dis-
cordant results [58,59]. The Doppler method demonstrates lower intraobserver variability
compared to thermodilution, leading to improved accuracy [59–62], and Doppler-derived
CFR shows superior agreement with the gold-standard [15O]-H2O positron emission
tomography [59,60]. Notably, the bolus thermodilution method tends to overestimate
Doppler-derived CFR [63], while the continuous thermodilution and the Doppler method
show an excellent agreement in assessing CFR [64]. However, the Doppler method’s
primary drawback lies in its increased difficulty of execution and frequent constraints
imposed by suboptimal signal quality [59,65]. Therefore, despite its technical limitations,
the thermodilution is currently the most widely adopted method for CMD assessment.

5.3. Bolus Thermodilution Method

A dedicated guidewire with a pressure-temperature sensitive tip is used for both the
bolus and the continuous thermodilution methods (PressureWire X, Abbott Vascular, Santa
Clara, CA, USA). Notably, the bolus thermodilution method is based on the assumption
that CBF equals the inverse of the transit time of blood and that the epicardial volume
remains constant (i.e., Q ≈ 1/Tmn) [66].

First, the pressure sensor at the tip of the guidewire is equalized with the aortic
pressure (Pa) just outside the guiding catheter, and then the wire is advanced in the coronary
artery (normally to the distal left anterior descending coronary artery (LAD)). Subsequently,
the temperature is zeroed to match the values in the two thermistors in the wire. The distal
pressure (Pd), measured at the transition of the radiopaque part of the guidewire, and the
Pa, measured at the tip of the fluid filled guiding catheter, are recorded simultaneously
during the entire procedure. Then, the resting mean transit time (Tmn) is determined by
the mean of three measurements obtained after three injections of 3 mL of saline solution in
the coronary artery. To obtain reliable data, at least three injections should be performed,
and transit-time values should not differ by more than 20% of each other. Operators
should discard the measurements outside this range of reproducibility and continue with
injections until three reliable transit time values with low variability are obtained. After
determining the resting Tmn, the same procedure is repeated under hyperemia, which is
generally achieved by continuous administration of adenosine through a central vein or
intracoronary papaverine. A dose of adenosine 140 µg/kg/min or 12 mg of papaverine is
sufficient to induce maximal hyperemia. CFR is calculated by dividing the resting Tmn
by the hyperemic Tmn [67], while IMR is determined as the hyperemic Pd divided by the
inverse of the hyperemic Tmn (IMR = Pdhyper × Tmnhyper) [53,68], assuming that MVR
is minimal during hyperemia (Table 1). The bolus thermodilution method further allows
us to calculate the resistive reserve ratio (RRR), which is obtained by the ratio between



J. Clin. Med. 2023, 12, 4864 8 of 18

the resting and the hyperemic MVR. This parameter is a marker of the microvasculature
ability to change from baseline to minimal resistance during hyperemia [69]. According
to the current recommendations, the cutoff values for normality are >2 for CFR and <25
for IMR [7,70]. Abnormal values of CFR (<2) and/or IMR (>25) are suggestive of CMD;
nonetheless, given the overestimation of CFR by bolus thermodilution, a CFR gray zone
of 2.0 to 2.5 has been proposed. With respect to the RRR, this parameter has been studied
in patients with myocardial infarction, where a value ≤ 1.7 has been associated with an
increased myocardial hemorrhagic area [71], but no specific cutoff has been established for
CMD yet. A representative case of CMD assessment with the bolus thermodilution method
is provided by Figure 4.

Table 1. Coronary-function-testing-derived physiological parameters.

Invasive Method Parameter Formula Cutoff for CMD Meaning

Bolus thermodilution

Coronary flow reserve
(CFRbolus) CFRbolus =

resting Tmn
hyperemic Tmn <2.0 (validated)

The capacity to increase CBF from
resting to stress conditions (derived
from transit time).

Index of microvascular
resistance (IMR)

IMR = hyperemic Pd×
hyperemic Tmn ≥25 (validated)

Dimensionless index which
represents MVR during stress
conditions.

Resistive reserve
ratio (RRR)

RRR =
resting Pd × resting Tmn

hyperemic Pd × hyperemic Tmn
Unknown

The ability of microcirculation to
reduce MVR during stress conditions
(derived from transit time).

Continuous
thermodilution

Absolute coronary
flow (Q) Q = Ti

T ×Qi× 1.08
<200 mL/min (under

investigation) Direct measurement of CBF.

Absolute microvascular
resistance (R) R = Pd

Q
>500 UW (under

investigation) True MVR derived from CBF.

Coronary flow reserve
(CFRcontinuous) CFRcontinuous = hyperemic Q

resting Q
<2.0–2.5 (under
investigation)

The capacity to increase CBF from
resting to stress conditions (derived
from CBF).

Microvascular resistance
reserve (MRR)

MRR =
CFR
FFR ×

resting Pa
hyperemic Pa

<2.1 (under
investigation)

The ability of microcirculation to
reduce MVR during stress conditions
(derived from CBF).
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Table 1. Coronary-function-testing-derived physiological parameters. 

Invasive 
Method 

Parameter Formula Cutoff for 
CMD 

Meaning 

Bolus ther-
modilution 

Coronary flow reserve 
(CFRbolus) 

CFRbolus ൌ  ௦௧ ்௬ ் <2.0 (vali-
dated) 

The capacity to increase CBF from
resting to stress conditions (de-
rived from transit time).  

Index of microvascular re-
sistance (IMR) 

IMR = ℎ𝑦𝑝𝑒𝑟𝑒𝑚𝑖𝑐 𝑃𝑑 ×ℎ𝑦𝑝𝑒𝑟𝑒𝑚𝑖𝑐 𝑇𝑚𝑛 
≥25 (vali-

dated) 

Dimensionless index which rep-
resents MVR during stress condi-
tions. 

Resistive reserve ratio 
(RRR) 

RRR = ௦௧ ௗ × ௦௧ ்௬ ௗ × ௬ ் Unknown 
The ability of microcirculation to
reduce MVR during stress condi-
tions (derived from transit time). 

Continuous 
thermodilution 

Absolute coronary flow (Q) Q = ்் × 𝑄𝑖 × 1.08 
<200 mL/min 
(under inves-

tigation) 
Direct measurement of CBF. 

Figure 4. Microvascular assessment with the bolus thermodilution method showing high value of
IMR (42 and low value of CFR (1.7), suggestive of coronary microvascular dysfunction.
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5.4. Continuous Thermodilution Method

Recently, the continuous thermodilution method was validated and introduced in
many centers focused on coronary physiology. This method requires the use of a dedicated
monorail infusion catheter (RayFlow, Hexacath Inc., Paris, France) composed by an inner
lumen for the 0.014′ ′ pressure–temperature guidewire and an outer lumen for saline
infusion [72]. After positioning the tip of the infusion catheter at the proximal target vessel
(normally the LAD) and equalizing, the guidewire is advanced about 5–6 cm distal from the
catheter tip. Then, the temperature is zeroed, and saline, at room temperature, is infused at
prespecified flow rates. Generally, 10 and 20 mL/min saline infusion flow rates are chosen
to assess coronary physiology parameters under resting and stress conditions, respectively.
Intracoronary saline infusion at 20 mL/min induces hyperemia through both vasodilation
and intravascular hemolysis and has been shown to be comparable to adenosine in assessing
CFR [73]. After a temperature steady state is reached, the temperature of the mixture
blood/saline (T) at the temperature sensor of the guidewire is measured for about 30 s.
Thereafter, the guidewire is withdrawn into the infusion catheter to obtain the temperature
of the infused saline (Ti) [73,74]. As mentioned above, the procedure is repeated two times
at different saline infusion flow rates to obtain measurements under both rest and stress
conditions. Alternatively, the infusion can be programmed to automatically change from
10 mL to 20 mL and 10 mL, thus obtaining all the necessary values for the calculation of Q
and R with one pullback.

The absolute coronary flow (Q) is calculated as the ratio of Ti to T, multiplied by the
saline infusion rate (Qi) and corrected for a constant related to the difference between heat
and density of blood and saline. The absolute microvascular resistance (R) is calculated
as the ratio between the distal coronary pressure (Pd) and Q (Table 1) [74]. Notably, the
repetition of these measurements under rest and stress conditions allows for the calculation
of both CFR and of a novel index, the microvascular resistance reserve (MRR), which is
obtained by the ratio between rest and hyperemic Q with a compensation for changes in
blood pressure during hyperemic conditions and the presence of epicardial disease (Table 1).
MRR is then the ratio of true resting microvascular resistance (Rµ, rest) as it would be in
the hypothetical case that the epicardial artery would be completely normal, and hyper-
emic microvascular resistance (Rµ, hyp) expresses the capacity of the microvasculature
to decrease its resistance under stress conditions [5,64]. Currently, the clinical application
of Q, R and MRR is limited by the lack of validated cutoffs. However, recent studies
have addressed the issue and proposed normality values. In a recent study assessing the
relationship between CFR/IMR and Q and R, Konst et al. proposed a normality cutoff for
Q and R, respectively, of 320 mL/min and 487 WU [62], while another study by de Vos et al.
suggested that MRR values > 2.7 and <2.1, respectively, exclude and confirm the presence
of CMD [75]. Despite the fact that its clinical application is still limited by its relatively
recent introduction, the continuous thermodilution method has been validated against
the gold-standard positron emission tomography (PET), showing a strong correlation and
agreement between PET- and invasive-derived CFR [76]. In addition, it has proved to
be safe and highly reproducible [74]. Figure 5 provides an exemplificatory case of CMD
assessment with the continuous thermodilution method.
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Figure 5. Microvascular assessment with the continuous thermodilution method. (A) Bolus thermod-
ilution assessment during saline infusion reproducing resting conditions (10 mL/min). (B) Bolus
thermodilution assessment during saline infusion reproducing hyperemia (20 mL/min), showing
low values of Q (95 mL/min) and high value of R (905 UW) suggestive of coronary microvascu-
lar dysfunction.

5.5. Bolus vs. Continuous Thermodilution Method to Assess CMD

Whether the bolus or the continuous thermodilution should be the method of choice
in assessing CMD is a current matter of debate. Despite its recent introduction and the
lack of validated cutoffs, the increasing uptake of the continuous thermodilution method
in the catheterization laboratories opens a new window to a better understanding of
microvascular dysfunction and to differentiate among different endotypes. Moreover,
several aspects of this technique make it particularly interesting and potentially able to
overcome some of the inherent limitations of the bolus thermodilution method. First,
since adenosine is not required, assessing the microvascular function with the continuous
thermodilution method represents a more tolerable procedure because unpleasant side
effects, including tachycardia, chest oppression, and dyspnea, are eliminated. Second,
adenosine is contraindicated in patients with bronchoconstrictive lung disease, asthma and
second- or third-degree atrioventricular block, limiting the spectrum of patients eligible
for the bolus thermodilution. Moreover, while the bolus thermodilution requires the
physician to discard measurements with poor-quality curves or that are highly discordant,
the continuous method is less operator dependent. Finally, the bolus thermodilution
method is based on the assumption that CBF corresponds to the inverse of Tmn of the
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saline injection, while continuous-thermodilution-derived Q and R come from a direct
measurement of true CBF [72]. Nonetheless, continuous thermodilution is more costly
and requires an infusion pump that is able to be programed for the infusion of saline in
mL/min.

In addition to the inherent diversities related to procedural factors, other aspects have
been highlighted by recent studies comparing reproducibility, variability and symptoms
prediction capacity of these two modalities. Gallinoro et al. showed that the variability
of continuous-derived CFR and MRR is significantly smaller than of the bolus-derived
CFR, IMR and RRR (12.8% vs. 31.3% for CFRcont and CFRbolus; and 12.4% vs. 23.2% vs.
31.8% for MRR, IMR and RRR, respectively) [77]. Similar findings come from a recent
study by Jansen et al. in which 73 patients underwent baseline and follow-up CFTs after
6 weeks. In this study, the authors showed that continuous-derived Q and R at 6 weeks
significantly correlated with their baseline measurements, while bolus-derived CFR and
IMR values did not [78]. The variability of bolus-derived CFR between baseline and
follow-up might be explained by different resting flow values between the first and the
second measurement. By contrast, the variability of the IMR values might be related to the
intra-observer inconsistency of bolus transit times within different procedures.

With respect to their clinical relevance, de Vos et al. found that continuous-thermodilution-
derived CFR and MRR were significantly associated with quality of life and angina domains,
while the corresponding bolus-thermodilution-derived parameters were not. Notably, the
correlation between symptoms and continuous-derived CFR and MRR further improved
after excluding patients with spasm [79]. Another study by Konst et al. similarly showed
that high values of continuous-thermodilution-derived R and/or low Q were more fre-
quent in patients with severe angina, while bolus-thermodilution-derived CFR and IMR
did not correlate with symptoms [62]. These results suggest that continuous- rather than
bolus-thermodilution-derived parameters relate better to anginal symptoms.

The available data seem to suggest that the continuous thermodilution represents a
more reliable and operator-independent method to evaluate the microvascular function.
However, more validation studies are needed before this becomes the reference method to
assess CMD.

6. Treatment

The management of patients with ANOCA/INOCA should be based on multidis-
ciplinary counselling evaluating lifestyle and risk factors. The main cardiovascular risk
factors, such as obesity, hypertension, dyslipidemia, DM and smoking, may be involved in
the pathophysiology of CMD and epicardial or microvascular spasm. Therefore, lifestyle
changes and risk factors’ control are the first-line recommendations in this category of pa-
tients [70]. Additionally, it is well known that physical exercise is associated with improve-
ment in the endothelial function through nitric oxide (NO) formation and endothelium-
dependent vasodilation [80]. The anti-inflammatory properties of statins and their effects
on the endothelial function might be beneficial in patients without significant CAD [81].
Moreover, previous studies evaluating the efficacy of statins on CMD showed a significant
improvement of CFR values in patients treated with atorvastatin [82] or rosuvastatin [83,84].
Hypertension is often associated with CMD, and angiotensin-converting enzyme inhibitors
have been proven to ameliorate exercise tolerance and angina symptoms in patients with
MVA [85]. Notably, patients treated with long-term enalapril showed an improvement of
coronary microvasculature function and myocardial ischemia due to an increased bioavail-
ability of endothelial NO [86]. In addition, the WISE study showed an increase of CFR
values in women with CMD treated with quinalapril [87]. The Coronary Microvascular
Angina (CorMicA) trial first demonstrated an improvement of angina symptoms and
quality of life at 6 months and 1 year in patients treated with stratified medical therapy
guided by invasive CFTs [88,89]. To simplify, a proper diagnosis between different ANOCA
endotypes allows for a specific and distinct treatment which has been proven to improve
the clinical outcome [90].
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Therapy of ANOCA

Beta-blockers may reduce ischemia symptoms in patients with MVA by reducing
myocardial oxygen consumption and represent the first-line therapy recommended by the
European Society of Cardiology [91]. However, only a few data are available about the effect
of beta-blockers on microvascular function. Atenolol and propranolol have been shown
to reduce ischemic episodes in patients with MVA [92,93], while intracoronary nebivolol
administration showed a significant improvement in CFR values due to its vasodilatory
effect [94]. Calcium channel blockers (CCBs) may be considered second-line therapy if
beta-blockers are not tolerated, or as first-line therapy in patients with response to Ach
testing suggestive of microvascular spasm [91]. Moreover, dihydropyridine CCBs such as
amlodipine may be added to beta-blockers if blood-pressure values permit it [90]. As far
as it is known about non-dihydropyridine CCBs and microvascular function, diltiazem
failed to improve CFR values in patients with MVA [95]. Data about the effect of nitrates on
coronary microcirculation are limited, and long-acting nitrates seemed ineffective, poorly
tolerated or even detrimental in patients with MVA [96,97]. Nicorandil is a potassium-
channel activator with a coronary microvascular dilatory effect and may be considered
antianginal therapy [90]. Ranolazine is an antianginal drug that improves myocardial
perfusion; however, data about its impact on coronary microcirculation are scarce. A
randomized placebo-controlled trial showed that ranolazine therapy did not improve
symptoms or myocardial perfusion in patients with no-obstructive CAD and CMD but
improved myocardial perfusion in a subgroup of patients with low CFR values [98]. Finally,
ivabradine may reduce angina symptoms by decreasing heart rate at rest and during
exercise. However, studies evaluating the effect of ivabradine on microvascular function
showed conflicting results [99,100]. Importantly, patients with CMD due to low CFR/low
MVR and high resting CBF are unlikely to benefit from vasodilating drugs, while it could
be theoretically more appropriate to specifically act on myocardial efficiency or uncoupled
CBF [47].

CCBs should be considered first-line therapy and are effective in treating the majority
of patients with epicardial vasospasm [101]. In some patients, high-dose CCBs or even a
combination of non-dihydropyridine and dihydropyridine CCBs, such as diltiazem and
amlodipine, is needed [70,102]. Despite the fact that long-acting nitrates are not suggested
in patients with MVA, they showed a good efficacy in the treatment of VSA [103] and
may be added in some patients. On the contrary, beta blockers are not recommended, as
they might favor spasm by reducing the beta-mediated vasodilation, which opposes the
alpha-mediated vasoconstriction [104].

7. Gaps in Knowledge

In the last decades, there has been a growing interest in coronary physiology assess-
ments for a proper diagnosis of ANOCA and INOCA patients. Many studies investigated
the diagnostic accuracy of invasive CFTs and their impact on clinical outcomes. However,
some aspects of these techniques are still a matter of debate.

Previous studies revealed a modest correlation between Doppler-derived and bolus-
thermodilution-derived CFR and a trend towards CFR overestimation with the bolus
thermodilution method [59,63]. For this reason, some authors suggested a CFR threshold
of 2.5 when measured with the bolus thermodilution method for better diagnostic accuracy
of CMD [63]. Accordingly, a recent study by Gallinoro et al. found higher values of CFR
when derived from bolus thermodilution than from continuous thermodilution [77]. Thus,
further investigations are needed to confirm the better accuracy of higher cutoff values for
bolus-thermodilution-derived CFR for the diagnosis of CMD.

One of the main limitations of these tests is still the uncertainty regarding their prog-
nostic implications. Previous data demonstrated that a low CFR is associated with the
worst clinical outcomes [105–107], while the clinical impact of high MVR values is still
unclear. In a recent study, Boerhout et al. showed that the risk of MACE was higher in
patients with an abnormal CFR regardless of normal or abnormal MVR [108]. Therefore,
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further studies evaluating the long-term follow-up of patients affected by CMD will shed
light on the clinical impact of augmented MVR. Moreover, further evidence is needed to
clarify the clinical implications of an abnormal MRR index.

Due to its wide myocardial perfusion territory, the LAD is typically the target vessel
in which coronary physiology measurements are performed. CFTs can be performed in the
left circumflex or right coronary artery in the case of technical issues in testing the LAD,
or in addition to the LAD assessment in the case of negative results but a high clinical
suspicion of CMD [70]. However, solid data about the comparison between CFR and
MVR values measured in different myocardial territories are not available. In addition,
it is unclear whether INOCA patients with a defined regionality of myocardial ischemia
might present different coronary physiology features between the ischemic and the non-
ischemic territories.

As mentioned above, recent data suggested the superiority of the continuous ther-
modilution over the bolus thermodilution method in assessing the microvascular function,
mainly due to its better reproducibility, precision, and correlation with symptoms. As a
consequence, it has to be investigated whether the continuous thermodilution method
would increase the diagnostic accuracy of different CMD endotypes, such as coronary
microvascular function presenting an isolated increase of MVR with normal CFR on bolus
thermodilution, and, therefore, it is necessary to identify those patients who may benefit
from specific and individualized therapies. In this context, the Netherlands registry of
invasive Coronary vasomotor Function Testing was initiated with the aim of collecting
baseline, procedural and follow-up data in patients with suspected and/or established
ANOCA and INOCA. This registry will provide more insight into the pathophysiology,
diagnostic process, and treatment of these patients, with potential implications from both
scientific and clinical perspectives [6].
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