
Citation: Waldenberg, C.; Brisby, H.;

Hebelka, H.; Lagerstrand, K.M.

Associations between Vertebral

Localized Contrast Changes and

Adjacent Annular Fissures in Patients

with Low Back Pain: A Radiomics

Approach. J. Clin. Med. 2023, 12, 4891.

https://doi.org/10.3390/

jcm12154891

Academic Editor: Akihiko Hiyama

Received: 6 July 2023

Revised: 21 July 2023

Accepted: 22 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Associations between Vertebral Localized Contrast Changes
and Adjacent Annular Fissures in Patients with Low Back Pain:
A Radiomics Approach
Christian Waldenberg 1,2,3,* , Helena Brisby 2,4, Hanna Hebelka 2,5 and Kerstin Magdalena Lagerstrand 1,2,3

1 Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy,
University of Gothenburg, 413 45 Gothenburg, Sweden; kerstin.lagerstrand@vgregion.se

2 Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
helena.brisby@vgregion.se (H.B.); hanna.hebelka@vgregion.se (H.H.)

3 Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital,
413 45 Gothenburg, Sweden

4 Department of Orthopaedics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
5 Department of Radiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
* Correspondence: christian.waldenberg@gu.se

Abstract: Low back pain (LBP) is multifactorial and associated with various spinal tissue changes,
including intervertebral disc fissures, vertebral pathology, and damaged endplates. However, current
radiological markers lack specificity and individualized diagnostic capability, and the interactions
between the various markers are not fully clear. Radiomics, a data-driven analysis of radiological
images, offers a promising approach to improve evaluation and deepen the understanding of spinal
changes related to LBP. This study investigated possible associations between vertebral changes and
annular fissures using radiomics. A dataset of 61 LBP patients who underwent conventional magnetic
resonance imaging followed by discography was analyzed. Radiomics features were extracted from
segmented vertebrae and carefully reduced to identify the most relevant features associated with
annular fissures. The results revealed three important texture features that display concentrated
high-intensity gray levels, extensive regions with elevated gray levels, and localized areas with
reduced gray levels within the vertebrae. These features highlight patterns within vertebrae that
conventional classification systems cannot reflect on distinguishing between vertebrae adjacent to an
intervertebral disc with or without an annular fissure. As such, the present study reveals associations
that contribute to the understanding of pathophysiology and may provide improved diagnostics
of LBP.

Keywords: intervertebral disc; vertebrae; annular fissure; low back pain; radiomics; texture analysis;
artificial intelligence (AI); Modic changes

1. Introduction

Low back pain (LBP) is one of the most widespread disorders and is ranked highest
in causing disability and societal costs globally [1,2]. The pathophysiological background
of LBP is multifactorial, and regarding spinal tissue changes, degenerated intervertebral
discs (IVDs) [3,4], pathological changes in the vertebra [5], and damaged cartilaginous and
bony endplates [6,7] have been reported to be key risk factors. Specifically, annular fissures
reaching the outer annulus fibrosus (AF) have been reported to be an entry point for the
ingrowth of vascularized tissue and nociceptive nerve endings and participate in pain
signaling [8,9]. In addition, vertebral bodies and endplates are highly innervated by noci-
ceptors [10,11], which are densified in areas with damaged endplates. It has been suggested
that such damage is associated with increased IVD degeneration and fissuring [12].

Overall decreased or locally impaired IVD nutrient supply due to damaged end-
plates is a recognized contributor to IVD degeneration [13], leading to altered extracellular
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matrix composition and weakened tissue strength [14]. Consequently, the disc tissue be-
comes prone to structural damage, e.g., fissuring, further propagating the degenerative
progress [15]. Inversely, degenerated IVDs also may influence adjacent vertebrae. Although
the etiology is unclear, it has been suggested that endplate bone marrow lesions, often
referred to as Modic changes (MCs), result from inflammatory factors diffusing from adja-
cent IVDs at sites with endplate damage [16]. Such pro-inflammatory factors are abundant
within the nucleus pulposus (NP) in degenerated discs [17], which may further drive the
development of bone marrow lesions. Such crosstalk, i.e., tissue changes in the IVD that
may affect the vertebra and vice versa, is confirmed by several histological studies [12,18].
However, previous studies using clinical radiological markers, i.e., MC, show inconclusive
results [19–21], which is why more qualified markers of association would be valuable.

With superior contrast visualization, MR imaging is the primary tool used to establish
the status of the spine. Earlier studies have exploited the MR contrast to study associations
between degenerative disc changes and vertebral changes. However, they rely on human
observers and gross radiological markers, such as high-intensity zones (HIZ) [8], MCs,
and Pfirrmann categorization [21,22]. These categorization schemes are ordinal, forcing
the observers to choose from a predefined set of explanations. Data-driven analysis of
radiological images has recently found its way into the LBP research as it can offer a more
detailed evaluation of the image contrast without the dependence on the observer [23–25].
Especially, texture analysis that can convert conventional MR images into quantitative
features, so-called radiomics, has shown promise [26]. One key advantage of radiomics is
its ability to provide an understanding of the basis for a possible association, as the method
can reflect tissue changes that can be translated into pathological patterns. Furthermore,
the features can reflect patterns and abnormalities not identified by subjective visual inter-
pretation alone and relate those findings to pathology. As such, radiomics holds promise in
identifying potential associations due to crosstalk between vertebrae and disrupted IVDs
and can reveal image patterns that support the association.

By studying a unique imaging material of a cohort of LBP patients examined by
conventional magnetic resonance imaging (MRI) and discography during the same day,
this study focuses on determining possible associations between vertebral bone marrow
lesions viewed on MRI and adjacent annular fissures in a clinical setting using radiomics.

2. Materials and Methods

The existing dataset was consecutively and prospectively collected between April
2007 and March 2010 initially to investigate the impact of spinal loading and disc degenera-
tion on pain provocation at discography [27–29]. All current IVDs have previously been
phenotyped to investigate the association between annular fissuring and LBP [30] and the
predictive ability of radiomics to identify annular fissures in conventional MR images [24].
The present study investigates the association between vertebrae and adjacent IVDs us-
ing radiomics. Inclusion criteria were chronic LBP > 6 months with failed conservative
therapy. Low-quality images (low signal-to-noise ratio, motion artifact) were excluded
from the study.

2.1. Diagnostic Procedures and Imaging Protocols

Within one day, the lumbar spine (L1-S1) of each patient was examined in the following
consecutive order: 1.5T MRI using clinically conventional protocols, including sagittal and
axial T1-weighted (T1W) and T2-weighted (T2W) imaging, followed by low-pressure
discography (<50 psi), and lastly, computer tomography (CT) (Table 1).
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Table 1. Scan and reconstruction parameters for MRI and CT protocols.

Parameter T1W MRI
(TSE) a

T1W MRI
(SE) a

T2W MRI
(TSE) a

T2W MRI
(TSE) a CT b

Imaging plane Sagittal Axial Sagittal Axial Sagittal, Axial
Repetition time (ms) 448 500 4862 5000

Echo time (ms) 11 15 97 119
Echo train length 9 1 21 25

Slice thickness (mm) 4.0 4.0 4.0 4.0 0.75 (reconstructed)
Slice gap (mm) 0.4 0.4 0.4 0.4

Number of averages 4 2 2 4
Pixel bandwidth (Hz) 200 100 190 190

Flip angle (degree) 149 90 150 150
Acquisition matrix 512 × 256 256 × 135 512 × 256 256 × 126

Reconstruction
matrix 512 × 512 384 × 512 512 × 512 360 × 512 512 × 512

Field of view (mm2) 300 × 300 135 × 180 300 × 300 127 × 180 162 × 162
Convolution kernel B45s

a MRI system: 1.5T Siemens Magnetom Symphony Maestro Class, Erlangen, Germany. b CT system: Siemens
Somatom Sensation 16-slice, Erlangen, Germany. T1W = T1-weighted; T2W = T2-weighted; MRI = magnetic
resonance imaging; CT = computer tomography; SE = spin echo; TSE = turbo spin echo.

2.2. IVD and Vertebrae Tissue Grading

The sagittal and axial CT discograms were used to grade the extension of the fis-
sures, according to the Dallas Discogram Description (DDD) [31]. Since mainly fissures
reaching the outer AF inflict LBP [8,32], IVDs with fissures extending to the outer 1/3
of the AF (DDD = 2–3) were separated from the rest (DDD = 0–1). All vertebrae were
categorized by a medical student, supervised by the senior radiologist, according to the
Modic characterization system [33] using the T1W and T2W images.

2.3. Image Segmentation

Using ITK-SNAP v3.8.0 [34], a medical physicist, guided by a senior radiologist,
manually segmented 5–7 midsagittal slices of the vertebrae adjacent to IVDs diagnosed
with discography. The vertebral regions of interest (ROIs) were divided in half, forming
superior and inferior units. The segmentation was performed on the T2W images, after
which the delineations were transferred to T1W to enable feature extraction from the
T1W images. To ensure proper ROI placement on the T1W images, the T1W and T2W
volumes were first registered through rigid registration using DICOM header information.
Manual adjustment of the ROIs was performed when necessary. In previous studies, similar
vertebrae segmentation has shown excellent intra-observer agreement within our research
group (ICC = 0.9–1.0) [35,36].

2.4. Radiomics
2.4.1. Image Preprocessing

Image processing was performed using MATLAB R2022b (Mathworks, Natick, MA,
USA) and PyRadiomics v3.0.1 [37] on Python v3.7:

• Interpolation—To ensure rotationally invariant features, the MR images were interpo-
lated to isotropic voxels of size 1 × 1 × 1 mm3 [38].

• Normalization—Each MR image volume was normalized to the mean volume signal
intensity ± 3 standard deviations to increase the stability and reproducibility of
calculated features [39,40]. Image voxels falling outside the boundaries were truncated
to the lowest/highest value.

• Intensity discretization—Discretization of the image intensities inside the ROI was
performed to reduce the image noise level [41,42] and allow for feature calculation [43].
Even though the Image Biomarker Standardization Initiative (IBSI) recommends
intensity discretization using a fixed bin number for MR images [44], studies have
shown that a fixed bin width approach produces more reproducible features [45,46]
when the number of bins is kept between 32 and 128 [47,48]. As such, with regard to the
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intensity range present inside the ROIs of the current images, intensity discretization
was performed using an appropriate fixed bin width of three.

2.4.2. Feature Calculation and Standardization

All statistical and texture-based features available in the PyRadiomics-package were
calculated for each ROI on the T1W and T2W images. As the study focused on the
association between vertebral tissue pattern and IVD fissures, morphological shape features
were not calculated. To increase the interpretability of the features, no features of filtered
MR images were calculated.

As standardization of the calculated features has been shown to increase the robustness
and prognostic power [49,50], each feature was standardized by the z-score formula, which
transforms each feature to have a global mean of 0.0 and variance of 1.0 [51].

2.4.3. Feature Reduction

Radiomics features have been shown to be sensitive to image acquisition and recon-
struction parameters [52], inter- and intra-observer variations during segmentation [53],
and are often subjected to high correlations indicating data redundancy [52]. As such,
the number of features to be included in the statistical and machine learning models was
reduced to generate generalizable results [54]. The feature reduction was applied in a
multi-step process:

1. The features’ robustness to the variability of ROI segmentation was investigated by
calculating future values using the initial vertebral segmentation and segmentation
contracted by one pixel in all directions. The Intraclass Correlation Coefficient (ICC)
using one-way random effects with absolute agreement, ICC(1, 1), was calculated
using individual feature values as subjects and the two ROI perturbations as the raters.
Features indicating poor reliability (ICC(1, 1) < 0.5) [55] were excluded from further
analysis (see Supplementary Table S1). A similar methodology has been applied in
recent studies [56].

2. Similarly, features robustness to image acquisition and reconstruction was evaluated
by interpolating the MR images into voxels of size 1 × 1 × 1 mm3 and 1.1 × 1.1 ×
1.1 mm3 before feature calculation. ICC(1, 1) was calculated using individual feature
values as subjects and the two voxel volume perturbations as the raters. Features with
ICC < 0.5 were excluded from further analysis (Table S1).

3. Using the person correlation metric, features were pairwise tested for linear correlation.
Pairs of features that displayed a very high linear correlation (R > 0.9) [57] were
individually tested for correlation to the presence of fissure. The feature with the
lowest correlation to the presence of a fissure was excluded from further analysis.

4. The remaining features were further reduced through sequential backward feature
selection algorithms to select the most meaningful features that reflect an association
between feature and fissure. Three separate algorithms were used to predict an
annular fissure in an adjacent IVD (Figure 1):

a. A fully connected neural network with one hidden layer with 100 nodes (Multi-
layer perceptron);

b. A random forest ensemble of 100 trees built with bootstrap samples and bal-
anced class weight;

c. K-nearest neighbor classifier using five neighbors with uniform weights, i.e., all
points in each neighborhood were weighted equally.

Due to imbalanced datasets (approximately four times more IVDs with fissures com-
pared to IVDs without fissures), balanced accuracy was used as a scoring metric during
the backward feature selection for all models. A 5-fold cross-validation was implemented
to reduce the risk of overfitting. The top five most important features selected by each
algorithm were selected, and the remainder were excluded from further analysis.
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5. A binary logistic regression using backward elimination was applied to the top-
performing features. The procedure establishes the importance of each feature to
model fit, which reflects the association between features and fissures. Features
that did not significantly contribute to the model fit (p > 0.05) were eliminated from
further analysis.
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Figure 1. Balanced classification accuracy of identifying an annular fissure based on features cal-
culated in an adjacent vertebra. The figure displays the mean accuracy ± one standard deviation
(transparent colored area) calculated from 5-fold cross-validation. In two out of three models, the top
five features were sufficient to achieve maximum classification accuracy.

2.5. IVD Fissure Association to Radiomic Features and Fissure Classification

The final model was based on a binary logistic regression fitted on the selected fea-
tures that contributed significantly to model fit. To interpret associations between the
vertebrae and adjacent IVD fissure, the beta value, p-value, and odds ratio was calculated
for each feature.

2.6. Comparison between Radiomics and Radiological Markers of Vertebral Change

Previous studies have used clinical radiological markers i.e., MC, to study associations
between vertebral changes and annular fissures but with inconclusive results [19–21]. For
that purpose, a sub-study was included to put MC in perspective to radiomics.

To enable this comparison, classification results for associations between vertebrae
and disc fissures were calculated both using the selected vertebrae features as well as MC
to predict fissures, respectively.

2.7. Statistical Analysis

Statistical calculations were performed with MATLAB R2022b and IBM SPSS Statistics
v29.0.0.0. The available data in the original studies determined the current patient sample
size. The predictive ability of the logistic regression model using the selected features was
evaluated in terms of sensitivity, specificity, and accuracy. Further, a receiver operating
characteristic analysis was performed. The mid-p-value McNemar test at a 5% significance
level was used to compare associations between IVD fissures and the selected features as
well as MCs. That is, it was tested to identify whether the predictive accuracy of the logistic
regression using the selected features was more accurate than using MC to identify an outer
annular fissure. The intra- and inter-observer reliability/agreement for the grading of the
DDD and segmentation were not evaluated here but in previous studies using current and
other datasets [27,35,36].
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3. Results

After excluding five patients due insufficient image quality, sixty-one patients (age
24–63 years, mean age 45 years ± 9 (standard deviation), 32 female) were included to study
the association between the vertebral tissue patterns and adjacent annular fissures (Table 2).

Table 2. Demographic and radiographic characteristics of included patients.

Patient and IVD Characteristics

Age (years) 45 ± 9 a

No. of patients 61
No. of female 32 (52%)

No. of Modic Changes 41 (12%) b

No. of IVDs 177
IVD segment L1–L2 2 (1%)

L2–L3 21 (12%)
L3–L4 57 (32%)
L4–L5 57 (32%)
L5–S1 40 (22%)

Dallas Discogram Description Grade 0–1 36 (20%)
Grade 2–3 141 (80%)

Note. Except where indicated, data are numbers of IVDs. a Numbers are presented as the mean value ± one
standard deviation. b The number in parentheses refer to percentages of the total number of vertebral units
(2 times the number of IVDs). IVD = intervertebral disc.

3.1. Feature Dimensionality Reduction

One hundred and eighty-six first-order features and texture features were calculated
from the T1W and T2W images of vertebrae. Five features were not robust to segmentation
variability or displayed poor reliability (ICC(1, 1) < 0.5) [55] and were excluded from further
analysis, and 139 features displayed very high linear correlation (R > 0.9) [57] and were
excluded, leaving 42 features (see Supplementary Figure S1). The remaining features were
processed through the sequential backward feature selection algorithms to select the most
important features. The top five features selected for each model were exclusively texture
features (Table 3).

Table 3. Top five features selected for each model using sequential backward feature selection.

Feature Name Random
Forest

K-Nearest
Neighbors

Multilayer
Perceptron

gldm_LargeDependenceHighGrayLevelEmphasis [t1w] • • •
glszm_LargeAreaHighGrayLevelEmphasis [t1w] • •

glszm_SizeZoneNonUniformity [t1w] • •
glszm_SmallAreaLowGrayLevelEmphasis [t1w] •
glszm_LargeAreaHighGrayLevelEmphasis [t2w] •

glszm_ZonePercentage [t2w] • •
glszm_ZoneVariance [t2w] • •
ngtdm_Coarseness [t2w] •

ngtdm_Strength [t2w] •
t1w = T1-weighted; t2w = T2-weighted.

The binary logistic regression using backward elimination eliminated two out of five
features that did not significantly contribute to the model fit. The top three highly important
features that probe variations in vertebral image contrast were the following:

1. gldm_LargeDependenceHighGrayLevelEmphasis_t1w (LDHGLE);
2. glszm_LargeAreaHighGrayLevelEmphasis_t1w (LAHGLE);
3. glszm_SmallAreaLowGrayLevelEmphasis_t1w (SALGLE).

Specifically, LDHGLE emphasizes high gray levels with strong spatial dependence,
LAHGLE highlights large areas with high gray levels, and SALGLE accentuates small areas
with low gray levels.
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3.2. Association between Vertebra and Adjacent IVDs

The negative feature beta values (B) in the logistic regression model indicate that an
increase in all or any feature values decreases the probability of an adjacent IVD having
an outer fissure (Table 4). All three selected values significantly contributed to model fit
(p ≤ 0.002).

Table 4. Logistic regression summary.

Selected Features B Significance Exp(B), (Odds Ratio)

gldm_LargeDependenceHighGrayLevelEmphasis_t1w −0.98 <0.001 0.38 (0.26 0.56) a

glszm_LargeAreaHighGrayLevelEmphasis_t1w −0.66 <0.001 0.52 (0.38 0.69) a

glszm_SmallAreaLowGrayLevelEmphasis_t1w −0.62 0.002 0.54 (0.36 0.80) a

Constant (intercept) 1.63 <0.001 5.11
a 95% confidence interval. B = beta value; t1w = T1-weighted.

Each of the selected features differed significantly between groups, i.e., the data in
each group came from populations with unequal means (p ≤ 0.043). The largest overlap
was found for the feature SALGLE. The feature maps of the selected features emphasized
homogeneous regions in the vertebrae that were either large with high intensity (LDHGLE
and LAHGLE) or small with low intensity (SALGLE) (Figure 2).
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Figure 2. Feature map examples overlaid onto T1W images of the vertebra. In the examples, the
logistic regression correctly classified the adjacent IVD. The selected feature values were calculated
from T1W images; as such, the feature maps are overlaid on the T1W image. For reference, T1W and
T2W image, without feature map overlay, is included. Feature maps are generally more homogeneous
over larger areas when calculated from vertebra with no adjacent IVD fissure (top row) and have a
more regional focus and irregular texture when calculated from vertebra with an adjacent IVD with
an annular fissure.
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3.3. Fissure Classification

With the prediction threshold score set to 0.54 to maximize accuracy, the logistic re-
gression correctly classified 291 out of 354 IVDs (each IVD was classified two times as it
is adjacent to both superior and inferior vertebral units). The model reached a sensitivity
of 96.5%, a specificity of 27.8%, and an accuracy of 82.5% (Figure 3). The ROC analy-
sis displayed an area under curve (AUC) of 0.760, indicating acceptable discriminating
ability [58].

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 3. (a) Receiver operating characteristic (ROC) visualizing model sensitivity and specificity at 

different prediction cut-off scores. Area under curve (AUC) value of 0.760 was reached. (b) 

Confusion matrix displaying the classifying performance of the logistic regression using the selected 

features as a marker to identify an outer annular fissure in an adjacent intervertebral disc. The 

number of true positives (top left), true negatives (bottom right), false positives (bottom left), and 

false negatives (top right) is presented at a 0.537 cut-off score. 

 

Figure 4. Confusion matrix displaying the classifying performance of MC as a marker to identify an 

outer annular fissure in an adjacent intervertebral disc. The number of true positives (top left), true 

negatives (bottom right), false positives (bottom left), and false negatives (top right) is presented. 

4. Discussion 

This radiomics study suggests evidence of crosstalk between IVD fissuring and 

adjacent vertebrae, supported by the strong association between the discography-

identified annular fissures and the MRI contrast features. The study may improve the 

basic understanding of what specific MRI contrast patterns in the vertebrae are associated 

with annular fissures. The classification results, achieved through the logistic regression, 

further confirmed the close relationship and the presence of crosstalk. 

In the study, three textural features were identified that depicted the MR signal 

variations in the vertebrae which were associated with crosstalk between IVD fissures and 

adjacent vertebrae. It is important to address that the selected features do not directly 

reflect different types of tissues, but the behavior of the tissue is translated into image 

contrast. The features LDHGLE and LAHGLE emphasize large homogeneous bright areas 

on the T1W image. For these features, it was found that an IVD with a fissure was likely 

to be adjacent to a vertebra with low LDHGLE or LAHGLE feature values, reflecting an 

inhomogeneous vertebra with few or small bright areas (see example in Figure 2, row 2–

4). In the T1W images, fat is displayed with a high signal where fattening of the bone 

marrow gives a distinctly higher signal in relation to the surrounding normal bone 

Figure 3. (a) Receiver operating characteristic (ROC) visualizing model sensitivity and specificity at
different prediction cut-off scores. Area under curve (AUC) value of 0.760 was reached. (b) Confusion
matrix displaying the classifying performance of the logistic regression using the selected features as
a marker to identify an outer annular fissure in an adjacent intervertebral disc. The number of true
positives (top left), true negatives (bottom right), false positives (bottom left), and false negatives (top
right) is presented at a 0.537 cut-off score.

Using MC to predict outer annular fissures yielded a sensitivity of 14.5%, a specificity
of 100%, and an accuracy of 31.9% (Figure 4). The logistic binary regression model was
significantly more accurate compared to using MC as a marker for an annular fissure
(p < 0.001).
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4. Discussion

This radiomics study suggests evidence of crosstalk between IVD fissuring and adja-
cent vertebrae, supported by the strong association between the discography-identified
annular fissures and the MRI contrast features. The study may improve the basic un-
derstanding of what specific MRI contrast patterns in the vertebrae are associated with
annular fissures. The classification results, achieved through the logistic regression, further
confirmed the close relationship and the presence of crosstalk.

In the study, three textural features were identified that depicted the MR signal
variations in the vertebrae which were associated with crosstalk between IVD fissures and
adjacent vertebrae. It is important to address that the selected features do not directly
reflect different types of tissues, but the behavior of the tissue is translated into image
contrast. The features LDHGLE and LAHGLE emphasize large homogeneous bright areas
on the T1W image. For these features, it was found that an IVD with a fissure was likely
to be adjacent to a vertebra with low LDHGLE or LAHGLE feature values, reflecting an
inhomogeneous vertebra with few or small bright areas (see example in Figure 2, row 2–4).
In the T1W images, fat is displayed with a high signal where fattening of the bone marrow
gives a distinctly higher signal in relation to the surrounding normal bone marrow. Hence,
the absence of large bright areas (i.e., normal fatty bone marrow) might reflect that such
vertebrae are affected mainly by edema or sclerotic components. Inversely, high feature
values reflected a homogeneous vertebra with a little signal variation. IVDs without fissures
were likely to be adjacent to such vertebrae (see example in Figure 2, top row). The third
feature that the model selected to be of importance, i.e., SALGLE, has the property to
emphasize small dark regions in MR images. In this study, the feature emphasized small
dark regions on the T1W image that might correspond to sclerosis (Figure 2, column 3).
Further, these findings, displaying a negative beta-value in logistic regression model,
suggest that the absence of such pathology is more common in vertebras that are adjacent
to IVDs with fissures. Although the causality is unclear, summarizing these three features,
it is apparent that the presence of an adjacent inhomogeneous vertebrae seem to be an
important factor for having a disrupted annular fissure.

Another interesting finding was that the T1W image was superior to the T2W image
in reflecting a contrast behavior of importance for the crosstalk association. In fact, features
extracted from the T2W image contributed with no additional information when the
features from the T1W image were included in the analysis. The final most important
features that the model selected only probed the T1W image, where both edema and
sclerosis appeared dark. This might reflect a pathological process and might imply that the
differentiation of edema from sclerosis is not of high importance for the crosstalk association.
Dudli S. et al. concluded that inflammatory factors diffusing from degenerated IVDs might
induce bone marrow lesions with active inflammation and edema [16], appearing dark on
T1W images. This and the fact that Jensen T.S et al. have shown that these changes can
directly convert to low signal sclerotic tissue [59] supports our findings.

There is no pathophysiological explanation or histological evidence indicating that
MC should be directly linked to the presence of annular fissures, even if they often co-exist
in a spinal motion segment. The actual pathology is more complex than the MC system
categorizes, for example, the vertebra might be affected by bone marrow lesions with a mix
of states, both an active inflammation (categorized into MC type 1) and fatty replacement
of the marrow (categorized into MC type 2). As a result, these radiological markers are
relatively insensitive and unspecific [24], which might explain the limited association
between IVD disruption and MCs in current and other studies [19,20]. Furthermore, this
suggests the need for more specific markers.

Medical data analysis has advanced significantly, with a recent focus on AI-driven
techniques. Classical machine learning algorithms used here are well established through
extensive study and development. What is more important is that they often offer the
advantage of providing interpretable information, allowing clinicians and researchers to
better understand underlying patterns that contribute to a certain outcome. Further, the
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present radiomics features used as input to the classical machine learning algorithms are
based on well-defined mathematical equations, providing them with a solid theoretical
foundation that can be used to explain image characteristics in a logical and derivable
manner. The features provide valuable image information from routine clinical scans in a
quantitative form, which potentially reflect underlying molecular changes of diseases at a
cellular level [30,43]. By using such data-driven features, the analysis will not be limited by
the human ability to detect complex and subtle image changes, and from these observations,
draw conclusions. Thus, the combination of machine learning models with radiomics, will
not eliminate the need for human interpretation but provide more comprehensive insights
into medical imaging data and may have the potential to contribute to the development of
trustworthy precision medicine.

The clinical value of diagnosing annulus fissures and tissue changes of the vertebrae for
individual LBP patients is still unclear. However, increased knowledge of the relationship
between different tissue injuries and the possibility of detecting small tissue changes,
e.g., annular fissures, without invasive methods, may assist in our understanding of the
causes of the pain in chronic LBP patients and should be evaluated further in normative
populations to assess possible differences in prominent radiomic features.

Advanced image analysis methods are powerful tools to explore such different patterns
of pathological changes that, in the next step, may be linked to specific symptoms, aiming
to sharpen the diagnostics on an individual plan. However, the methods used in this study
include both strengths and limitations. The design builds upon using a reliable but invasive
diagnostic procedure (discography) to depict the annular fissures, which is a strength.
However, due to its concomitant side effects and questionable reliability/reproducibility
in detecting provoked pain [28,60], such diagnostics are seldom used in clinical practice
nowadays, limiting the possibility of repeating the study. Furthermore, the proposed
data-driven method holds great promise as it may be adopted into other research topics to
explore associations with the possibility of increasing the understanding of causality.

5. Conclusions

The present study suggests that radiomics can objectively describe heterogeneity
patterns in the vertebral tissue associated with adjacent disrupted annular fissures. The
characteristic image patterns described by the radiomics features may improve the un-
derstanding of this crosstalk association and the quantitative nature of radiomic features
enable objective longitudinal studies of LBP patients.
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