Early Prediction of Asthma
Abstract
:1. Introduction
2. Predictive Factors for Asthma
2.1. Age
2.2. Gender
2.3. Hygiene Hypothesis
2.4. Allergic Comorbidity
3. Epigenetics in Asthma
3.1. Epigenetic Mechanisms
3.2. DNA Methylation
3.3. DNA Methylation and Asthma Risk
3.4. MicroRNA Expression
3.5. Post-Translational Histone Modifications
4. Biomarkers
4.1. Lung Function
4.2. Bronchoscopy
4.3. Fraction of Exhaled Nitric Oxide (FENO)
4.4. Allergy Assessment (Total and Specific Immunoglobulin E)
4.5. Blood Eosinophils
4.6. Serum Periostin
4.7. Sputum Eosinophils
4.8. Sputum Neutrophils
4.9. Nitrites in Sputum
4.10. Volatile Organic Compounds (VOCs) in Exhaled Breath Analysis
5. Prediction Models for Childhood Asthma
Original API (Stringent Index) [131] | Isle of Wight [137] | PIAMA [138] | mAPI [139] | ucAPI [140] | APT [141] | ademAPI [142] | PARS (In IOW) [143] | |
---|---|---|---|---|---|---|---|---|
Year of publication | 2000 | 2003 | 2009 | 2013 | 2014 | 2014 | 2015 | 2018 |
Country | US | UK | Netherlands | US | US | UK | Netherlands | UK |
Number of children surveyed | 1246 | 1034 | 2171 | 289 | 589 | 1998 | 202 | 589 |
Source population | General | High-risk | High-risk | High-risk | High-risk | High-risk | General | High-risk |
Age (y) of asthma prediction | 6, 8, 11, 13 | 10 | 7–8 | 6, 8, 11 | 7 | 6–8 | 6 | 7 |
Methods of building | Clinical index | Cumulate risk score | Logistic regression | Clinical index | Clinical index | LASSO regression | Logistic regression | Logistic regression |
Number of predictors used | 5 | 4 | 8 | 5 | 5 | 10 | 8 | 6 |
Sensitivity (%) | 28 (at 6 years) | 53 | 60 | 19 (at 8 years) | 44 | 72 | 88 | 67 |
Specificity (%) | 96 (at 6 years) | 85 | 76 | 100 (at 8 years) | 94 | 71 | 90 | 79 |
PPV (%) | 48 (at 6 years) | 68 | 23 | 87 (at 8 years) | 60 | 49 | 90 | 36 |
NPV (%) | 92 (at 6 years) | 74 | 94 | 9 (at 8 years) | 89 | 86 | 89 | 93 |
LR+ | 7.6 | 3.41 | 2.5 | 55 | 7.5 | 2.5 | 8.8 | 3.25 |
LR− | 0.75 | 0.56 | 0.53 | 0.83 | 0.6 | 0.4 | 0.13 | 0.41 |
PREDICTORS | ||||||||
Age | ✓ | ✓ | ||||||
Gender | ✓ | ✓ | ||||||
Wheezing frequency | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Parental history of asthma or allergy | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Eczema | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Rhinitis | ✓ | ✓ | ✓ | ✓ | ||||
Wheezing without colds | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Blood eosinophilia | ✓ | ✓ | ||||||
Skin-prick test | ✓ | ✓ | ✓ | ✓ | ||||
Specific IgE | ✓ | |||||||
Chest infections | ✓ | ✓ | ||||||
Parental medication inhalation | ✓ | |||||||
Parental education | ✓ | |||||||
Post-term delivery | ✓ | |||||||
Activity disturbance | ✓ | |||||||
Shortness of breath | ✓ | |||||||
Exercise-related wheeze/cough | ✓ | |||||||
Aeroallergen-related wheeze/cough | ✓ | |||||||
EBC biomarkers | ✓ | |||||||
VOCs | ✓ | |||||||
Gene expression | ✓ | |||||||
Ancestry | ✓ |
6. Machine Learning
7. Directions for Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FEV1 | Forced expiratory volume in one second. |
FVC | Forced vital capacity. |
EFL | Expiratory flow limitation. |
ILC2 | Innate lymphoid cells type 2. |
AD | Atopic dermatitis. |
TCRS | Tucson Children Respiratory Study. |
FeNO | Fraction of exhaled nitric oxide. |
VOC | Volatile organic compounds. |
API | Asthma Predictive Index. |
ML | Machine learning. |
References
- Porsbjerg, C.; Melén, E.; Lehtimäki, L.; Shaw, D. Asthma. Lancet 2023, 401, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Koefoed, H.J.L.; Vonk, J.M.; Koppelman, G.H. Predicting the course of asthma from childhood until early adulthood. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 115–122. [Google Scholar] [CrossRef]
- Khan, S.; Ouaalaya, E.H.; Chamberlain, J.D.; Dufourg, M.-N.; Charles, M.-A.; Semjen, C.R. The external validation of the asthma prediction tool in the French ELFE cohort. Pediatr. Pulmonol. 2022, 57, 2696–2706. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Simpson, A.; Custovic, A.; Foden, P.; Belgrave, D.; Murray, C.S. Individual risk assessment tool for school-age asthma prediction in UK birth cohort. Clin. Exp. Allergy 2019, 49, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Dezateux, C.; Stocks, J. Lung development and early origins of childhood respiratory illness. Br. Med. Bull. 1997, 53, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Kothalawala, D.M.; Kadalayil, L.; Weiss, V.B.N.; Kyyaly, M.A.; Arshad, S.H.; Holloway, J.W.; Rezwan, F.I. Prediction models for childhood asthma: A systematic review. Pediatr. Allergy Immunol. 2020, 31, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Guilbert, T.W. Diagnosis and management of early asthma in preschool-aged children. J. Allergy Clin. Immunol. 2012, 130, 287–296. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Cifuentes, L.; Martinez, F.D. Predicting Asthma Using Clinical Indexes. Front. Pediatr. 2019, 7, 320. [Google Scholar] [CrossRef]
- Kaplan, A.; Hardjojo, A.; Yu, S.; Price, D. Asthma Across Age: Insights from Primary Care. Front. Pediatr. 2019, 7, 162. [Google Scholar] [CrossRef]
- Baan, E.J.; de Roos, E.W.; Engelkes, M.; de Ridder, M.; Pedersen, L.; Berencsi, K.; Prieto-Alhambra, D.; Lapi, F.; Van Dyke, M.K.; Rijnbeek, P.; et al. Characterization of Asthma by Age of Onset: A Multi-Database Cohort Study. J. Allergy Clin. Immunol. Pract. 2022, 10, 1825–1834. [Google Scholar] [CrossRef]
- Pakkasela, J.; Ilmarinen, P.; Honkamäki, J.; Tuomisto, L.E.; Andersén, H.; Piirilä, P.; Hisinger-Mölkänen, H.; Sovijärvi, A.; Backman, H.; Lundbäck, B.; et al. Age-specific incidence of allergic and non-allergic asthma. BMC Pulm. Med. 2020, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Honkamäkia, J.; Hisinger-Mölkänenb, H.; Ilmarinenc, P.; Piiriläd, P.; Tuomistoc, L.E.; Anderséne, H.; Huhtalaf, H.; Sovijärvid, A.; Backmang, H.; Lundbäckh, B.; et al. Age- and gender-specific incidence of new asthma diagnosis from childhood to late adulthood. Respir. Med. 2019, 154, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, C.; Worm, M.; Leynaert, B.; For the Working Group of GA2 LEN WP 2.5 Gender. Impact of gender on asthma in childhood and adolescence: A GA2 LEN review. Allergy 2008, 63, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.U.; Guntur, V.P.; Newcomb, D.C.; Wechsler, M.E. Sex and gender in asthma. Eur. Respir. Rev. 2021, 30, 210067. [Google Scholar] [CrossRef]
- Forno, E.; Weiner, D.J.; Mullen, J.; Sawicki, G.; Kurland, G.; Han, Y.Y.; Cloutier, M.M.; Canino, G.; Weiss, S.T.; Litonjua, A.A.; et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am. J. Respir. Crit. Care Med. 2017, 195, 314–323. [Google Scholar] [CrossRef]
- LoMauro, A.; Aliverti, A. Sex differences in respiratory function. Breathe 2018, 14, 131–140. [Google Scholar] [CrossRef]
- Jenkins, C.R.; Boulet, L.-P.; Lavoie, K.L.; Raherison-Semjen, C.; Singh, D. Personalized treatment of asthma: The importance of sex and gender differences. J. Allergy Clin. Immunol. Pract. 2022, 10, 963–971. [Google Scholar] [CrossRef]
- Castro-Rodriguez Jose, A. A new childhood asthma phenotype: Obese with early menarche. Paediatr. Respir. Rev. 2016, 18, 85–89. [Google Scholar] [CrossRef]
- Castro-Rodríguez, J.A.; Holberg, C.J.; Morgan, W.J.; Wright, A.L.; Martinez, F.D. Increased incidence of asthma like symptoms in girls who become overweight or obese during the school years. Am. J. Respir. Crit. Care Med. 2001, 163, 1344–1349. [Google Scholar] [CrossRef]
- Strachan, D.P. Family size, infection and atopy: The first decade of the “hygiene hypothesis”. Thorax 2000, 55 (Suppl. S1), S2–S10. [Google Scholar] [CrossRef]
- Garn, H.; Potaczek, D.P.; Pfefferle, P.I. The Hygiene Hypothesis and New Perspectives—Current Challenges Meeting an Old Postulate. Front. Immunol. 2021, 12, 637087. [Google Scholar] [CrossRef]
- Valverde-Molina, J.; García-Marcos, L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023, 15, 486. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Dong, Y.; Yang, C.; Zhao, M.; He, Q. Pathogenesis of Children’s Allergic Diseases: Refocusing the Role of the Gut Microbiota. Front. Physiol. 2021, 12, 749544. [Google Scholar] [CrossRef] [PubMed]
- Renz, H.; Adkins, B.D.; Bartfeld, S.; Blumberg, R.S.; Farber, D.L.; Garssen, J.; Ghazal, P.; Hackam, D.J.; Marsland, B.J.; McCoy, K.D.; et al. The neonatal window of opportunity—Early priming for life. J. Allergy Clin. Immunol. 2018, 141, 1212–1214. [Google Scholar] [CrossRef]
- Haahtela, T. A biodiversity hypothesis. Allergy 2019, 74, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Maiello, N.; Comberiati, P.; Giannetti, A.; Ricci, G.; Carello, R.; Galli, E. New Directions in Understanding Atopic March Starting from Atopic Dermatitis. Children 2022, 9, 450. [Google Scholar] [CrossRef]
- Belgrave, D.C.; Granell, R.; Simpson, A.; Guiver, J.; Bishop, C.; Buchan, I.; Henderson, A.J.; Custovic, A. Developmental profiles of eczema, wheeze, and rhinitis: Two population-based birth cohort studies. PLoS Med. 2014, 11, e1001748. [Google Scholar] [CrossRef]
- Lowe, A.J.; Lodge, C.J.; Allen, K.J.; Abramson, M.J.; Matheson, M.C.; Thomas, P.S.; Barton, C.A.; Bennett, C.M.; Erbas, B.; Svanes, C.; et al. Cohort Profile: Melbourne Atopy Cohort study (MACS). Int. J. Epidemiol. 2017, 46, 25–26. [Google Scholar] [CrossRef]
- Paternoster, L.; Savenije, O.E.M.; Heron, J.; Evans, D.M.; Vonk, J.M.; Brunekreef, B.; Wijga, A.H.; Henderson, A.J.; Koppelman, G.H.; Brown, S.J. Identification of atopic dermatitis subgroups in children from 2 longitudinal birth cohorts. J. Allergy Clin. Immunol. 2018, 141, 964–971. [Google Scholar] [CrossRef]
- Lau, S.; Matricardi, P.M.; Wahn, U.; Lee, Y.A.; Keil, T. Allergy and atopy from infancy to adulthood Messages from the German birth cohort MAS. Ann. Allergy Asthma Immunol. 2019, 122, 25–32. [Google Scholar] [CrossRef]
- Sigurdardottir, S.T.; Jonasson, K.; Clausen, M.; Lilja Bjornsdottir, K.; Sigurdardottir, S.E.; Roberts, G.; Grimshaw, K.; Papadopoulos, N.G.; Xepapadaki, P.; Fiandor, A.; et al. Prevalence and early-life risk factors of school-age allergic multimorbidity: The EuroPrevall-iFAAM birth cohort. Allergy 2021, 76, 2855–2865. [Google Scholar] [CrossRef] [PubMed]
- Pinart, M.; Benet, M.; Annesi-Maesano, I.; von Berg, A.; Berdel, D.; Carlsen, K.C.; Carlsen, K.H.; Bindslev-Jensen, C.; Eller, E.; Fantini, M.P.; et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: A population-based cohort study. Lancet Respir. Med. 2014, 2, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.A.; Vonk, J.M.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; van Dongen, J.; et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017, 49, 1752–1757. [Google Scholar] [CrossRef] [PubMed]
- Brożek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canonica, G.W.; Casale, T.; Chavannes, N.H.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J. Allergy Clin. Immunol. 2017, 140, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.M.; Johnson, A.; Tarapore, P.; Janakiram, V.; Zhang, X.; Leung, Y.K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 2012, 53, 289–305, Erratum in ILAR J. 2017, 58, 413. [Google Scholar] [CrossRef]
- DeVries, A.; Vercelli, D. Epigenetic Mechanisms in Asthma. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S1), S48–S50. [Google Scholar] [CrossRef]
- Ntontsi, P.; Photiades, A.; Zervas, E.; Xanthou, G.; Samitas, K. Genetics and Epigenetics in Asthma. Int. J. Mol. Sci. 2021, 22, 2412. [Google Scholar] [CrossRef]
- Brook, P.O.; Perry, M.M.; Adcock, I.M.; Durham, A.L. Epigenome-modifying tools in asthma. Epigenomics 2015, 7, 1017–1032. [Google Scholar] [CrossRef]
- Bae, D.J.; Jun, J.A.; Chang, H.S.; Park, J.S.; Park, C.S. Epigenetic Changes in Asthma: Role of DNA CpG Methylation. Tuberc. Respir. Dis. 2020, 83, 1–13. [Google Scholar] [CrossRef]
- Hudon Thibeault, A.A.; Laprise, C. Cell-Specific DNA Methylation Signatures in Asthma. Genes 2019, 10, 932. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Sheikhpour, M.; Maleki, M.; Ebrahimi Vargoorani, M.; Amiri, V. A review of epigenetic changes in asthma: Methylation and acetylation. Clin. Epigenetics 2021, 13, 65. [Google Scholar] [CrossRef]
- Nadeau, K.; McDonald-Hyman, C.; Noth, E.M.; Pratt, B.; Hammond, S.K.; Balmes, J.; Tager, I. Ambient air pollution impairs regulatory T-cell function in asthma. J. Allergy Clin. Immunol. 2010, 126, 845–852. [Google Scholar] [CrossRef]
- Perera, F.; Tang, W.-Y.; Herbstman, J.; Tang, D.; Levin, L.; Miller, R.; Ho, S.-M. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 2009, 4, e4488. [Google Scholar] [CrossRef]
- DeVries, A.; Wlasiuk, G.; Miller, S.J.; Bosco, A.; Stern, D.A.; Lohman, I.C.; Rothers, J.; Jones, A.C.; Nicodemus-Johnson, J.; Vasquez, M.M.; et al. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J. Allergy Clin. Immunol. 2017, 140, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Gunawardhana, L.P.; Baines, K.J.; Mattes, J.; Murphy, V.E.; Simpson, J.L.; Gibson, P.G. Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr. Pulmonol. 2014, 49, 852–862. [Google Scholar] [CrossRef]
- Chhabra, D.; Sharma, S.; Kho, A.T.; Gaedigk, R.; Vyhlidal, C.A.; Leeder, J.S.; Morrow, J.; Carey, V.J.; Weiss, S.T.; Tantisira, K.G.; et al. Fetal lung and placental methylation is associated with in utero nicotine exposure. Epigenetics 2014, 9, 1473–1484. [Google Scholar] [CrossRef]
- Salam, M.T. Asthma epigenetics. Adv. Exp. Med. Biol. 2014, 795, 183–199. [Google Scholar]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Chandan, K.; Gupta, M.; Sarwat, M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front. Immunol. 2020, 10, 3081. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, Q.; Shang, Y. Downregulation of miRNA-451a promotes the differentiation of CD4+ T cells towards Th2 cells by upregulating ETS1 in childhood asthma. J. Innate Immun. 2021, 13, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, Q.; Shang, Y. MiRNA-451a inhibits airway remodeling by targeting Cadherin 11 in an allergic asthma model of neonatal mice. Int. Immunopharmacol. 2020, 83, 106440. [Google Scholar] [CrossRef]
- Elnady, H.G.; Sherif, L.S.; Kholoussi, N.M.; Ali Azzam, M.; Foda, A.R.; Helwa, I.; Sabry, R.N.; Eissa, E.; Fahmy, R.F. Aberrant expression of immune-related Micro- RNAs in pediatric patients with asthma. Int. J. Mol. Cell Med. 2020, 9, 246–255. [Google Scholar] [PubMed]
- Sharma, S.; Kho, A.T.; Chhabra, D.; Haley, K.; Vyhlidal, C.; Gaedigk, R.; Leeder, J.S.; Tantisira, K.G.; Raby, B.; Weiss, S.T. Effect of intrauterine smoke exposure on microRNA-15a expression in human lung development and subsequent asthma risk. Healthcare 2020, 8, 536. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Tiwari, A.; McGeachie, M.J. Recent miRNA Research in Asthma. Curr. Allergy Asthma Rep. 2022, 22, 231–258. [Google Scholar] [CrossRef]
- Paul, S.; Ruiz-Manriquez, L.M.; Ledesma-Pacheco, S.J.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Morales-Rodríguez, J.I.; De Donato, M.; Srivastava, A. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch. Biochem. Biophys. 2021, 699, 108763. [Google Scholar] [CrossRef]
- Fry, R.C.; Rager, J.E.; Bauer, R.; Sebastian, E.; Peden, D.B.; Jaspers, I.; Alexis, N.E. Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 306, 1129–1137. [Google Scholar] [CrossRef]
- Lu, T.X.; Hartner, J.; Lim, E.J.; Fabry, V.; Mingler, M.K.; Cole, E.T.; Orkin, S.H.; Aronow, B.J.; Rothenberg, M.E. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 2011, 187, 3362–3373. [Google Scholar] [CrossRef]
- Sharma, S.; Yang, I.V.; Schwartz, D.A. Epigenetic regulation of immune function in asthma. J. Allergy Clin. Immunol. 2022, 150, 259–265. [Google Scholar] [CrossRef]
- Malmhall, C.; Alawieh, S.; Lu, Y.; Sjostrand, M.; Bossios, A.; Eldh, M.; Rådinger, M. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 2014, 133, 1429–1438.e7. [Google Scholar] [CrossRef]
- Perry, M.M.; Baker, J.E.; Gibeon, D.S.; Adcock, I.M.; Chung, K.F. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am. J. Respir. Cell Mol. Biol. 2014, 50, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Fish, J.E.; Mawji, I.A.; Leung, D.D.; Rachlis, A.C.; Marsden, P.A. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J. Immunol. 2005, 175, 3846–3861. [Google Scholar] [CrossRef] [PubMed]
- Su, R.C.; Becker, A.B.; Kozyrskyj, A.L.; Hayglass, K.T. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J. Allergy Clin. Immunol. 2008, 121, 57–63.e3. [Google Scholar] [CrossRef]
- Su, R.-C.; Becker, A.B.; Kozyrskyj, A.L.; Hayglass, K.T. Altered epigenetic regulation and increasing severity of bronchial hyperresponsiveness in atopic asthmatic children. J. Allergy Clin. Immunol. 2009, 124, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Taniuchi, I. Roles of repressive epigenetic machinery in lineage decision of T cells. Immunology 2013, 139, 151–157. [Google Scholar] [CrossRef]
- Seumois, G.; Chavez, L.; Gerasimova, A.; Lienhard, M.; Omran, N.; Kalinke, L.; Vedanayagam, M.; Ganesan, A.P.; Chawla, A.; Djukanović, R.; et al. Epigenomic analysis of primary human T cells reveals enhancers associated with T H 2 memory cell differentiation and asthma susceptibility. Nat. Immunol. 2014, 15, 777. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Solís, M. Early Lung Function and Future Asthma. Front. Pediatr. 2019, 7, 253. [Google Scholar] [CrossRef]
- Koefoed, H.J.L.; Zwitserloot, A.M.; Vonk, J.M.; Koppelman, G.H. Asthma, bronchial hyperresponsiveness, allergy and lung function development until early adulthood: A systematic literature review. Pediatr. Allergy Immunol. 2021, 32, 1238–1254. [Google Scholar] [CrossRef]
- Martinez, F.D.; Morgan, W.J.; Wright, A.I.; Holberg, C.J.; Taussig, L.M. Diminished lung function as a predisposing factor for wheezing respiratory illness in infants. N. Engl. J. Med. 1988, 319, 1112–1117. [Google Scholar] [CrossRef]
- Bisgaard, H.; Jensen, S.M.; Bønnelykke, K. Interaction between asthma and lung function growth in early life. Am. J. Respir. Crit. Care Med. 2012, 185, 1183–1189. [Google Scholar] [CrossRef]
- Wang, A.L.; Datta, S.; Weiss, S.T.; Tantisira, K.G. Remission of persistent childhood asthma: Early predictors of adult outcomes. J. Allergy Clin. Immunol. 2019, 143, 1752.e6–1759.e6. [Google Scholar] [CrossRef]
- Young, S.; Arnott, J.; Le Souef, P.N.; Landau, L.I. Flow limitation during tidal expiration in symptom-free infants and the subsequent development of asthma. J. Pediatr. 1994, 124 Pt 1, 681–688. [Google Scholar] [CrossRef]
- Turner, S.W.; Palmer, L.J.; Rye, P.J.; Gibson, N.A.; Judge, P.K.; Cox, M.; Young, S.; Goldblatt, J.; Landau, L.I.; Le Souëf, P.N. The relationship between infant airway function, childhood airway responsiveness, and asthma. Am. J. Respir. Crit. Care Med. 2004, 169, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Haland, G.; Carlsen, K.C.; Sandvik, L.; Devulapalli, C.S.; Munthe-Kaas, M.C.; Pettersen, M.; Carlsen, K.-H. Reduced lung function at birth and the risk of asthma at 10 years of age. N. Engl. J. Med. 2006, 355, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Grell, A.V.; Vera, R.G.; Yarur, A.M.; Castro-Rodriguez, J.A.; Montenegro, M.A.P.; Colodro, O.F.; Elías, S.A.; Bentjerodt, M.S.; Poblete, J.M. Impulse oscillometry in preschool children with persistent asthma can predict spirometry at school age. Pediatr. Pulmonol. 2023, 58, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Barbato, A.; Turato, G.; Baraldo, S.; Bazzan, E.; Calabrese, F.; Tura, M.; Zuin, R.; Beghe, B.; Maestrelli, P.; Fabbri, L.M.; et al. Airway inflammation in childhood asthma. Am. J. Respir. Crit. Care Med. 2003, 168, 798–803. [Google Scholar] [CrossRef]
- Payne, D.N.; Rogers, A.V.; Adelroth, E.; Bandi, V.; Guntupalli, K.K.; Bush, A.; Jeffery, P.K. Early thickening of the reticular basement membrane in children with difficult asthma. Am. J. Respir. Crit. Care Med. 2003, 167, 78–82. [Google Scholar] [CrossRef]
- Saglani, S.; Payne, D.N.; Zhu, J.; Wang, Z.; Bush, A.; Jeffery, P.K. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am. J. Respir. Crit. Care Med. 2007, 176, 858–864. [Google Scholar] [CrossRef]
- Saglani, S.; Malmstrom, K.; Pelkonen, A.S.; Malmberg, L.P.; Lindahl, H.; Kajosaari, M.; Turpeinen, M.; Rogers, A.V.; Payne, D.N.; Bush, A.; et al. Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction. Am. J. Respir. Crit. Care Med. 2005, 171, 722–727. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Saglani, S.; Rodriguez-Martinez, C.E.; Oyarzun, M.A.; Fleming, L.; Bush, A. The relationship between inflammation and remodeling in childhood asthma: A systematic review. Pediatr. Pulmonol. 2018, 53, 824–835. [Google Scholar] [CrossRef]
- Fayon, M.; Beaufils, F.; Esteves, P.; Campagnac, M.; Maurat, E.; Michelet, M.; Siao-Him-Fa, V.; Lavrand, F.; Simon, G.; Begueret, H.; et al. Bronchial Remodeling-based Latent Class Analysis Predicts Exacerbations in Severe Preschool Wheezers. Am. J. Respir. Crit. Care Med. 2023, 207, 416–426. [Google Scholar] [CrossRef]
- Koucký, V.; Uhlík, J.; Hoňková, L.; Komárek, A.; Pohunek, P. Baseline reticular basement membrane morphology is related to subsequent spirometry deterioration in pediatric chronic airway inflammation: A follow-up study. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 325, L125–L134. [Google Scholar] [CrossRef]
- Suresh, V.; Mih, J.D.; George, S.C. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 2007, 37, 97–104. [Google Scholar] [CrossRef]
- Chibana, K.; Trudeau, J.B.; Mustovich, A.T.; Hu, H.; Zhao, J.; Balzar, S.; Chu, H.W.; Wenzel, S.E. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin. Exp. Allergy 2008, 38, 936–946. [Google Scholar] [CrossRef]
- Bjermer, L.; Alving, K.; Diamant, Z.; Magnussen, H.; Pavord, I.; Piacentini, G.; Price, D.; Roche, N.; Sastre, J.; Thomas, M.; et al. Current evidence and future research needs for FeNO measurement in respiratory diseases. Respir. Med. 2014, 108, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Petsky, H.L.; Cates, C.J.; Kew, K.M.; Chang, A.B. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): A systematic review and meta-analysis. Thorax 2018, 73, 1110–1119. [Google Scholar] [CrossRef]
- Oh, M.A.; Shim, J.Y.; Jung, Y.H.; Seo, J.-H.; Kim, H.Y.; Kwon, J.-W.; Kim, B.-J.; Bin Kim, H.; Kim, W.K.; Lee, S.-Y.; et al. Fraction of exhaled nitric oxide and wheezing phenotypes in preschool children. Pediatr. Pulmonol. 2013, 48, 563–570. [Google Scholar] [CrossRef]
- Malmberg, L.P.; Pelkonen, A.S.; Haahtela, T.; Turpeinen, M. Exhaled nitric oxide rather than lung function distinguishes preschool children with probable asthma. Thorax 2003, 58, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.; Heltshe, S.L.; Stamey, D.C.; Cochrane, E.S.; Redding, G.J.; Debley, J.S. Exhaled nitric oxide predicts persistence of wheezing, exacerbations, and decline in lung function in wheezy infants and toddlers. Clin. Exp. Allergy 2013, 43, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Singer, F.; Luchsinger, I.; Inci, D.; Knauer, N.; Latzin, P.; Wildhaber, J.H.; Moeller, A. Exhaled nitric oxide in symptomatic children at preschool age predicts later asthma. Allergy 2013, 68, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodriguez, J.A.; Sardón, O.; Pérez-Yarza, E.G.; Korta, J.; Aldasoro, A.; Corcuera, P.; Mintegui, J. Young infants with recurrent wheezing and positive asthma predictive index have higher levels of exhaled nitric oxide. J. Asthma 2013, 50, 162–165. [Google Scholar] [CrossRef]
- Balinotti, J.E.; Colom, A.; Kofman, C.; Teper, A. Association between the Asthma Predictive Index and levels of exhaled nitric oxide in infants and toddlers with recurrent wheezing. Arch. Argent Pediatr. 2013, 111, 191–195, (In English and Spanish). [Google Scholar] [CrossRef] [PubMed]
- Caudri, D.; Wijga, A.H.; Hoekstra, M.O.; Kerkhof, M.; Koppelman, G.H.; Brunekreef, B.; Smit, H.A.; de Jongste, J.C. Prediction of asthma in symptomatic preschool children using exhaled nitric oxide. Rint and specific IgE. Thorax 2010, 65, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Van der Valk, R.J.; Caudri, D.; Savenije, O.; Koppelman, G.H.; Smit, H.A.; Wijga, A.H.; Postma, D.S.; Kerkhof, M.; Brunekreef, B.; de Jongste, J.C. Childhood wheezing phenotypes and FeNO in atopic children at age 8. Clin. Exp. Allergy 2012, 42, 1329–1336. [Google Scholar] [CrossRef]
- Habib, N.; Pasha, M.A.; Tang, D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11, 2764. [Google Scholar] [CrossRef]
- Lee, H.J.; Tsai, H.J.; Huang, H.Y.; Gau, C.C.; Ho, C.H.; Huang, J.L.; Yao, T.C. Cord blood IgE predicts allergic sensitization, elevation of exhaled nitric oxide, and asthma in schoolchildren. Pediatr. Allergy Immunol. 2022, 33, e13838. [Google Scholar] [CrossRef] [PubMed]
- Alduraywish, S.A.; Standl, M.; Lodge, C.J.; Abramson, M.J.; Allen, K.J.; Erbas, B.; von Berg, A.; Heinrich, J.; Lowe, A.J.; Dharmage, S.C. Is there a march from early food sensitization to later childhood allergic airway disease? Results from two prospective birth cohort studies. Pediatr. Allergy Immunol. 2017, 28, 30–37. [Google Scholar] [CrossRef]
- Boersma, N.A.; Meijneke, R.W.H.; Kelder, J.C.; van der Ent, C.K.; Balemans, W.A.F. Sensitization predicts asthma development among wheezing toddlers in secondary healthcare. Pediatr. Pulmonol. 2017, 52, 729–736. [Google Scholar] [CrossRef]
- Anderson, H.M.; Lemanske, R.F.; Arron, J.R.; Holweg, C.T.J.; Rajamanickam, V.; Gangnon, R.E.; Gern, J.E.; Jackson, D.J. Relationships among aeroallergen sensitization, peripheral blood eosinophils, and periostin in pediatric asthma development. J. Allergy Clin. Immunol. 2017, 139, 790–796. [Google Scholar] [CrossRef]
- De Moira, A.P.; Pearce, N.; Pedersen, M.; Andersen, A.-M.N. The influence of early-life animal exposure on the risk of childhood atopic dermatitis, asthma and allergic rhinoconjunctivitis: Findings from the Danish National Birth Cohort. Int. J. Epidemiol. 2023, 52, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.M.; Granell, R.; Westgarth, C.; Murray, J.; Paul, E.S.; Sterne, J.A.C.; Henderson, A.J. Associations of Pet Ownership with Wheezing and Lung Function in Childhood: Findings from a UK Birth Cohort. PLoS ONE 2015, 10, e0127756. [Google Scholar] [CrossRef] [PubMed]
- Tischer, C.; Weikl, F.; Probst, A.J.; Standl, M.; Heinrich, J.; Pritsch, K. Urban dust microbiome: Impact on later atopy and wheezing. Environ. Health Perspect. 2016, 124, 1919–1923. [Google Scholar] [CrossRef]
- Karvonen, A.M.; Kirjavainen, P.V.; Täubel, M.; Jayaprakash, B.; Adams, R.I.; Sordillo, J.E.; Gold, D.R.; Hyvärinen, A.; Remes, S.; von Mutius, E.; et al. Indoor bacterial microbiota and development of asthma by 10.5 years of age. J. Allergy Clin. Immunol. 2019, 144, 1402–1410. [Google Scholar] [CrossRef]
- Hur, G.Y.; Ye, Y.M.; Yang, E.; Park, H.S. Serum potential biomarkers according to sputum inflammatory cell profiles in adult asthmatics. Korean J. Intern. Med. 2020, 35, 988–997. [Google Scholar] [CrossRef]
- Green, R.H.; Brightling, C.E.; McKenna, S.; Hargadon, B.; Parker, D.; Bradding, P.; Wardlaw, A.J.; Pavord, I.D. Asthma exacerbations and sputum eosinophil counts: A randomized controlled trial. Lancet 2002, 360, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Bannier, M.A.; van de Kant, K.D.; Jöbsis, Q.; Dompeling, E. Biomarkers to predict asthma in wheezing preschool children. Clin. Exp. Allergy 2015, 45, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Just, J.; Nicoloyanis, N.; Chauvin, M.; Pribil, C.; Grimfeld, A.; Duru, G. Lack of eosinophilia can predict remission in wheezy infants? Clin. Exp. Allergy 2008, 38, 767–773. [Google Scholar] [CrossRef]
- Karakoc, F.; Remes, S.T.; Martinez, F.D.; Wright, A.L. The association between persistent eosinophilia and asthma in childhood is independent of atopic status. Clin. Exp. Allergy 2002, 32, 51–56. [Google Scholar] [CrossRef]
- Hyvarinen, M.K.; Kotaniemi-Syrjanen, A.; Reijonen, T.M.; Piippo-Savolainen, E.; Korppi, M. Eosinophil activity in infants hospitalized for wheezing and risk of persistent childhood asthma. Pediatr. Allergy Immunol. 2010, 21, 96–103. [Google Scholar] [CrossRef]
- Eguiluz-Gracia, I.; Tay, T.R.; Hew, M.; Escribese, M.M.; Barber, D.; O’Hehir, R.E.; Torres, M.J. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy 2018, 73, 2290–2305. [Google Scholar] [CrossRef]
- Israel, E.; Canonica, G.W.; Brusselle, G.; Yang, S.; Howarth, P.H.; Martin, A.L.; Koufopoulou, M.; Smith, S.G.; Alfonso-Cristancho, R. Real-life effectiveness of mepolizumab in severe asthma: A systematic literature review. J. Asthma 2021, 19, 2201–2217. [Google Scholar] [CrossRef] [PubMed]
- Koh, G.C.; Shek, L.P.; Goh, D.Y.; Van Bever, H.; Koh, D.S. Eosinophil cationic protein: Is it useful in asthma? A systematic review. Respir. Med. 2007, 101, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Guisa, J.M.; Powers, C.; File, D.; Cochrane, E.; Jimenez, N.; Debley, J.S. Airway epithelial cells from asthmatic children differentially express proremodeling factors. J. Allergy Clin. Immunol. 2012, 129, 990–997. [Google Scholar] [CrossRef]
- Kato, G.; Takahashi, K.; Izuhara, K.; Komiya, K.; Kimura, S.; Hayashi, S. Markers that can reflect asthmatic activity before and after reduction of inhaled corticosteroids: A pilot study. Biomark. Insights 2013, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Erickson, R.W.; Choy, D.F. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol. 2012, 130, 647–654. [Google Scholar] [CrossRef]
- James, A.; Janson, C.; Malinovschi, A.; Holweg, C.; Alving, K.; Ono, J.; Ohta, S.; Ek, A.; Middelveld, R.; Dahlen, B.; et al. Serum periostin relates to type-2 inflammation and lung function in asthma: Data from the large population-based cohort Swedish GA(2) LEN. Allergy 2017, 72, 1753–1760. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Atton, I.; Villarroel, G.; Serrano, C.A. Serum periostin is not related to asthma predictive index. Allergol. Immunopathol. 2018, 46, 235–240. [Google Scholar] [CrossRef]
- Lex, C.; Payne, D.N.; Zacharasiewicz, A.; Li, A.M.; Wilson, N.M.; Hansel, T.T.; Bush, A. Sputum induction in children with difficult asthma: Safety, feasibility, and inflammatory cell pattern. Pediatr. Pulmonol. 2005, 39, 318–324. [Google Scholar] [CrossRef]
- Guida, G.; Bagnasco, D.; Carriero, V.; Bertolini, F.; Ricciardolo, F.L.M.; Nicola, S.; Brussino, L.; Nappi, E.; Paoletti, G.; Canonica, G.W.; et al. Critical evaluation of asthma biomarkers in clinical practice. Front. Med. 2022, 9, 969243. [Google Scholar] [CrossRef]
- Recabarren, A.; Apaza, C.; Castro-Rodríguez, J.A. Nitrites in induced sputum as a simple and cheap non-invasive marker of airway inflammation for asthmatic schoolchildren. Pediatr. Allergy Immunol. 2008, 19, 433–437. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Molina, R.O.; Cáceres, M.; Recabarren, A. Correlation between nitrites in induced sputum and asthma symptoms in asthmatic schoolchildren. Pediatr. Pulmonol. 2014, 49, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Tiotiu, A. Biomarkers in asthma: State of the art. Asthma Res. Pract. 2018, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K.; Noeldge- Schomburg, G.F. Diagnostic potential of breath analysis–focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, M.; Barros, A.S.; Bilelo, M.J.; Parada, A.; Camara, J.S.; Rocha, S.M. Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology. J. Chromatogr. A 2011, 1218, 3771–3780. [Google Scholar] [CrossRef]
- Van de Kant, K.D.; van Berkel, J.J.; Jobsis, Q.; Passos, V.L.; Klaassen, E.M.M.; van der Sande, L.; van Schayck, O.C.P.; de Jongste, J.C.; van Schooten, F.J.; Derks, E.; et al. Exhaled breath profiling in diagnosing wheezy preschool children. Eur. Respir. J. 2013, 41, 183–188. [Google Scholar] [CrossRef]
- Smolinska, A.; Klaassen, E.M.; Dallinga, J.W.; van de Kant, K.D.; Jobsis, Q.; Moonen, E.J.; van Schayck, O.C.; Dompeling, E.; van Schooten, F.J. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. PLoS ONE 2014, 9, e95668. [Google Scholar] [CrossRef]
- Fabiano Filho, R.C.; Geller, R.J.; Candido Santos, L.; Espinola, J.A.; Robinson, L.B.; Hasegawa, K.; Camargo, C.A., Jr. Performance of Three Asthma Predictive Tools in a Cohort of Infants Hospitalized with Severe Bronchiolitis. Front. Allergy 2021, 2, 758719. [Google Scholar] [CrossRef]
- Ullmann, N.; Mirra, V.; Di Marco, A.; Pavone, M.; Porcaro, F.; Negro, V.; Onofri, A.; Cutrera, R. Asthma: Differential Diagnosis and Comorbidities. Front. Pediatr. 2018, 6, 276. [Google Scholar] [CrossRef]
- Colicino, S.; Munblit, D.; Minelli, C.; Custovic, A.; Cullinan, P. Validation of childhood asthma predictive tools: A systematic review. Clin. Exp. Allergy 2019, 49, 410–418. [Google Scholar] [CrossRef]
- Roberts, G.; Ollert, M.; Aalberse, R.; Austin, M.; Custovic, A.; DunnGalvin, A.; Eigenmann, P.A.; Fassio, F.; Grattan, C.; Hellings, P.; et al. A new framework for the interpretation of IgE sensitization tests. Allergy 2016, 71, 1540–1551. [Google Scholar] [CrossRef]
- Castro-Rodríguez, J.A.; Holberg, C.J.; Wright, A.L.; Martinez, F.D. A clinical index to define risk of asthma in young children with recurrent wheezing. Am. J. Respir. Crit. Care Med. 2000, 162, 1403–1406. [Google Scholar] [CrossRef] [PubMed]
- Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. 2020. Available online: https://www.nhlbi.nih.gov/resources/2020-focused-updates-asthma-management-guidelines (accessed on 29 June 2023).
- GINA Report, Global Strategy for Asthma Management and Prevention. 2023. Available online: https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023-Full-Report-2023-WMS.pdf (accessed on 29 June 2023).
- GEMA 5.3—Guía Española para el Manejo del Asma. 2023. Available online: https://seicap.es/documentos-general/guia-gema-5-3/ (accessed on 29 June 2023).
- Lee, D.H.; Kwon, J.W.; Kim, H.Y.; Seo, J.H.; Kim, H.B.; Lee, S.Y.; Jang, G.C.; Song, D.J.; Kim, W.K.; Jung, Y.H.; et al. Asthma predictive index as a useful diagnostic tool in preschool children: A cross-sectional study in Korea. Clin. Exp. Pediatr. 2020, 63, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodriguez, J.A.; Forno, E.; Padilla, O.; Casanello, P.; Krause, B.J.; Borzutzky, A. The asthma predictive index as a surrogate diagnostic tool in preschoolers: Analysis of a longitudinal birth cohort. Pediatr. Pulmonol. 2021, 56, 3183–3188. [Google Scholar] [CrossRef]
- Kurukulaaratchy, R.J.; Matthews, S.; Holgate, S.T.; Arshad, S.H. Predicting persistent disease among children who wheeze during early life. Eur. Respir. J. 2003, 22, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Caudri, D.; Wijga, A.; Schipper, C.M.A.; Hoekstra, M.; Postma, D.S.; Koppelman, G.H.; Brunekreef, B.; Smit, H.A.; de Jongste, J.C. Predicting the long-term prognosis of children with symptoms suggestive of asthma at preschool age. J. Allergy Clin. Immunol. 2009, 124, 903–910.e7. [Google Scholar] [CrossRef]
- Chang, T.S.; Lemanske, R.F., Jr.; Guilbert, T.W.; Gern, J.E.; Coen, M.H.; Evans, M.D.; Gangnon, R.E.; Page, C.D.; Jackson, D.J. Evaluation of the modified asthma predictive index in highrisk preschool children. J. Allergy Clin. Immunol. Pract. 2013, 1, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Amin, P.; Levin, L.; Epstein, T.; Ryan, P.; Le Masters, G.; Khurana-Hershey, G.; Reponen, T.; Villareal, M.; Lockey, J.; Bernstein, D.I. Optimum predictors of childhood asthma: Persistent wheeze or the asthma predictive index? J. Allergy Clin. Immunol. Pract. 2014, 2, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Pescatore, A.M.; Dogaru, C.M.; Duembgen, L.; Silverman, M.; Gaillard, E.A.; Spycher, B.D.; Kuehni, C.E. A simple asthma prediction tool for preschool children with wheeze or cough. J. Allergy Clin. Immunol. 2014, 133, 111–118.e13. [Google Scholar] [CrossRef]
- Klaassen, E.M.; van de Kant, K.D.; Jöbsis, Q.; van Schayck, O.C.; Smolinska, A.; Dallinga, J.W.; Van Schooten, F.J.; Hartog, G.J.M.D.; de Jongste, J.C.; Rijkers, G.T.; et al. Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age. Am. J. Respir. Crit. Care Med. 2015, 191, 201–207. [Google Scholar] [CrossRef]
- Biagini Myers, J.M.; Schauberger, E.; He, H.; Martin, L.J.; Kroner, J.; Hill, G.M.; Ryan, P.H.; LeMasters, G.K.; Bernstein, D.I.; Lockey, J.E.; et al. A Pediatric Asthma Risk Score to better predict asthma development in young children. J. Allergy Clin. Immunol. 2019, 143, 1803–1810.e2. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Bi, Q.; Goodman, K.E.; Kaminsky, J.; Lessler, J. What is machine learning? A primer for the epidemiologist. Am. J. Epidemiol. 2019, 188, 2222–2239. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.L.; Kumar, S.A. Machine learning for predicting development of asthma in children. In IEEE Symposium Series on Computational Intelligence; IEEE: Piscataway, NJ, USA, 2019; pp. 596–603. [Google Scholar]
- Sidey-Gibbons, J.A.; Sidey-Gibbons, C.J. Machine learning inmedicine: A practical introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Messinger, A.I.; Luo, G.; Deterding, R.R. The doctor will see you now: How machine learning and artificial intelligence can extend our understanding and treatment of asthma. J. Allergy Clin. Immunol. 2020, 145, 476–478. [Google Scholar] [CrossRef]
- Ekpo, R.H.; Osamor, V.C.; Azeta, A.A.; Ikeakanam, E.; Amos, B.O. Machine learning classification approach for asthma prediction models in children. Health Technol. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Patel, D.; Hall, G.L.; Broadhurst, D.; Smith, A.; Schultz, A.; Foong, R.E. Does machine learning have a role in the prediction of asthma in children? Paediatr. Respir. Rev. 2022, 41, 51–60. [Google Scholar] [CrossRef]
- Tsang, K.C.H.; Pinnock, H.; Wilson, A.M.; Shah, S.A. Application of Machine Learning Algorithms for Asthma Management with mHealth: A Clinical Review. J. Asthma Allergy 2022, 15, 855–873. [Google Scholar] [CrossRef]
- Patel, S.J.; Chamberlain, D.B.; Chamberlain, J.M. A Machine learning approach to predicting need for hospitalization for pediatric asthma exacerbation at the time of emergency department triage. Acad. Emerg. Med. 2018, 25, 1463–1470. [Google Scholar] [CrossRef]
- Luo, G.; Nkoy, F.; Stone, B.; Schmick, D.; Johnson, M. A systematic review of predictive models for asthma development in children. BMC Med. Inform. Decis. Mak. 2015, 15, 99. [Google Scholar] [CrossRef]
- Weng, S.F.; Vaz, L.; Qureshi, N.; Kai, J. Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS ONE 2019, 14, e0214365. [Google Scholar] [CrossRef]
- Exarchos, K.P.; Beltsiou, M.; Votti, C.A.; Kostikas, K. Artificial intelligence techniques in asthma:A systematic review and critical appraisal of the existing literature. Eur. Respir. J. 2020, 56, 2000521. [Google Scholar] [CrossRef] [PubMed]
- Owora, A.H.; Tepper, R.S.; Ramsey, C.D.; Becker, A.B. Decision tree-based rules outperform risk scores for childhood asthma prognosis. Pediatr. Allergy Immunol. 2021, 32, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Tapia, S.d.J.; Becerril-Negrete, J.R.; Castro-Rodriguez, J.A.; Del-Río-Navarro, B.E. Early Prediction of Asthma. J. Clin. Med. 2023, 12, 5404. https://doi.org/10.3390/jcm12165404
Romero-Tapia SdJ, Becerril-Negrete JR, Castro-Rodriguez JA, Del-Río-Navarro BE. Early Prediction of Asthma. Journal of Clinical Medicine. 2023; 12(16):5404. https://doi.org/10.3390/jcm12165404
Chicago/Turabian StyleRomero-Tapia, Sergio de Jesus, José Raúl Becerril-Negrete, Jose A. Castro-Rodriguez, and Blanca E. Del-Río-Navarro. 2023. "Early Prediction of Asthma" Journal of Clinical Medicine 12, no. 16: 5404. https://doi.org/10.3390/jcm12165404
APA StyleRomero-Tapia, S. d. J., Becerril-Negrete, J. R., Castro-Rodriguez, J. A., & Del-Río-Navarro, B. E. (2023). Early Prediction of Asthma. Journal of Clinical Medicine, 12(16), 5404. https://doi.org/10.3390/jcm12165404