HDL Cholesterol Efflux and the Complement System Are Linked in Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Lipids and Cholesterol Efflux Assessments
2.4. Complement System Assays
2.5. Statistical Analysis
3. Results
3.1. Demographic and Disease-Related Data of Patients with Systemic Lupus Erythematosus
3.2. Disease-Related Data Association with CEC
3.3. Full Lipid Profile Molecules Relationship to Routes and Individual Elements of the C System
3.4. Multivariable Analysis of the Association of C System Pathways and Components with CEC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhainds, D.; Tardif, J.C. From HDL-Cholesterol to HDL-Function: Cholesterol Efflux Capacity Determinants. Curr. Opin. Lipidol. 2019, 30, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, S.R.; Kasturi, S.; Costenbader, K.H. The Epidemiology of Atherosclerotic Cardiovascular Disease among Patients with SLE: A Systematic Review. Semin. Arthritis Rheum. 2013, 43, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Szabó, M.Z.; Szodoray, P.; Kiss, E. Dyslipidemia in Systemic Lupus Erythematosus. Immunol. Res. 2017, 65, 543–550. [Google Scholar] [CrossRef]
- Ronda, N.; Favari, E.; Borghi, M.O.; Ingegnoli, F.; Gerosa, M.; Chighizola, C.; Zimetti, F.; Adorni, M.P.; Bernini, F.; Meroni, P.L. Impaired Serum Cholesterol Efflux Capacity in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2014, 73, 609–615. [Google Scholar] [CrossRef]
- Sánchez-Pérez, H.; Quevedo-Abeledo, J.C.; De Armas-Rillo, L.; Rua—Figueroa, Í.; Tejera-Segura, B.; Armas-González, E.; MacHado, J.D.; García-Dopico, J.A.; Jimenez-Sosa, A.; Rodríguez–Lozano, C.; et al. Impaired HDL Cholesterol Efflux Capacity in Systemic Lupus Erythematosus Patients Is Related to Subclinical Carotid Atherosclerosis. Rheumatology 2020, 59, 2847–2856. [Google Scholar] [CrossRef]
- Leffler, J.; Bengtsson, A.A.; Blom, A.M. The Complement System in Systemic Lupus Erythematosus: An Update. Ann. Rheum. Dis. 2014, 73, 1601–1606. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology Revised Criteria for the Classification of Systemic Lupus Erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Gladman, D.D.; Ibañez, D.; Urowltz, M.B. Systemic Lupus Erythematosus Disease Activity Index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Gladman, D.; Ginzler, E.; Goldsmith, C.; Fortin, P.; Liang, M.; Urowitz, M.; Bacon, P.; Bombardieri, S.; Hanly, J.; Hay, E.; et al. The Development and Initial Validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index for Systemic Lupus Erythematosus. Arthritis Rheum. 1996, 39, 363–369. [Google Scholar] [CrossRef]
- Mosca, M.; Bombardieri, S. Assessing Remission in Systemic Lupus Erythematosus. Clin. Exp. Rheumatol. 2006, 24, S99. [Google Scholar]
- Katz, J.D.; Senegal, J.-L.; Rivest, C.; Goulet, J.-R.; Rothfield, N. A Simple Severity of Disease Index for Systemic Lupus Erythematosus. Lupus 1993, 2, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Chi, G.; Fitzgerald, C.; Kazmi, S.H.A.; Kalayci, A.; Korjian, S.; Duffy, D.; Shaunik, A.; Kingwell, B.; Yeh, R.W.; et al. Cholesterol Efflux Capacity and Its Association with Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 1887. [Google Scholar] [CrossRef]
- Mody, P.; Joshi, P.H.; Khera, A.; Ayers, C.R.; Rohatgi, A. Beyond Coronary Calcification, Family History, and C-Reactive Protein: Cholesterol Efflux Capacity and Cardiovascular Risk Prediction. J. Am. Coll. Cardiol. 2016, 67, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Tejera-Segura, B.; Macía-Díaz, M.; Machado, J.D.; de Vera-González, A.; García-Dopico, J.A.; Olmos, J.M.; Hernández, J.L.; Díaz-González, F.; González-Gay, M.A.; Ferraz-Amaro, I. HDL Cholesterol Efflux Capacity in Rheumatoid Arthritis Patients: Contributing Factors and Relationship with Subclinical Atherosclerosis. Arthritis Res. Ther. 2017, 19, 113. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; Hernández-Hernández, M.V.; Tejera-Segura, B.; Delgado-Frías, E.; Macía-Díaz, M.; Machado, J.D.; Diaz-González, F. Effect of IL-6 Receptor Blockade on Proprotein Convertase Subtilisin/Kexin Type-9 and Cholesterol Efflux Capacity in Rheumatoid Arthritis Patients. Horm. Metab. Res. 2019, 51, 200–209. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; Hernández-Hernández, M.V.; Armas-González, E.; Sánchez-Pérez, H.; Machado, J.D.; Díaz-González, F. HDL Cholesterol Efflux Capacity Is Related to Disease Activity in Psoriatic Arthritis Patients. Clin. Rheumatol. 2020, 39, 1871–1880. [Google Scholar] [CrossRef]
- Quevedo-Abeledo, J.C.; Sánchez-Pérez, H.; Tejera-Segura, B.; de Armas-Rillo, L.; Armas-González, E.; Machado, J.D.; González-Gay, M.A.; Díaz-González, F.; Ferraz-Amaro, I. Differences in Capacity of High-Density Lipoprotein Cholesterol Efflux between Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis. Arthritis Care Res. 2021, 73, 1590–1596. [Google Scholar] [CrossRef]
- Ferraz-Amaro, I.; Delgado-Frías, E.; Hernández-Hernández, V.; Sánchez-Pérez, H.; de Armas-Rillo, L.; Armas-González, E.; Machado, J.D.; Diaz-González, F. HDL Cholesterol Efflux Capacity and Lipid Profile in Patients with Systemic Sclerosis. Arthritis Res. Ther. 2021, 23, 62. [Google Scholar] [CrossRef]
- Kiss, M.G.; Binder, C.J. The Multifaceted Impact of Complement on Atherosclerosis. Atherosclerosis 2022, 351, 29–40. [Google Scholar] [CrossRef]
- Martínez-López, D.; Roldan-Montero, R.; García-Marqués, F.; Nuñez, E.; Jorge, I.; Camafeita, E.; Minguez, P.; Rodriguez de Cordoba, S.; López-Melgar, B.; Lara-Pezzi, E.; et al. Complement C5 Protein as a Marker of Subclinical Atherosclerosis. J. Am. Coll. Cardiol. 2020, 75, 1926–1941. [Google Scholar] [CrossRef]
- Speidl, W.S.; Exner, M.; Amighi, J.; Kastl, S.P.; Zorn, G.; Maurer, G.; Wagner, O.; Huber, K.; Minar, E.; Wojta, J.; et al. Complement Component C5a Predicts Future Cardiovascular Events in Patients with Advanced Atherosclerosis. Eur. Heart J. 2005, 26, 2294–2299. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; He, P.; Wang, Y.; Fu, Y.; Li, X.; Lin, X.; Chen, F.; Cao, G.; Zhang, H. Complement Complex C5b-9 Levels Are Associated with the Clinical Outcomes of Acute Ischemic Stroke and Carotid Plaque Stability. Transl. Stroke Res. 2019, 10, 279–286. [Google Scholar] [CrossRef]
- Muscari, A.; Massarelli, G.; Bastagli, L.; Poggiopollini, G.; Tomassetti, V.; Drago, G.; Martignani, C.; Pacilli, P.; Boni, P.; Puddu, P. Relationship of Serum C3 to Fasting Insulin, Risk Factors and Previous Ischaemic Events in Middle-Aged Men. Eur. Heart J. 2000, 21, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Hertle, E.; van der Kallen, C.J.H.; Vogelzangs, N.; Arts, I.C.W.; Schalkwijk, C.G.; Stehouwer, C.D.A.; van Greevenbroek, M.M.J. C3 and Alternative Pathway Components Are Associated with an Adverse Lipoprotein Subclass Profile: The CODAM Study. J. Clin. Lipidol. 2021, 15, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.A. The Dark Side of C5a in Sepsis. Nat. Rev. Immunol. 2004, 4, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Dema, B.; Charles, N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies (Basel) [Internet]. 2016 Jan 4; 5(1). Available online: https://pubmed.ncbi.nlm.nih.gov/31557984/ (accessed on 8 May 2023).
- Murray, I.; Sniderman, A.D.; Cianflone, K. Mice Lacking Acylation Stimulating Protein (ASP) Have Delayed Postprandial Triglyceride Clearance. J. Lipid Res. 1999, 40, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Gauvreau, D.; Roy, C.; Tom, F.Q.; Lu, H.L.; Miegueu, P.; Richard, D.; Song, W.C.; Stover, C.; Cianflone, K. A New Effector of Lipid Metabolism: Complement Factor Properdin. Mol. Immunol. 2012, 51, 73–81. [Google Scholar] [CrossRef]
- Paglialunga, S.; Fisette, A.; Yan, Y.; Deshaies, Y.; Brouillette, J.F.; Pekna, M.; Cianflone, K. Acylation-Stimulating Protein Deficiency and Altered Adipose Tissue in Alternative Complement Pathway Knockout Mice. Am. J. Physiol. Endocrinol. Metab. 2008, 294, 521–529. [Google Scholar] [CrossRef]
SLE (n = 207) | |||||
---|---|---|---|---|---|
CEC% | |||||
β Coef. (95%CI) | p | ||||
Age, years | 50 ± 11 | −0.04 (−0.09–0.02) | 0.19 | ||
Female | 195 (94) | −0.2 (−3–3) | 0.91 | ||
SLE-related data | |||||
Age at diagnosis, years | 35 ± 13 | −0.01 (−0.06–0.03) | 0.57 | ||
Disease duration, years | 15 ± 10 | −0.02 (−0.09–0.04) | 0.46 | ||
Antiphospholipid syndrome | 24 (12) | 0.02 (−2–2) | 0.87 | ||
Auto-antibody profile | |||||
Anti-DNA positive | 110 (72) | −0.8 (−2–0.7) | 0.29 | ||
ENA positive | 123 (66) | 0.2 (−1–2) | 0.77 | ||
Anti-Sm | 22 (12) | −1 (−3–0.8) | 0.24 | ||
Anti-ribosome | 10 (10) | 1 (−2–5) | 0.44 | ||
Anti-nucleosome | 15 (15) | 1 (−2–4) | 0.42 | ||
Anti-histone | 9 (9) | 1 (−2–5) | 0.41 | ||
Anti-RNP | 51 (29) | −0.6 (2–0.9) | 0.44 | ||
Anti-SSA | 40 (38) | 0.3 (−2–3) | 0.77 | ||
Anti-SSB | 4 (4) | 0.7 (−10–11) | 0.90 | ||
Antiphospholipid antibodies | 31 (35) | 0.02 (−2–2) | 0.87 | ||
Disease scores | |||||
Median SLEDAI-2K | 0 (0−2) | −0.02 (−0.2–0.2) | 0.84 | ||
SLEDAI-2K categories | |||||
No activity | 85 (43) | - | - | ||
Mild activity | 78 (40) | −1 (−2–0.4) | 0.17 | ||
Moderate activity | 24 (12) | −0.5 (−2–1) | 0.62 | ||
High or very high activity | 9 (5) | ||||
Median SDI | 1 (0–2) | 0.03 (−0.3–0.4) | 0.85 | ||
SDI ≥ 1 | 156 (75) | 0.3 (−1–2) | 0.70 | ||
Katz index | 2 (1–4) | 0.2 (−0.1–0.5) | 0.28 | ||
Katz ≥ 3 | 86 (42) | 1 (−0.3–2) | 0.12 | ||
Comorbidity | |||||
Smoking | 48 (23) | −0.05 (−1–1) | 0.94 | ||
Diabetes | 11 (5) | −0.4 (−3–2) | 0.76 | ||
Hypertension | 85 (41) | −0.9 (−2−0.4) | 0.17 | ||
Obesity | 58 (28) | −0.4 (−2–1) | 0.60 | ||
Body mass index, kg/m2 | 27 ± 6 | 0.04 (−0.07–0.2) | 0.45 | ||
Abdominal circumference, cm | 93 ± 14 | 0.02 (−0.02–0.07) | 0.33 | ||
Treatment at the time of the visit | |||||
Statins | 54 (26) | −0.2 (−2–1) | 0.79 | ||
Aspirin | 55 (27) | −0.2 (−2–1) | 0.82 | ||
Antihypertensive treatment | 78 (38) | −0.5 (−2–0.7) | 0.41 | ||
Glucocorticoids | 102 (50) | 0.7 (−0.5–2) | 0.25 | ||
Prednisone equivalent daily dose, mg | 5 (5−7.5) | −0.09 (−0.4–0.2) | 0.52 | ||
Antimalarials drugs | 141 (69) | 0.1 (−1–1) | 0.83 | ||
Methotrexate | 24 (12) | 3 (0.8–4) | 0.005 | ||
Azathioprine | 27 (13) | 1 (−0.6–3) | 0.19 | ||
Mycophenolate mofetil | 17 (8) | 0.2 (−2–2) | 0.86 | ||
Belimumab | 3 (1) | 0.4 (−4–5) | 0.86 | ||
Rituximab | 6 (3) | −1 (−5–2) | 0.55 | ||
Complement system parameters | |||||
Functional complement assays, % | |||||
Classical pathway | 92 ± 40 | −0.007 (−0.02–0.009) | 0.39 | ||
Lectin pathway | 12 (1–42) | −0.008 (−0.02–0.007) | 0.28 | ||
Alternative pathway | 60 (22–88) | −0.03 (−0.04–0.01) | 0.001 | ||
Individual complement components | |||||
C1q, mg/dL | 35 ± 11 | 0.004 (−0.02–0.08) | 0.26 | ||
C2, mg/dL | 2.6 ± 1.3 | 0.5 (0.02–1) | 0.043 | ||
C4, mg/dL | 21 ± 12 | 0.04 (−0.01–0.09) | 0.15 | ||
Factor D, ng/mL | 2749 ± 1700 | −0.0001 (−0.0006–0.0003) | 0.55 | ||
C3, mg/dL | 134 ± 42 | 0.01 (−0.0009–0.03) | 0.065 | ||
C3a, mg/dL | 38 ± 11 | 0.03 (−0.03–0.09) | 0.28 | ||
C1 inhibitor, mg/dL | 31 ± 10 | −0.02 (−0.08–0.05) | 0.59 | ||
Factor H, ng/mL × 10−3 | 448 (302–745) | −0.0002 (−0.0009–0.0004) | 0.45 |
β Coef. (95%CI), p | |||||
---|---|---|---|---|---|
CEC% | |||||
Univariable | Multivariable | ||||
Classical pathway | |||||
Functional assay, % | −0.007 (−0.02–0.009) | 0.39 | |||
C1q, mg/dL | 0.004 (−0.02–0.08) | 0.26 | |||
Lectin pathway | |||||
Functional assay, % | −0.008 (−0.02–0.007) | 0.28 | |||
Common elements of the classic and lectin pathways | |||||
C2, mg/dL | 0.5 (0.02–1) | 0.043 | 0.5 (0.005–1) | 0.048 | |
C4, mg/dL | 0.04 (−0.01–0.09) | 0.15 | 0.05 (−0.01–0.1) | 0.11 | |
C1 inhibitor, mg/dL | −0.02 (−0.08–0.05) | 0.59 | |||
Alternative pathway | |||||
Functional assay, % | −0.03 (–0.04–−0.01) | 0.001 | −0.02 (–0.04–−0.002) | 0.030 | |
Factor D, ng/mL | −0.0001 (−0.0006–0.0003) | 0.55 | |||
Common elements of the three pathways | |||||
C3, mg/dL | 0.01 (−0.0009–0.03) | 0.065 | 0.02 (0.005–0.04) | 0.009 | |
C3a, mg/dL | 0.03 (−0.03–0.09) | 0.28 | |||
Factor H, ng/mL × 10−3 | −0.0002 (−0.0009–0.0004) | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-González, M.; Gómez-Bernal, F.; Quevedo-Abeledo, J.C.; Fernández-Cladera, Y.; González-Rivero, A.F.; López-Mejías, R.; Díaz-González, F.; González-Gay, M.Á.; Ferraz-Amaro, I. HDL Cholesterol Efflux and the Complement System Are Linked in Systemic Lupus Erythematosus. J. Clin. Med. 2023, 12, 5405. https://doi.org/10.3390/jcm12165405
García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, Fernández-Cladera Y, González-Rivero AF, López-Mejías R, Díaz-González F, González-Gay MÁ, Ferraz-Amaro I. HDL Cholesterol Efflux and the Complement System Are Linked in Systemic Lupus Erythematosus. Journal of Clinical Medicine. 2023; 12(16):5405. https://doi.org/10.3390/jcm12165405
Chicago/Turabian StyleGarcía-González, María, Fuensanta Gómez-Bernal, Juan C. Quevedo-Abeledo, Yolanda Fernández-Cladera, Agustín F. González-Rivero, Raquel López-Mejías, Federico Díaz-González, Miguel Á. González-Gay, and Iván Ferraz-Amaro. 2023. "HDL Cholesterol Efflux and the Complement System Are Linked in Systemic Lupus Erythematosus" Journal of Clinical Medicine 12, no. 16: 5405. https://doi.org/10.3390/jcm12165405
APA StyleGarcía-González, M., Gómez-Bernal, F., Quevedo-Abeledo, J. C., Fernández-Cladera, Y., González-Rivero, A. F., López-Mejías, R., Díaz-González, F., González-Gay, M. Á., & Ferraz-Amaro, I. (2023). HDL Cholesterol Efflux and the Complement System Are Linked in Systemic Lupus Erythematosus. Journal of Clinical Medicine, 12(16), 5405. https://doi.org/10.3390/jcm12165405