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Abstract: The use of radiomics and artificial intelligence applied for the diagnosis and monitoring of
Alzheimer’s disease has developed in recent years. However, this approach is not yet completely
applicable in clinical practice. The aim of this paper is to provide a systematic analysis of the
studies that have included the use of radiomics from different imaging techniques and artificial
intelligence for the diagnosis and monitoring of Alzheimer’s disease in order to improve the clinical
outcomes and quality of life of older patients. A systematic review of the literature was conducted
in February 2023, analyzing manuscripts and articles of the last 5 years from the PubMed, Scopus
and Embase databases. All studies concerning discrimination among Alzheimer’s disease, Mild
Cognitive Impairment and healthy older people performing radiomics analysis through machine
and deep learning were included. A total of 15 papers were included. The results showed a very
good performance of this approach in the differentiating Alzheimer’s disease patients—both at the
dementia and pre-dementia phases of the disease—from healthy older people. In summary, radiomics
and AI can be valuable tools for diagnosing and monitoring the progression of Alzheimer’s disease,
potentially leading to earlier and more accurate diagnosis and treatment. However, the results
reported by this review should be read with great caution, keeping in mind that imaging alone is not
enough to identify dementia due to Alzheimer’s.

Keywords: radiomics; artificial intelligence; older people; Alzheimer; systematic review; diagnosis;
MCI; machine learning; deep learning

1. Introduction

Nowadays, radiomics can be considered an emergent field of research, possibly allow-
ing for the in-depth comprehension of diseases’ etiology and evolution. For radiomics, it is
intended that the mineable data are extracted by converting clinical images to quantitative
features using characterization algorithms [1], with the aim of identifying prognostic and
predictive biomarkers of disorders. More in detail, radiomics allows for the extraction and
analysis of a large number of quantitative features from medical images, such as magnetic
resonance imaging (MRI) and positron emission tomography (PET) scans, echography
and computerized tomography (CT), providing detailed information from medical images
using mathematical and machine learning methods to explore possible ties with biology
and clinical outcomes. In this way, a radiomics approach might help clinicians provide
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useful insights about the prognosis and response to treatment, thus representing a potential
non-invasive method of precision medicine in the era of artificial intelligence (AI) [2].

From a general point of view, radiomics, given its intrinsic capacity of obtaining and
organizing a huge number of data, seems to be particularly suited for studying multifac-
torial and complex diseases, and, not by chance, it has been mostly investigated in the
oncology field [3–7]. Specifically, this new approach has been widely applied mainly in
solid cancers [8–10], since data from histopathology and immunohistochemistry as well as
from genomics were largely available, proving the expected heterogeneity of diseases at
both cellular and molecular levels [11].

Recently, from the oncology field, given its power in the high-dimensional data mining
of radiological features and its correlation with aging progression [12,13] and clinical
endpoints [14], radiomics application is expected to spread in other multifactorial diseases
where new signatures are difficult to be identified, including neurological ones. In this
regard, recently, radiomics has shown interesting applications in the neurology field,
highlighting promising results in differential diagnosis [15] among causes of cognitive
impairment and in the prediction of the conversion from mild cognitive impairment (MCI)
to Alzheimer dementia. In particular, Alzheimer’s disease (AD) is known to be the most
common neurodegenerative disease. It has been estimated that over 46 million people live
with dementia worldwide, increasing to 131.5 million by 2050 [16]. Therefore, there is an
urgent need for biomarkers to be used for screening, diagnosis, prognosis and therapy
response to control the societal impact of the disease.

In order to understand a vast plethora of data for the provision of the predictive models,
AI algorithms represent elective strategies to be applied for the analysis of radiomic data,
especially by adopting Deep Learning (DL) approaches based on neural networks (NN) that
are able to deal with a huge number of computational parameters to be processed through
high-performance technologies. Even if evidence from the literature shows that data-
driven deep radiomic models have a better performance than humans in understanding
diseases’ pathways, the method of the adoption of radiomic biomarkers still remains
a gap to be solved to ensure their clinical uptake through efforts for standardization,
the harmonization of different approaches and the reproducibility of the radiomic data
collection in the different clinical settings [17].

The aim of this paper is to provide a systematic analysis of the studies that have
included the use of radiomics from MRI and PET and AI for the diagnosis and monitoring
of AD in order to improve the clinical outcomes and quality of life of older patients.

2. Materials and Methods
2.1. Literature Search and Study Selection

The methodology of this systematic review was based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [18], with the main
aim of analyzing the impact of radiomic analysis and AI to diagnose and monitor AD and
its progression.

We used the PICO framework (population, intervention, comparator and outcome)
as follows:

P: Alzheimer patients
I: Diagnosis through artificial intelligence
C: Mild cognitive impairment and healthy subjects
O: Differential diagnosis
A systematic review of the literature was conducted in February 2023. The data were

collected from PubMed, Embase and Scopus, analyzing manuscripts and articles of the
last 5 years (from January 2018 to January 2023) in order to obtain the latest evidence in
the field. The inclusion criteria are as follows: (1) prospective or retrospective studies;
(2) Alzheimer’s disease and cognitive impairment in people aged ≥65 years; (3) use of
radiomics to discriminate between Alzheimer’s and mild cognitive impairment in the
older population; (4) machine/deep learning classification in terms of accuracy, specificity,
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sensitivity, area under the curve of the received operating characteristic (AUC-ROC), pos-
itive predictive value (PPV), negative predictive value, recall and F1-score. Systematic
and narrative reviews were excluded. Based on consultation with the multidisciplinary
research team, multi-modal intervention studies were searched using the following search
terms, and the combination thereof: radiomic*, elderly, Alzheimer, cognitive impairment,
texture analysis, neurological status, frailty and sarcopenia. The full search strings are
provided in Table 1. After the preliminary search, 1679 articles resulted from PubMed,
213 resulted from Embase and 372 resulted from Scopus. The findings were analyzed and
screened by four experts of the team, a bioengineer, a clinical neurologist, a psychologist
and a nuclear medicine physician. In particular, the four reviewers independently analyzed
the titles and abstracts retrieved from the search in order to determine if they met the
predefined inclusion criteria. The full text articles were subsequently analyzed. The first
screening was based on the analysis of the title and the abstract of the findings. After
the first step, 45 articles resulted from PubMed, 12 resulted from Embase and 9 resulted
from Scopus. A second screening was based on a deduplication analysis of the findings.
After this step, 18 papers were included from PubMed, 1 was included from Embase and
1 was included from Scopus. An additional researcher, with a background in biomed-
ical engineering, confirmed the accuracy of the papers selection and screened for any
possible omission.

Table 1. Adopted search strategy.

Order of Search Terms

1 Elderly AND Radiomics AND Alzheimer
2 Radiomics AND Elderly AND Cognitive impairment
3 Texture analysis AND Elderly AND Cognitive impairment
4 Radiomics AND Elderly AND Neurological status
5 Radiomics AND Elderly AND Frailty
6 Radiomics AND Sarcopenia

2.2. Data Collection

After the screening based on the inclusion/exclusion criteria conducted on the full
text articles, the studies were selected as follows: 15 from PubMed, 0 from Embase and 0
from Scopus. Figure 1 shows the flowchart search strategy applied.
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3. Results

A total of 15 papers were included [19–33]. The findings reported in this section are
organized under macro-concept areas of interest.

3.1. Study Quality Evaluation

The quality evaluation of 15 population-based studies was performed based on the
Newcastle Ottawa Scale (NOS) scale. The NOS is designed to assess the quality of non-
randomized studies [34], such as case-control and cohort studies (all the studies included
in this systematic review belong to this category). The Newcastle Ottawa Scale focuses on
three main areas: the selection of the study groups, the comparability of the groups and
the assessment of the outcome or exposure. The final score was settled when three authors
reached an agreement after repeated review and analysis. Of the fifteen studies considered,
the NOS score ranged from five to a maximum of nine (Table 2).

3.2. General Characteristics of the Study Population

In 8 out of 15 studies [20–23,28,29,31,33], the data used were retrieved from a public
repository, 6 were from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
and 2 were from the Open Access Series of Imaging Studies (OASIS) [21,22]. In the remain-
ing seven studies [19,24–27,30,32], original data were collected from human participants
hospitalized in different healthcare structures. The 15 studies had an average sample size
of 396.1, ranging from the smallest sample size of 86 [18] to the largest sample size of
1650 [20]. All the studies focus on older people, with a mean age of 71.3 (±8.87) years
in the AD group, 75.8 (±8.9) years in the Mild Cognitive Impairment (MCI) group and
69.5 (±7.82) in the healthy control (HC). There were 1137 males and 1106 females in the
AD group, 1188 males and 874 females in the MCI group and 1187 males and 1337 females
in the HC group. The Mini-Mental State Examination and Clinical Dementia Rating are
the most common neuropsychological assessment tests used to evaluate the cognitive
and functional abilities of patients. Mini-Mental State Examination values are reported in
14 out of 15 studies [19,20,22–33], and a Clinical Dementia Rating is calculated in 7 out of
15 [21–24,27,28,30]. Other tests like the Montreal Cognitive Assessment, Auditory Verbal
Learning Test, Alzheimer’s Disease Assessment Scale, Activities of Daily Living Scale and
Geriatric Depression Scale are adopted. Table 3 summarizes the imaging method adopted in
each study, the type of imaging evaluation, the AI algorithm adopted and the performance
metrics used to check the classification/prediction performance of each ML/DL model,
and Table 4 shows the characteristics of the included studies.

3.3. Radiomic Features

Radiomic features are extracted directly after segmentation from the area of interest.
All studies used automatic feature extraction methods. The number of features calculated
varies from a minimum of 35 [21] to 3360 [25]. Radiomic features can be broadly categorized
into five classes: first-order features, shape-based features, texture features, wavelet-based
features, and deep learning-based features. First-order features, or statistical features, were
used in [19–21,23,24,27] to describe the basic statistics of the voxel intensity distribution
within a region of interest, such as the mean, median, variance, skewness, and kurtosis.
Shape-based features describe the geometric properties of the region of interest (ROI), such
as the volume, surface area, and compactness. Shape features are calculated in all papers.
Texture features capture the spatial distribution of voxel intensities within the ROI and
provide information on the heterogeneity, coarseness, and complexity of the tissue. Texture
features are extracted using different methods, such as the gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), gray-
level dependence matrix (GLDM) and neighboring gray-tone difference matrix (NGTDM),
as accomplished in all reported studies. Wavelet-based features use wavelet transforms to
decompose the image into multiple frequency bands and extract features from each band.
Wavelet features are calculated in all the studies except for [19,20,31].
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Table 2. Scores of quality assessment of the included studies according to the Newcastle Ottawa Scale. * indicates that the item requirement is satisfied; 0 indicates
that the item requirement is not satisfied.

Selection Comparability Outcome

Study Adequate
Case Definition

Representativeness
of the Cases

Selection
of Controls

Definition
of Controls Main Factor Additional Factor Ascertainment

of Exposure

Same
Ascertainment for

Cases
and Controls

Non-Response Rate Total (9/9)

Feng et al. [19] * * * * * 0 * * * 8
Zheng et al. [20] * * * * * 0 * * 0 7

Chaddad et al. [21] * * 0 * * 0 * * 0 6
Chaddad et al. [22] * * 0 * * 0 * * 0 6

Du et al. [23] * * * * * * * * * 9
Kim et al. [24] * * * * * 0 * * * 8
Feng et al. [25] * * * * * 0 * * * 8
Feng et al. [26] * * * * * * * * 0 8
Liu et al. [27] * * * * * * * * * 9
Li et al. [28] * * * 0 * 0 * * 0 5

Zhao et al. [29] * * * 0 * 0 0 * * 6
Wu et al. [30] * * 0 0 * 0 * * 0 6

Ding et al. [31] * * * * * 0 * * * 8
Feng et al. [32] * * * * * 0 * * * 8
Jiang et al. [33] * * * 0 * 0 * * * 7

Table 3. Studies grouped by macro-categories. For each article, the following is reported: the state or condition of the disease, the method and evaluation of each
imaging technique, the AI algorithm adopted for the classification and prediction and the metrics for evaluating the model’s performance.

Study State/Condition of Disease Imaging Method Imaging Evaluation AI Algorithm Performance Measures

Feng et al. [19] Amnestic mild cognitive impairment Magnetic resonance Segmentation and feature extraction
with LASSO Logistic regression AUC, sensitivity, specificity,

precision, recall, F1-score
Zheng et al. [20] Mild cognitive impairment Magnetic resonance Segmentation and HRF feature extraction Support vector machine AUC, accuracy

Chaddad et al. [21] Alzheimer disease Magnetic resonance Entropy feature extraction Convolutional neural network,
random forest AUC

Chaddad et al. [22] Alzheimer disease Magnetic resonance CNN-derived feature extraction Convolutional neural network,
random forest AUC

Du et al. [23] Early and late onset of Alzheimer disease Magnetic resonance Segmentation and feature extraction Support vector machine AUC, accuracy
Kim et al. [24] Amyloyd-positive and -negative Magnetic resonance Segmentation and feature extraction - AUC, sensitivity, specificity
Feng et al. [25] Mild cognitive impairment Magnetic resonance Segmentation and feature extraction Logistic regression AUC, Accuracy

Feng et al. [26] Alzheimer disease Magnetic resonance Segmentation and feature extraction Logistic regression AUC, accuracy, sensitivity,
specificity, precision,

Liu et al. [27] Alzheimer disease Magnetic resonance Segmentation and feature extraction Logistic regression, K Nearest
Neighbor, Support vector machine Accuracy

Li et al. [28] Mild cognitive impairment,
Alzheimer disease Magnetic resonance Segmentation and feature extraction Support vector machine Accuracy

Zhao et al. [29] Mild cognitive impairment Magnetic resonance Segmentation and feature extraction Support vector machine, linear
discriminant analysis AUC, accuracy, sensitivity, specificity
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Table 3. Cont.

Study State/Condition of Disease Imaging Method Imaging Evaluation AI Algorithm Performance Measures

Wu et al. [30] Subjective cognitive decline Magnetic resonance Segmentation and feature extraction Support vector machine,
random forest AUC, accuracy, sensitivity, specificity

Ding et al. [31] Mild cognitive impairment,
Alzheimer disease Positron emission tomography Feature extraction Support vector machine AUC

Feng et al. [32] Mild cognitive impairment Magnetic resonance Segmentation and feature extraction Support vector machine AUC, accuracy, sensitivity, specificity

Jiang et al. [33] Alzheimer disease Magnetic resonance Derived feature extraction Convolutional neural network,
support vector machine AUC, accuracy, sensitivity, specificity

Table 4. Descriptive analysis.

Population
Methods Aim of the Study Results

Participants in AD Groups Participants in the HC Group

Feng Qi [19] n = 42 older adults, 18 M/24 F,
Age 64.17 ± 10.57 years

n = 44 older adults, 20 M/24 F,
Age 65.43 ± 9.70 years

After the segmentation of the left and right
hippocampus, features are extracted and selected
using LASSO to build two classification models
based on logistic regression.

• N. of radiomics features: 45
• Brain area: Hippocampus
• Raw image: MRI
• ML algorithm: LR

Primary: to identify the radiomic
biomarkers of the hippocampus for
building the classification
models in SCD/AD diagnosis.

The study reports ML classification results
divided between the left and
right hippocampus:
AUC (L/R): 0.79/0.76
Sensitivity: (L/R) 0.54/0.69
Specificity: (L/R) 0.71/0.71
Precision: (L/R) 0.64/0.69
Recall(L/R): 0.54/0.69
F1-score (L/R): 0.58/0.69

Zheng et al. [20] n = 283 older adults, 152 M/131 F,
Age 74.91 ± 7.70 years

MCI group n = 764 older adults,
447 M/317 F, Age 72.96 ± 7.70 years
HC group n = 603 older adults,
277 M/326 F, Age 73.46 ± 6.17

After calculating the HRFs of the intensity,
shape and textural features from each side of
the hippocampus in MRI, the consistency of
the HRFs calculated from seven different
hippocampal segmentation methods was
validated, as well as the performance of the
machine learning–based classification of
AD vs. HC.

• N. of radiomics features: 55
• Brain area: Hippocampus
• Raw image: MRI
• ML algorithm: SVM

Primary: identification of the optimal
segmentation methods.
Secondary: discrimination of AD
among HC.

Regarding the classification of AD and
MCI, the bilateral
HRFs exhibited acceptable results for all
of the involved segmentation.
AUC: 0.88
Accuracy: 83.9%

Chaddad et al. [21] n = 100 older adults, Age > 60 n = 98 older adults, Age > 60

Once the images are pre-processed, a
convolution and a max pooling allow for the
extraction of conditional entropy features.
Such features are used to train and test a
100-trees random forest algorithm and a CNN
to distinguish between AD and HC.

• N. of radiomics features: -
• Brain area: -
• Raw image: MRI

ML/DL algorithm: CNN/RF

Primary: The goal of
this experiment is to classify between AD
and HG subjects
from MRI data.

The highest overall accuracy, 93.6%, is
obtained from an RF classifier
combining the three conditional
entropy features.
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Table 4. Cont.

Population
Methods Aim of the Study Results

Participants in AD Groups Participants in the HC Group

Chaddad et al. [22] n = 100 older adults, 41 M/59 F,
Age 77 years

n = 135 older adults, 38 M/97 F,
Age 71 years

MRI volumes are first processed to label
subcortical areas from which radiomics
features are extracted. A significance test is
performed to identify features that show
significant differences between AD and HC.
Novel CNN-derived radiomic features based
on the entropy are proposed to improve
classification. These features are then used as
the input to an RF model to classify AD and
HG subjects.

• N. of radiomics features: 45
• Brain area: Subcortical regions
• Raw image: MRI
• DL/ML algorithm: CNN/RF

Primary: Propose a novel technique,
based on the entropy of convolutional
feature maps, to characterize the local
texture in a data-driven manner and to
classify AD from HG through CNN.

Among subcortical regions, the
hippocampus (AUC 81.19–84.09%) and
amygdala (AUC 79.70–80.27%) regions
have the greatest discriminative power.
Entropy features derived from CNN show
an AUC of 0.925 in discriminating AD
from HG after testing RF.

Du et al. [23] n = 72 older adults, 35 M/37 F,
Age 66.12 ± 2.8 years

n = 78 older adults, 36 M/42 F,
Age 70.6 ± 7.5 years

Hippocampal segmentation and feature
extraction were performed; the LASSO method
was used to select radiomic features. SVM
models were constructed based on the
identified features to distinguish early onset
AD from young control subjects, late onset AD
from old control subjects and early onset AD
from late onset AD subjects.

• N. of radiomics features: -
• Brain area: L/R Hippocampus
• Raw image: MRI
• ML algorithm: SVM

Primary: build and validate radiomics
models of the hippocampus for early
onset AD and young controls, late onset
AD and old controls and early onset AD
and late onset AD.

SVM models have good performances.
Early onset AD and HG
AUC: 0.90
Accuracy: 77%
Late onset AD and HG
AUC: 0.94
Accuracy: 86%
Early onset and late onset
AUC: 0.87
Accuracy: 79%

Kim et al. [24]
Amyloid-positive older adults
n = 166, 70 M/96 F,
Age 71.9 ± 8.1 years

Amyloid-negative older
adultsn = 182, 78 M 104 F,
Age 70.9 ± 8.6 years

After multimodal MRI images were
pre-processed, the brain region of interest was
segmented, and radiomic features were
extracted from each. Once radiomic features
are selected through LASSO, the remaining
features were used alone or in combination
with baseline non-imaging predictors such as
age, sex and ApoE genotype to predict
amyloid positivity.

• N. of radiomics features: -
• Brain area: whole brain
• Raw image: MRI
• ML algorithm: -

Primary: Predicting amyloid positivity in
patients with MCI.
Secondary: compared the predictive value
of a radiomics model with those of cortical
thickness and non-imaging predictors

Amyloid positivity was predicted a using
non-imaging model (a model based on
features not derived from MRI) that had
an AUC = 0.71. Among single
MR-sequence models, T1 MRI showed an
AUC of 0.71, and T2 MRI showed an AUC
of 0.74. When T1 and T2 radiomics
features were combined, the AUC for the
test was 0.75
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Table 4. Cont.

Population
Methods Aim of the Study Results

Participants in AD Groups Participants in the HC Group

Feng Q. et al. [25] n = 41 older adults, 16 M/25 F,
Age 76.1 ± 8.7 years

MCI group n = 60 older adults,
43 M/17 F, Age 76 ± 8.4 years
HC group n = 72 older adults,
26 M/46 F, Age 75.2 ± 4.7

Once images are pre-processed and segmented,
radiomics features are extracted, and LASSO is
used to reduce and select the features.
Multivariate LR analysis was performed to
build classification models followed by an
internal validation.

• N. of radiomics features: 3360
• Brain area: Amygdala
• Raw image: MRI
• ML algorithm: LR

Primary: build and validate
comprehensive classification models
based on amygdala radiomic features to
discriminate AD, MCI and NC

LR analysis based on amygdala radiomic
features achieves good performance for
clinical applications among AD, SCD and
HC groups.
Accuracy AD vs. HG: 90%
Accuracy AD vs. SCD: 81%
Accuracy SCD vs. HG: 75%

Feng Q. et al. [26] n = 78 older adults, 25 M/53 F,
Age 69.18 ± 12.23 years

n = 44 older adults, 20 M/24 F,
Age 65.43 ± 9.70 years

After manual segmentation, features are
extracted from the region of interest and
selected using LASSO. The logistic regression
method is then applied to establish a
classificationmodel for AD diagnosis.

• N. of radiomics features: 385
• Brain area: Corpus callosum
• Raw image: MRI
• ML algorithm: LR

Primary: identify the CC radiomic
features related to the diagnosis of AD
and build and evaluate a classification
model from NC.

Eleven features were selected from the
using the LASSO model.
Discrimination of AD from NC:
AUC: 0.720
Sensitivity: 79.2%
Specificity: 50.0%
Accuracy: 68.4%
Precision: 73.1%
PPV: 73.1%
NPV: 58.3%

Liu et al. [27] n = 80 older adults, 42 M/38 F, Age 65 n = 80 older adults, 40 M/40 F, Age 64

For each patient, MRI images were segmented
into 106 subregions, and radiomic features
were extracted from each.
Then, an analysis is conducted of radiomic
features of specific brain subregions that were
most related to AD. Based on the selective
radiomic features from specific
brain subregions,
they built an integrated model using the best
machine learning algorithm.

• N. of radiomics features: -
• Brain area: whole brain

segmented regions
• Raw image: MRI
• ML algorithm: multiple

Primary: exploring optimal brain regions
for AD radiomics diagnosis.
Secondary: Evaluate the optimal ML
algorithm to discriminate AD from HG.

The subregions most relevant to AD
included the
hippocampus, the inferior parietal lobe,
the precuneus and the lateral
occipital gyrus.
Accuracy LR: 96.2%
Accuracy KNN: 95.0%
Accuracy SVM: 95.0%
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Table 4. Cont.

Population
Methods Aim of the Study Results

Participants in AD Groups Participants in the HC Group

Li et al. [28] n = 165 older adults, 103 M/62 F,
Age 75.3 ± 6.3 years

n = 32 older adults, 13 M/19 F,
Age 76.2 ± 6.8 years

After segmentation, normalization and
smoothing, radiomics features are extracted
from MR images and selected through
statistical analysis (Cox regression and t-test).
The classification phase was accomplished
using SVM models with three different linear,
polynomial and sigmoid kernels

• N. of radiomics features: 215
• Brain area: L/R Hippocampus
• Raw image: MRI
• ML algorithm: SVM

Primary: prove that radiomics features
could be used to identify the fast and slow
conversion from MCI to AD based on
MRI images.

Classification accuracy using linear,
polynomial and sigmoid
kernels could achieve good discrimination
in distinguishing
MCI-to-AD fast and slow conversion. In
particular, in terms of accuracy, SVM with
a polynomial kernel shows the best results.
Accuracy linear: 80.0%,
Accuracy polynomial: 93.3%
Accuracy sigmoid: 86.6%

Zhao et al. [29] n = 583 older adults, 268 M/315 F,
Age 69.74 ± 8.14 years

MCI group n = 773 older adults,
429 M/344 F, Age 69.85 ± 8.31 years
HC group n = 587 older adults,
268 M/319 F, Age 67.87 ± 6.82

After the automatic segmentation of the
hippocampal region, intensity-based features,
shape-based features and texture-based
features across eight wavelet-based frequency
domains are extracted. The SVM model is built
to classify the AD patients and NC.

• N. of radiomics features: 55
• Brain area: Hippocampus
• Raw image: MRI
• ML algorithm: SVM, LDA

Primary: verify if hippocampal region
features can serve as robust MRI markers
for AD.
Secondary: Diagnose AD through ML.

Multivariate classifier-based SVM analysis
provided individual-level predictions for
distinguishing AD patients HC with an
accuracy of 88.21% and inter-site
cross validation.

Wu et al. [30]
SCD group n = 103 older adults,
71 M/32 F, Age 68.4 ± 6.60 years

n = 132 older adults, 85 M/47 F,
Age 67.23 ± 6.41 years

After brain sMRI segmentation and feature
extraction, the t-test, autocorrelation, and
Fisher score were performed for selecting the
most relevant features.
SVM was implemented to build a classification
model, and a random forest (RF) was used as a
comparison model.

• N. of radiomics features: 215
• Brain area: Grey matter, white matter,

cerebrospinal fluid
• Raw image: MRI
• ML algorithm: SVM, RF

Primary: propose a radiomic approach to
detect neuropathological features in
subjective cognitive decline (a high-risk
preclinical stage in the progress of AD)
subjects based on MRI images.

SVM showed good results in the
classification of SCD from HC.
Accuracy: 84.7%
Sensitivity: 86.9%
Specificity: 82.6%
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Table 4. Cont.

Population
Methods Aim of the Study Results

Participants in AD Groups Participants in the HC Group

Ding et al. [31] n = 291 older adults, 173 M/118 F,
Age 74.69 ± 7.26 years

MCI group n = 453 older adults,
272 M/181 F, Age 73.51 ± 6.64 years
HC group n = 334 older adults,
167 M/167 F, Age 73.78 ± 6.01 years

After extraction of radiomics features and
group difference statistical analysis, a
nonlinear SVM model with a radial basis
function kernel was adopted to predict over
AD cases. Feature selection was introduced by
combining the t-test and SVM-RFE.

• N. of radiomics features: 47
• Brain area: 246 regions
• Raw image: PET
• ML algorithm: SVM

Primary: explore whether the radiomic
features of PET images are used as
predictors and provide a neurobiological
foundation for AD.
Secondary: Diagnose AD through ML

The results showed a high accuracy in
distinguishing AD from HC and
predicting the MCI conversion to AD. The
classification outputs were found to be
significantly associated with clinical
measures like the apolipoprotein
E genotype.
AUC AD from HC: 0.93
AUC MCI to AD: 0.83

Feng et al. [32] n = 38 older adults, 16 M/22 F,
Age 71.7 ± 8.3 years

MCI group n = 33 older adults,
14 M/19 F, Age 70.6 ± 8.2 years
HC group n = 45 older adults,
22 M/23 F, Age 68.2 ± 6.9 years

Region of interest is extracted after the
segmentation of MR scans. Features are
extracted and selected to combine the spatial
and frequency characteristics. ANOVA was
employed to evaluate the differences between
the AD, SCD and HCgroups, and Spearman’s
correlation coefficient was calculated to
evaluate the relationships between the features
and MMSE. The SVM model is built to
perform a classification task.

• N. of radiomics features: 423
• Brain area: L/R Hippocampus
• Raw image: MRI
• ML algorithm: SVM

Primary: test whether
radiomic features in the hippocampus can
be employed for the early classification of
AD and SCD.
Secondary: Distinguish AD from HC
through ML.

The SVM model demonstrated that
radiomic features allowed for
distinguishing AD from HC with a
satisfying performance.
AUC: 0.93
Accuracy: 86.75%
Specificity: 88.89%
Sensitivity: 84.21%

Jiang et al. [33] n = 181 older adults, 73 M/108 F,
Age 76.3 ± 5.4 years

n = 228 older adults, 112 M/116 F,
Age 71.8 ± 5.7 years

Once the MRI image is pre-processed, a basic
DLR model pre-training is carried out through
CNN. To obtain DLR features, global max
pooling is used to extract the maximum value
of each feature map (last convolutional layer of
the DL model).
Based on the above extracted
features, SVM is used to distinguish AD
from HC.

• N. of radiomics features: -
• Brain area: GM, WM, CSF
• Raw image: MRI
• ML/DL algorithm: CNN for DLR

feature extraction/SVM for classification

Primary: propose a novel deep learning
radiomics method for distinguishing
cognitively normal adults at risk of AD
from NC.

The DLR method achieved the best
classification performance between AD
and HC compared to other models
(hippocampal/traditional
radiomics/clinical):
AUC: 0.904
Accuracy: 92.8%
Sensitivity: 88.8%
Specificity: 94.4%

AD = Alzheimer disease, AUC = Area under the curve, CC = Corpus callosum, CNN = Convolutional neural network, DLR = Deep learning radiomics, HC = Healthy control,
HRF = Hippocampal radiomic features, LASSO = Least Absolute Shrinkage and Selection Operator, LDA = Linear discriminant analysis, LR = Logistic regression, MCI = Mild cognitive
impairment, MR = Magnetic resonance, PPV = Positive predictive value, NPV = Negative predictive value, RF = Random forest, RFE = Recursive feature elimination, SVM = Support
vector machine.
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Finally, deep learning-based features are extracted by training a neural network on
a large dataset of images to identify patterns and features that are relevant for the task at
hand. These features can then be used to extract radiomic features from new images, as
accomplished in [22,33].

Radiomics features are then reduced in dimensionality with different techniques: Least
Absolute Shrinkage and Selection Operator (LASSO) was used in six studies [19,23–27],
t-test statistical correlation analysis was adopted in three studies [23,28,29], Cox regression
was used in two studies [26,28] and Fisher’s score was adopted in one [30].

3.4. Machine and Deep Learning Methods Applied to the Diagnosis of AD

Machine learning models can be pooled into two categories: support vector machine (SVM)
and logistic regression (LR). In seven studies, an SVM classification model was built. In particular,
the radial basis function was chosen as the SVM algorithm kernel [20,23,29,32,33], while a multi-
function kernel (linear, polynomial and sigmoid) was involved in two studies [28,30] in
order to evaluate the performance of each SVM model. On the other side, in three studies,
an LR algorithm was used to build a diagnostic model [19,25,26]. Convolutional neural
networks (CNN) were used as deep learning algorithms to perform AD diagnosis in three
studies [21,22].

3.5. Performance Metrics

Different metrics were used to assess the performance of ML and DL models. All
studies report metrics referring both to the test set and validation set. Accuracy is adopted
in 12 out of 15 studies [20,23–33]. It was used individually only in one study [28], while in
all the other studies, it was calculated in combination with other metrics. The most common
metric is the area under the curve (AUC), used in 13 out of 15 studies [19–27,29,31–33],
while sensitivity and specificity were used in 9 out of 15 studies [19,23–27,30–33]. The
least used metrics for evaluating the model classification performance are precision (3 out
of 15) [19,26,27], positive predictive value (PPV) and negative predictive value (NPV)
(2 out of 15) [19,26], recall and F1 score (2 out of 15) [19,27].

3.6. Differential Diagnosis

In 9 out of 15 studies [20–22,25–27,29,31,32], radiomics analysis is used to perform
a differential diagnosis between AD and HC. In detail, among these 10 articles, 4 of
them [21,22,26,27] focus exclusively on the discrimination between AD and HC, while in
the other research [20,25,29,31,32], the authors focused in parallel on radiomic analysis
aimed at the discrimination between MCI and AD, AD and HC.

In [19,30,33], the main core is the differential diagnosis between Subjective cognitive
decline (SCD) and HC. It is noteworthy that SCD is often considered a potential early
indicator of cognitive impairment or dementia. However, SCD is not a diagnostic criterion
for dementia or other cognitive disorders, as many individuals with SCD do not progress
to develop dementia or cognitive impairment.

In addition, in [28,29], relevance is given to progression from MCI to AD, while in [23],
early-onset AD and late-onset AD against HC are classified. Indeed, a recent study has
suggested considerable differences between early-onset and late-onset AD from a clinical
point of view [35]; thus, we found it interesting to add this article within this review.
For instance, early-onset AD patients show a faster and more severe disease progression
compared to late-onset AD patients. They also present an unusual pattern of preserved
memory function alongside cortical symptoms that affect language, visuospatial skills,
and executive function, as reported by Cacace et al. [36]. Additionally, early-onset AD
patients have less damage in the hippocampus but more severe damage in the neocortex.
Furthermore, they display functional disruption between the hippocampus and middle
frontal cortex, which distinguishes them from late-onset AD patients. On the other hand,
in [24], the authors made a radiomic analysis to predict amyloid β peptide positivity and
negativity. The amyloid β peptide status is crucial not only for diagnostic purposes but
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also for predicting the clinical course of patients in the early stage of AD. In particular, the
Aβ status is associated with clinical deterioration and the transition to dementia in patients
with mild cognitive impairment (MCI).

3.7. Brain Regions and Classification Results

In 14 out of 15 studies [19–30,32,33], regions of interest were extracted from MR images,
while only in [31], Aβ PET was used to detect the accumulation of the beta-amyloid protein
in the brain. For the identification of AD from HCs with the radiomics features of Aβ PET
images, the authors obtained an AUC = 0.93 with the standard machine learning SVM
method, while in all other studies using MRI, the AUC values ranged from 0.72 to 0.93.
The segmentation of the MRI/PET image of the brain is aimed at extracting one or more
anatomical areas of interest from which radiomic features are then calculated.

The hippocampus is the most interesting research area, with 6 out of 15 studies
focusing on it [19,20,23,28,29,32]. In all of these studies, the hippocampus was taken
singularly. For studies that take the hippocampus as the anatomical reference, AUC values
ranging from 0.88 to 0.94 are obtained for studies that focus on the differentiation between
AD patients and healthy subjects. Among these, the ADNI database was used in four
papers [20,23,28,29], while in the remaining two studies [19,32], the sample was collected
inside the healthcare structure. Individually, the amygdala [25] and corpus callosum [26]
were also analyzed. For the study that refers to radiomic analysis of the amygdala, a
satisfactory diagnostic performance in terms of accuracy (90%) in discriminating between
AD and healthy subjects was reported, while slightly lower values were obtained with
respect to the differentiation between patients with AD dementia and MCI. In this case,
a database of patients internal to the referring hospital was used. As for the corpus
callosum, the study investigating it provides a classification accuracy level between AD
and healthy people of 79.2%. In this study, the referral patients were selected from within
the healthcare center too. In two studies, gray matter, white matter and cerebrospinal fluid
were segmented together [30,33]. For these two studies, the accuracy in differentiating
between SCD or pre-clinical AD subjects on one hand and healthy subjects on the other
hand reached over 89% in both [30,33].

In this case, in [33], the sample is retrieved from the ADNI repository, while the other
study examines an in-house repository at the health institution. In the remaining four
studies [21,22,27,31], researchers do not involve the segmentation of a specific anatomical
region; rather, they perform training of their classifiers by whole-brain imaging. In [21],
the authors achieved 93.9% accuracy in the differential analysis between AD and healthy
subjects from the OASIS repository. In [22], an accuracy of 92.6% was achieved, in [27],
one of 96.2% was achieved and in [31], the AUC was 0.93 for distinguishing AD from
healthy subjects and 0.83 for the prediction of MCI conversion to AD. In this case, only
in [27] was a local repository used, while the others adopted the OASIS database for the
sample acquisition.

4. Discussion

In the current AD diagnostic criteria, cerebrospinal fluid (CSF), namely, CSF amyloid
β 42 (Aβ 42) or Aβ 42/40, phosphorylated tau and total tau levels and/or PET biomarkers,
i.e., amyloid PET and tau PET, were included [37,38]. However, these biomarkers are
affected by some limitations. In particular, CSF biomarkers can be assessed only after
having performed a lumbar puncture, which is considered a quite invasive procedure, and
amyloid- PET and tau PET are expensive and not always available. Therefore, growing
efforts are being made by researchers in order to identify reliable, easily available and
non-invasive AD biomarkers. In this regard, radiomics might be an interesting option.

The present systematic review included all studies focused on the use of radiomics
in the AD field, of which 14 [19–30,32,33] considered data from MRI, and only 1 [31] was
based on data analysis from amyloid PET imaging. Globally considered, the results showed
a very good performance of this approach in the differentiating AD patients—both at
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the dementia and pre-dementia phases of the disease—from HC patients. Indeed, the
majority of studies reported a very high accuracy, with an AUC ranging from 80 to 95%,
approximately. It is noteworthy that, according to current AD diagnostic criteria, MRI is
considered a progression biomarker, rather than a diagnostic one, because of the suboptimal
diagnostic performance, mainly in the view of early AD diagnosis, in terms of sensitivity
and specificity, compared to the CSF and tau/amyloid PET biomarkers. Interestingly,
some radiomics studies, based on MRI and focused on early AD diagnosis, reported such
impressive results in terms of the accuracy of the prediction of MCI conversion to AD.
In [24], T1 and T2 FLAIR radiomics data, together with demographic features, were able
to distinguish between amyloid-positive and amyloid-negative patients, as classified by
means of amyloid PET, with a quite satisfactory accuracy (AUC for test = 0.79; AUC for
validation = 0.76). Despite this diagnostic, the performance is still clearly inferior compared
to that of the CSF and PET biomarkers. These preliminary results could be considered
encouraging, but they need to be validated by further investigations.

Interesting findings also come from studies exploring the ability of radiomics in
differentiating patients with subjective cognitive decline (SCD) and/or pre-clinical AD
from controls [30,33]. Subjective Cognitive Decline may represent a very early phase of
AD, which precedes MCI; however, not all SCD subjects will develop AD during follow-
up. In one of those two studies, SCD subjects were included, but they were not well
characterized due to the lack of clinical follow-up data and/or assessment by means of
AD-validated biomarkers at baseline [30]. Considering these limitations, no conclusive
statement about the findings from this study with respect to early AD diagnosis will be
made. The second investigation in this field, by Jiang and colleagues [33], included a large
cohort of well-characterized, cognitively unimpaired subjects, who were divided in two
groups (amyloid-positive and amyloid-negative), according to the amyloid PET status. In
this investigation, a Deep Learning Radiomics method was used, obtaining a very high
diagnostic accuracy (89.85 ± 1.12%) in differentiating amyloid-positive cognitively normal
subjects (i.e., pre-clinical AD patients according to the current diagnostic criteria) from
amyloid-negative healthy subjects (i.e., persons without any clinical and/or biological
evidence of a neurodegenerative disorder). If confirmed by future investigations, those
results might open a new era for the non-invasive assessment of aged healthy people in the
view of early AD diagnosis, making it crucial to enroll subjects in similar clinical trials in
order to test new disease-modifying therapies.

Also, the study on radiomics applied to amyloid-PET imaging [31] showed a very
satisfactory accuracy (AUC = 0.93) in differentiating patients with AD from patients from
normal controls and in predicting MCI conversion to AD dementia. However, in our
opinion, the application of radiomics to amyloid-PET cannot be easily implemented in
clinical practice in the future, due to the different availability of PET machines in hospitals
and the absence of a standardization of a radiomics approach in this field. Despite the
promising findings reported in papers included in this review, radiomics studies in the AD
field are still affected by a great heterogeneity in terms of patients’ enrolment criteria, region
of interest and other technical issues. Those aspects have impeded us from performing a
rigorous meta-analysis; thus, we conducted a qualitative systemic review of the studies on
this topic. Since radiomics is nowadays a quite complicated and time-consuming approach
to be applicable in clinical practice for AD, larger prospective studies are needed to clarify
its potential usefulness in the field.

5. Conclusions

Radiomics and artificial intelligence have the potential to help in the early detection
of and diagnosis of Alzheimer’s by analyzing medical images and other data to identify
patterns that contribute to developing the disease. In summary, radiomics and AI can
be valuable tools for diagnosing and monitoring the progression of Alzheimer’s disease,
potentially leading to earlier and more accurate diagnosis and treatment. However, the
most critical limitation of this review is that all included articles do not have pathological
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confirmation of the clinical diagnosis. Although all patients included in the databases were
meticulously screened by clinical experts in defining the pathology (MCI or Alzheimer’s
disease), no further biological references were taken in the reviewed articles, and only
imaging information was considered. In this regard, the results reported by this review
should be read with great caution, keeping in mind that imaging alone is not enough to
identify dementia due to Alzheimer’s disease. It is necessary to conduct a multi-omics
analysis that considers a combination of biomarkers to increase the degree of accuracy
with which an early diagnosis of the pathology can be made. It is for this reason that, for
clinical practice, it is still difficult to rely solely on the use of imaging to diagnose pathology.
However, the review presents interesting results for research purposes that pave the way
for future developments in artificial intelligence related to Alzheimer’s identification.
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