Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design—Setting
2.2. Participants
2.3. Variables—Procedures
2.3.1. Blood Parameters
2.3.2. Anthropometric Data
2.3.3. Imaging
2.3.4. Calculations
2.4. Bias
2.5. Sample Size
2.6. Statistical Analysis
3. Results
3.1. Participants, Blood Parameters, Anthropometric Measurements, and Imaging
3.2. Main Results
3.3. Correlations
3.4. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diamanti-Kandarakis, E. PCOS in adolescents. Best Pr. Res. Clin. Obstet. Gynaecol. 2010, 24, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Paschou, S.A.; Polyzos, S.A.; Anagnostis, P.; Goulis, D.G.; Kanaka-Gantenbein, C.; Lambrinoudaki, I.; Georgopoulos, N.A.; Vryonidou, A. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Endocrine 2020, 67, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Falzarano, C.; Lofton, T.; Osei-Ntansah, A.; Oliver, T.; Southward, T.; Stewart, S.; Andrisse, S. Nonalcoholic Fatty Liver Disease in Women and Girls with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2021, 107, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Goodman, N.F.; Cobin, R.H.; Futterweit, W.; Glueck, J.S.; Legro, R.S.; Carmina, E. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and Pcos Society Disease State Clinical Review: Guide to The Best Practices in the Evaluation and Treatment of Polycystic Ovary Syndrome—Part 2. Endocr. Pract. 2015, 21, 1415–1426. [Google Scholar] [CrossRef]
- Barfield, E.; Liu, Y.-H.; Kessler, M.; Pawelczak, M.; David, R.; Shah, B. The Prevalence of Abnormal Liver Enzymes and Metabolic Syndrome in Obese Adolescent Females with Polycystic Ovary Syndrome. J. Pediatr. Adolesc. Gynecol. 2009, 22, 318–322. [Google Scholar] [CrossRef]
- Michaliszyn, S.F.; Lee, S.; Tfayli, H.; Arslanian, S. Polycystic ovary syndrome and nonalcoholic fatty liver in obese adolescents: Association with metabolic risk profile. Fertil. Steril. 2013, 100, 1745–1751. [Google Scholar] [CrossRef]
- Ayonrinde, O.T.; Adams, A.L.; Doherty, A.D.; Mori, A.T.; Beilin, L.J.; Oddy, W.H.; Hickey, M.; Sloboda, D.M.; Olynyk, J.K.; Hart, R. Adverse metabolic phenotype of adolescent girls with non-alcoholic fatty liver disease plus polycystic ovary syndrome compared with other girls and boys. J. Gastroenterol. Hepatol. 2016, 31, 980–987. [Google Scholar] [CrossRef]
- Cree-Green, M.; Bergman, B.C.; Coe, G.V.; Newnes, L.; Baumgartner, A.D.; Bacon, S.; Sherzinger, A.; Pyle, L.; Nadeau, K.J. Hepatic Steatosis is Common in Adolescents with Obesity and PCOS and Relates to De Novo Lipogenesis but not Insulin Resistance. Obesity 2016, 24, 2399–2406. [Google Scholar] [CrossRef]
- Carreau, A.; Pyle, L.; Garcia-Reyes, Y.; Rahat, H.; Vigers, T.; Jensen, T.; Scherzinger, A.; Nadeau, K.J.; Cree-Green, M. Clinical prediction score of nonalcoholic fatty liver disease in adolescent girls with polycystic ovary syndrome (PCOS-HS index). Clin. Endocrinol. 2019, 91, 544–552. [Google Scholar] [CrossRef]
- Bin Won, Y.; Seo, S.K.; Yun, B.H.; Cho, S.; Choi, Y.S.; Lee, B.S. Non-alcoholic fatty liver disease in polycystic ovary syndrome women. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Giannouli, A.; Efthymiou, V.; Konidari, M.; Mani, I.; Aravantinos, L.; Dourakis, S.P.; Antoniou, A.; Deligeoroglou, E.; Bacopoulou, F. The Burden of Non-Alcoholic Fatty Liver Disease in Adolescents with Polycystic Ovary Syndrome: A Case–Control Study. J. Clin. Med. 2023, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Meex, R.C.R.; Watt, M.J. Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 2017, 13, 509–520. [Google Scholar] [CrossRef]
- Khan, M.S.; Knowles, B.B.; Aden, D.P.; Rosne, R. Secretion of Testosterone-Estradiol-Binding Globulin by a Human Hepatoma-Derived Cell Line. J. Clin. Endocrinol. Metab. 1981, 53, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Simons, P.I.; Valkenburg, O.; Stehouwer, C.D.; Brouwers, M.C. Sex hormone–binding globulin: Biomarker and hepatokine? Trends Endocrinol. Metab. 2021, 32, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex Hormone–Binding Globulin and Risk of Type 2 Diabetes in Women and Men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef]
- Stefan, N.; Häring, H.-U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 2013, 9, 144–152. [Google Scholar] [CrossRef]
- Dapas, M.; Lin, F.T.J.; Nadkarni, G.N.; Sisk, R.; Legro, R.S.; Urbanek, M.; Hayes, M.G.; Dunaif, A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med. 2020, 17, e1003132. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, E.K. Selenoprotein P. A Selenium-Rich Extracellular Glycoprotein. J. Nutr. 1994, 124, 1891–1897. [Google Scholar] [CrossRef]
- Moschos, M.P. Selenoprotein P. Cell Mol. Life Sci. 2000, 57, 1836–1845. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Burk, R.F. Effect of Dietary Selenium Level on 75Se Binding to Rat Plasma Proteins. Exp. Biol. Med. 1973, 143, 719–722. [Google Scholar] [CrossRef]
- Choi, H.Y.; Hwang, S.Y.; Lee, C.H.; Hong, H.C.; Yang, S.J.; Yoo, H.J.; Seo, A.J.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Increased Selenoprotein P Levels in Subjects with Visceral Obesity and Nonalcoholic Fatty Liver Disease. Diabetes Metab. J. 2013, 37, 63–71. [Google Scholar] [CrossRef]
- Misu, H.; Takamura, T.; Takayama, H.; Hayashi, H.; Matsuzawa-Nagata, N.; Kurita, S.; Ishikura, K.; Ando, H.; Takeshita, Y.; Ota, T.; et al. A Liver-Derived Secretory Protein, Selenoprotein P, Causes Insulin Resistance. Cell Metab. 2010, 12, 483–495. [Google Scholar] [CrossRef]
- Dolegowska, K.; Marchelek-Mysliwiec, M.; Nowosiad-Magda, M.; Slawinski, M.; Dolegowska, B. FGF19 subfamily members: FGF19 and FGF21. J. Physiol. Biochem. 2019, 75, 229–240. [Google Scholar] [CrossRef]
- Mutanen, A.; Heikkilä, P.; Lohi, J.; Raivio, T.; Jalanko, H.; Pakarinen, M.P. Serum FGF21 increases with hepatic fat accumulation in pediatric onset intestinal failure. J. Hepatol. 2014, 60, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lloyd, D.J.; Hale, C.; Stanislaus, S.; Chen, M.; Sivits, G.; Vonderfecht, S.; Hecht, R.; Li, Y.-S.; Lindberg, R.A.; et al. Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice. Diabetes 2009, 58, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Keinicke, H.; Sun, G.; Mentzel, C.M.J.; Fredholm, M.; John, L.M.; Andersen, B.; Raun, K.; Kjaergaard, M. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation. Endocr. Connect. 2020, 9, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Xu, C.; Lin, J.; Li, Y. Role of hepatokines in non-alcoholic fatty liver disease. J. Transl. Intern. Med. 2019, 7, 143–148. [Google Scholar] [CrossRef]
- Reinehr, T.; Roth, C.L. Fetuin-A and Its Relation to Metabolic Syndrome and Fatty Liver Disease in Obese Children Before and After Weight Loss. J. Clin. Endocrinol. Metab. 2008, 93, 4479–4485. [Google Scholar] [CrossRef] [PubMed]
- Haukeland, J.W.; Dahl, T.B.; Yndestad, A.; Gladhaug, I.P.; Løberg, E.M.; Haaland, T.; Konopski, Z.; Wium, C.; Aasheim, E.T.; Johansen, O.E.; et al. Fetuin A in nonalcoholic fatty liver disease: In vivo and in vitro studies. Eur. J. Endocrinol. 2012, 166, 503–510. [Google Scholar] [CrossRef]
- Stefan, N.; Häring, H.-U. Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat. Med. 2013, 19, 394–395. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [CrossRef] [PubMed]
- Witchel, S.F.; Oberfield, S.; Rosenfield, R.L.; Codner, E.; Bonny, A.; Ibáñez, L.; Pena, A.; Horikawa, R.; Gomez-Lobo, V.; Joel, D.; et al. The Diagnosis of Polycystic Ovary Syndrome during Adolescence. Horm. Res. Paediatr. 2015, 83, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Oberfield, S.E.; Witchel, S.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; et al. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Lujan, M.E.; Carmina, E.; Cedars, M.I.; Laven, J.; Norman, R.J.; Escobar-Morreale, H.F. Definition and significance of polycystic ovarian morphology: A task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 2013, 20, 334–352. [Google Scholar] [CrossRef]
- Das, C.; Singh, D.; Baruah, M. Imaging of non alcoholic fatty liver disease: A road less travelled. Indian J. Endocrinol. Metab. 2013, 17, 990–995. [Google Scholar] [CrossRef]
- Tokuhara, D.; Cho, Y.; Shintaku, H. Transient Elastography-Based Liver Stiffness Age-Dependently Increases in Children. PLoS ONE 2016, 11, e0166683. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Chissini, R.d.B.C.; Kuschnir, M.C.; de Oliveira, C.L.; Giannini, D.T.; Santos, B. Cutoff values for HOMA-IR associated with metabolic syndrome in the Study of Cardiovascular Risk in Adolescents (ERICA Study). Nutrition 2020, 71, 110608. [Google Scholar] [CrossRef]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A Critical Evaluation of Simple Methods for the Estimation of Free Testosterone in Serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef]
- Tenny, S.; Kerndt, C.C.; Hoffman, M.R. Case Control Studies. Encycl. Pharm. Pract. Clin. Pharm. 2022, 356–366. [Google Scholar]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Walter, P.L.; Steinbrenner, H.; Barthel, A.; Klotz, L.-O. Stimulation of selenoprotein P promoter activity in hepatoma cells by FoxO1a transcription factor. Biochem. Biophys. Res. Commun. 2008, 365, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wang, Z.; Ma, M.; Xu, P.; Liu, L.; Tinkov, A.A.; Lei, X.; Zhou, J. Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis. Antioxidants 2022, 11, 1263. [Google Scholar] [CrossRef] [PubMed]
- Renko, K.; Hofmann, P.J.; Stoedter, M.; Hollenbach, B.; Behrends, T.; Köhrle, J.; Schweizer, U.; Schomburg, L. Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J. 2009, 23, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Goulas, A.; Duntas, L. Selenium and selenoprotein P in nonalcoholic fatty liver disease. Hormones 2019, 19, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.-J.; Kim, S.M.; Park, K.H.; Park, H.S.; Mantzoros, C.S. Levels of circulating selenoprotein P, fibroblast growth factor (FGF) 21 and FGF23 in relation to the metabolic syndrome in young children. Int. J. Obes. 2014, 38, 1497–1502. [Google Scholar] [CrossRef]
- Zagrodzki, P.; Krzyczkowska-Sendrakowska, M.; Nicol, F.; Wietecha-Posłuszny, R.; Milewicz, T.; Kryczyk-Kozioł, J.; Chaykivska, Z.; Jach, R. Selenium status parameters in patients with polycystic ovary syndrome. J. Trace Elem. Med. Biol. 2017, 44, 241–246. [Google Scholar] [CrossRef]
- Temur, M.; Taşgöz, F.N.; Ertürk, N.K. Elevated circulating Selenoprotein P levels in patients with polycystic ovary syndrome. J. Obstet. Gynaecol. 2022, 42, 289–293. [Google Scholar] [CrossRef]
- Mori, K.; Emoto, M.; Inaba, M. Fetuin-A: A multifunctional protein. Recent Pat. Endocr. Metab. Immune Drug Discov. 2012, 5, 124–146. [Google Scholar] [CrossRef]
- Mathews, S.T.; Chellam, N.; Srinivas, P.R.; Cintron, V.J.; Leon, A.M.; Goustin, A.S.; Grunberger, G. Î ± 2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol. Cell. Endocrinol. 2000, 164, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Hennige, A.M.; Staiger, H.; Wicke, C.; Machicao, F.; Fritsche, A.; Häring, H.-U.; Stefan, N. Fetuin-A Induces Cytokine Expression and Suppresses Adiponectin Production. PLoS ONE 2008, 3, e1765. [Google Scholar] [CrossRef]
- Srinivas, P.R.; Wagner, A.S.; Reddy, L.V.; Deutsch, D.D.; Leon, A.M.; Goustin, A.S.; Grunberger, G. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol. Endocrinol. 1993, 7, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Hennige, A.M.; Staiger, H.; Machann, J.; Schick, F.; Kröber, S.M.; Machicao, F.; Fritsche, A.; Häring, H.-U. α2-Heremans-Schmid Glycoprotein/ Fetuin-A Is Associated With Insulin Resistance and Fat Accumulation in the Liver in Humans. Diabetes Care 2006, 29, 853–857. [Google Scholar] [CrossRef]
- Gulhan, I.; Bozkaya, G.; Oztekin, D.; Uyar, I.; Kebapcilar, A.G.; Pamuk, B. Serum Fetuin-A levels in women with polycystic ovary syndrome. Arch. Gynecol. Obstet. 2012, 286, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Abali, R.; Celik, C.; Tasdemir, N.; Guzel, S.; Alpsoy, S.; Yuksel, A.; Celik, E. The serum protein α2-Heremans-Schmid glycoprotein/fetuin-a concentration and carotid intima-media thickness in women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 45–49. [Google Scholar] [CrossRef]
- Enli, Y.; Fenkci, S.M.; Fenkci, V.; Öztekin, Ö. Serum Fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2013, 29, 1036–1039. [Google Scholar] [CrossRef]
- Kozakowski, J.; Jeske, W.; Zgliczyński, W. Fetuina A u szczupłych i otyłych kobiet z zespołem policystycznych jajników. Endokrynol. Polska 2014, 65, 371–376. [Google Scholar] [CrossRef]
- Díaz, M.; Gallego-Escuredo, J.M.; López-Bermejo, A.; de Zegher, F.; Villarroya, F.; Ibáñez, L. Low-Dose Spironolactone-Pioglitazone-Metformin Normalizes Circulating Fetuin-A Concentrations in Adolescent Girls with Polycystic Ovary Syndrome. Int. J. Endocrinol. 2018, 2018, 4192940. [Google Scholar] [CrossRef]
- Sak, S.; Uyanikoglu, H.; Incebiyik, A.; Incebiyik, H.; Hilali, N.G.; Sabuncu, T.; Sak, E. Associations of serum fetuin-A and oxidative stress parameters with polycystic ovary syndrome. Clin. Exp. Reprod. Med. 2018, 45, 116–121. [Google Scholar] [CrossRef]
- Liu, S.; Hu, W.; He, Y.; Li, L.; Liu, H.; Gao, L.; Yang, G.; Liao, X. Serum Fetuin-A levels are increased and associated with insulin resistance in women with polycystic ovary syndrome. BMC Endocr. Disord. 2020, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ramanjaneya, M.; Bensila, M.; Bettahi, I.; Jerobin, J.; Samra, T.A.; Aye, M.M.; Alkasem, M.; Siveen, K.S.; Sathyapalan, T.; Skarulis, M.; et al. Dynamic Changes in Circulating Endocrine FGF19 Subfamily and Fetuin-A in Response to Intralipid and Insulin Infusions in Healthy and PCOS Women. Front. Endocrinol. 2020, 11, 568500. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Schick, F.; Birkenfeld, A.L.; Häring, H.-U.; White, M.F. The role of hepatokines in NAFLD. Cell Metab. 2023, 35, 236–252. [Google Scholar] [CrossRef] [PubMed]
- Coskun, T.; Bina, H.A.; Schneider, M.A.; Dunbar, J.D.; Hu, C.C.; Chen, Y.; Moller, D.E.; Kharitonenkov, A. Fibroblast Growth Factor 21 Corrects Obesity in Mice. Endocrinology 2008, 149, 6018–6027. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef]
- Dushay, J.; Chui, P.C.; Gopalakrishnan, G.S.; Varela–Rey, M.; Crawley, M.; Fisher, F.M.; Badman, M.K.; Martinez–Chantar, M.L.; Maratos–Flier, E. Increased Fibroblast Growth Factor 21 in Obesity and Nonalcoholic Fatty Liver Disease. Gastroenterology 2010, 139, 456–463. [Google Scholar] [CrossRef]
- Zhang, X.; Yeung, D.C.Y.; Karpisek, M.; Stejskal, D.; Zhou, Z.-G.; Liu, F.; Wong, R.L.C.; Chow, W.-S.; Tso, A.W.K.; Lam, K.S.L.; et al. Serum FGF21 Levels Are Increased in Obesity and Are Independently Associated with the Metabolic Syndrome in Humans. Diabetes 2008, 57, 1246–1253. [Google Scholar] [CrossRef]
- Sahin, S.B.; Ayaz, T.; Cure, M.C.; Sezgin, H.; Ural, U.M.; Balik, G.; Sahin, F.K. Fibroblast growth factor 21 and its relation to metabolic parameters in women with polycystic ovary syndrome. Scand. J. Clin. Lab. Investig. 2014, 74, 465–469. [Google Scholar] [CrossRef]
- Kahraman, S.; Altinova, A.E.; Yalcin, M.M.; Gulbahar, O.; Arslan, B.; Akturk, M.; Cakir, N.; Toruner, F.B. Association of serum betatrophin with fibroblast growth factor-21 in women with polycystic ovary syndrome. J. Endocrinol. Investig. 2018, 41, 1069–1074. [Google Scholar] [CrossRef]
- Martínez-García, M.; Moncayo, S.; Insenser, M.; Álvarez-Blasco, F.; Luque-Ramírez, M.; Escobar-Morreale, H.F. Metabolic Cytokines at Fasting and During Macronutrient Challenges: Influence of Obesity, Female Androgen Excess and Sex. Nutrients 2019, 11, 2566. [Google Scholar] [CrossRef]
- Gorar, S.; Culha, C.; Uc, Z.A.; Dellal, F.D.; Serter, R.; Aral, S.; Aral, Y. Serum fibroblast growth factor 21 levels in polycystic ovary syndrome. Gynecol. Endocrinol. 2010, 26, 819–826. [Google Scholar] [CrossRef]
- Olszanecka-Glinianowicz, M.; Madej, P.; Wdowczyk, M.; Owczarek, A.; Chudek, J. Circulating FGF21 levels are related to nutritional status and metabolic but not hormonal disturbances in polycystic ovary syndrome. Eur. J. Endocrinol. 2015, 172, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bednarska, S.; Fryczak, J.; Siejka, A. Serum β-Klotho concentrations are increased in women with polycystic ovary syndrome. Cytokine 2020, 134, 155188. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Ng, N.Y.H.; Tam, C.H.T.; Zhang, Y.; Lim, C.K.P.; Jiang, G.; Ng, A.C.W.; Yau, T.T.L.; Cheung, L.P.; Xu, A.; et al. Association between FGF19, FGF21 and lipocalin-2, and diabetes progression in PCOS. Endocr. Connect. 2021, 10, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Moll, G.W.; Rosenfield, R.L. Testosterone Binding and Free Plasma Androgen Concentrations under Physiological Conditions: Characterization by Flow Dialysis Technique. J. Clin. Endocrinol. Metab. 1979, 49, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Nestler, J.E.; Powers, L.P.; Matt, D.W.; Steingold, K.A.; Plymate, S.R.; Rittmaster, R.S.; Clore, J.N.; Blackard, W.G. A Direct Effect of Hyperinsulinemia on Serum Sex Hormone-Binding Globulin Levels in Obese Women with the Polycystic Ovary Syndrome*. J. Clin. Endocrinol. Metab. 1991, 72, 83–89. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Carlström, K.; Eriksson, S.; Rannevik, G. Sex steroids and steroid binding proteins in female alcoholic liver disease. Eur. J. Endocrinol. 1986, 111, 75–79. [Google Scholar] [CrossRef]
- Peter, A.; Kantartzis, K.; Machann, J.; Schick, F.; Staiger, H.; Machicao, F.; Schleicher, E.; Fritsche, A.; Häring, H.-U.; Stefan, N. Relationships of Circulating Sex Hormone–Binding Globulin with Metabolic Traits in Humans. Diabetes 2010, 59, 3167–3173. [Google Scholar] [CrossRef]
- Jaruvongvanich, V.; Sanguankeo, A.; Riangwiwat, T.; Upala, S. Testosterone, Sex Hormone-Binding Globulin and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Ann. Hepatol. 2017, 16, 382–394. [Google Scholar] [CrossRef]
- Ruth, K.S.; The Endometrial Cancer Association Consortium; Day, F.R.; Tyrrell, J.; Thompson, D.J.; Wood, A.R.; Mahajan, A.; Beaumont, R.N.; Wittemans, L.; Martin, S.; et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 2020, 26, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Song, M.J.; Choi, J.Y. Androgen dysfunction in non-alcoholic fatty liver disease: Role of sex hormone binding globulin. Front. Endocrinol. 2022, 13, 1053709. [Google Scholar] [CrossRef] [PubMed]
- Flisiak-Jackiewicz, M.; Bobrus-Chociej, A.; Wasilewska, N.; Tarasow, E.; Wojtkowska, M.; Lebensztejn, D.M. Can hepatokines be regarded as novel non-invasive serum biomarkers of intrahepatic lipid content in obese children? Adv. Med. Sci. 2019, 64, 280–284. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Tsatsoulis, A.; Zafeiriadou, E.; Katsiki, E.; Patsiaoura, K.; Zavos, C.; Anastasiadou, V.V.; Slavakis, A. Sex steroids and sex hormone-binding globulin in postmenopausal women with nonalcoholic fatty liver disease. Hormones 2013, 12, 405–416. [Google Scholar] [CrossRef]
- Reinehr, T.; Woelfle, J.; Wunsch, R.; Roth, C.L. Fibroblast Growth Factor 21 (FGF-21) and Its Relation to Obesity, Metabolic Syndrome, and Nonalcoholic Fatty Liver in Children: A Longitudinal Analysis. J. Clin. Endocrinol. Metab. 2012, 97, 2143–2150. [Google Scholar] [CrossRef]
- Alisi, A.; Ceccarelli, S.; Panera, N.; Prono, F.; Petrini, S.; De Stefanis, C.; Pezzullo, M.; Tozzi, A.; Villani, A.; Bedogni, G.; et al. Association between Serum Atypical Fibroblast Growth Factors 21 and 19 and Pediatric Nonalcoholic Fatty Liver Disease. PLoS ONE 2013, 8, e67160. [Google Scholar] [CrossRef] [PubMed]
- Lebensztejn, D.M.; Flisiak-Jackiewicz, M.; Białokoz-Kalinowska, I.; Bobrus-Chociej, A.; Kowalska, I. Hepatokines and non-alcoholic fatty liver disease. Acta Biochim. Pol. 2016, 63, 459–467. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, J.; Zhao, Z.; Wang, M.; Wang, Y.; Xin, Y. Systematic Review and Meta-analysis of Circulating Fetuin-A Levels in Nonalcoholic Fatty Liver Disease. J. Clin. Transl. Hepatol. 2021, 9, 3–14. [Google Scholar] [CrossRef]
- Zhang, X.; Mou, Y.; Aribas, E.; Amiri, M.; Nano, J.; Bramer, W.M.; Kavousi, M.; de Knegt, R.J.; Asllanaj, E.; Ghanbari, M. Associations of Sex Steroids and Sex Hormone-Binding Globulin with Non-Alcoholic Fatty Liver Disease: A Population-Based Study and Meta-Analysis. Genes 2022, 13, 966. [Google Scholar] [CrossRef]
- Liu, D.; Gao, X.; Pan, X.-F.; Zhou, T.; Zhu, C.; Li, F.; Fan, J.-G.; Targher, G.; Zhao, J. The hepato-ovarian axis: Genetic evidence for a causal association between non-alcoholic fatty liver disease and polycystic ovary syndrome. BMC Med. 2023, 21, 62. [Google Scholar] [CrossRef]
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Blume, J.D. Bounding sample size projections for the area under a ROC curve. J. Stat. Plan. Inference 2009, 139, 711–721. [Google Scholar] [CrossRef] [PubMed]
Rotterdam Criteria (2 out of 3) | 2015 Pediatric Endocrine Societies | 2017 Pediatric Endocrine Societies |
---|---|---|
Clinical and/or biochemical hyperandrogenism (HA) |
| Evidence of HA (required)
|
Oligo- or anovulation |
| Persistent irregular menses/oligomenorrhea (required) |
Polycystic ovarian morphology (PCOM) | Deferring diagnostic evaluation for PCOM ovarian volume > 12 cm3 could be considered | Optional criteria
|
Exclusion of other etiologies of androgen excess and anovulation | Two years post-menarche; rule out other disorders of hyperandrogenism |
PCOS | ||||||
---|---|---|---|---|---|---|
PCOS (n = 40) | Controls (n = 35) | p-Value | Lean (n = 19) | Overweight/Obese (n = 21) | p-Value | |
Age (years) | 15.45 ± 1.59 | 15.00 ± 1.49 | 0.211 | 15.36 ± 1.56 | 15.54 ± 1.65 | 0.733 |
Menarche (years) | 11.87 ± 1.36 | 11.60 ± 0.82 | 0.312 | 12.56 ± 1.13 | 11.21 ± 1.25 | 0.001 |
BMI (kg/m2) | 25.66 ± 5.30 | 23.23 ± 4.19 | 0.032 | 21.27 ± 2.25 | 29.64 ± 3.92 | <0.001 |
BMI percentile by age § | 89.50 (32.80) | 78.50 (39.70) | 0.130 | 63.00 (30.30) | 94.00 (4.85) | <0.001 |
FG Score § | 12.00 (5) | 4.00 (9) | <0.001 | 12.00 (5) | 12.00 (7) | 0.791 |
SBP (mmHg) | 116.63 ± 10.53 | 112.09 ± 7.86 | 0.050 | 112.05 ± 8.94 | 120.73 ± 10.34 | 0.011 |
DBP (mmHg) | 67.69 ± 9.80 | 65.84 ± 7.41 | 0.394 | 65.18 ± 11.05 | 70.05 ± 8.09 | 0.157 |
WC (cm) | 76.71 ± 9.90 | 72.63 ± 8.04 | 0.057 | 69.13 ± 4.40 | 83.21 ± 8.59 | <0.001 |
WHtR | 0.47 ± 0.06 | 0.45 ± 0.05 | 0.185 | 0.42 ± 0.035 | 0.51 ± 0.05 | <0.001 |
WHR | 0.74 ± 0.06 | 0.74 ± 0.71 | 0.883 | 0.72 ± 0.05 | 0.76 ± 0.05 | 0.010 |
ALT § (U/L) | 14.00 (11) | 13.00 (6) | 0.017 | 13.00 (8) | 20.00 (12) | 0.060 |
AST § (U/L) | 17.50 (5.25) | 16 (5) | 0.164 | 17.00 (5) | 18.00 (6) | 0.750 |
gGT § (U/L) | 11.90 (8) | 10 (5.65) | 0.037 | 10 (4) | 16 (9) | 0.010 |
TC § (mg/dL) | 149.10 (32.52) | 146.50(40.85) | 0.675 | 149 (37.80) | 149 (28.50) | 0.708 |
HDLc (mg/dL) | 53.96 ± 13.15 | 58.10 ± 11.23 | 0.165 | 56.91 ± 12.24 | 51.29 ± 13.66 | 0.180 |
LDLc § (mg/dL) | 84.00 (34.40) | 83.40 (33.70) | 0.885 | 77.10 (34.40) | 89.80 (36.70) | 0.573 |
ApoA1 (mg/dL) | 135.81 ± 19.51 | 142.80 ± 33.75 | 0.564 | 143.00 ± 22.55 | 128.62 ± 13.76 | 0.073 |
ApoB § (mg/dL) | 76.80 (19.25) | 58.00 (43.50) | 0.538 | 74.60 (22.50) | 79 (23.50) | 0.999 |
LpA § (nmol/L) | 14.50 (52.50) | 12.10 (18.88) | 0.389 | 15.15(127.55) | 13.50 (44.70) | 0.497 |
TG § (mg/dL) | 66.65 (49.68) | 60.65 (29) | 0.964 | 51.00 (36.60) | 72.50 (46.50) | 0.027 |
Glucose (mg/dL) | 87.38 ± 7.75 | 83.35 ± 6.04 | 0.020 | 87.74 ± 9.21 | 87.05 ± 6.36 | 0.783 |
Insulin § (μU/mL) | 11.15 (7.69) | 9.55 (7.32) | 0.098 | 8.95 (4.31) | 14.25 (9.67) | 0.006 |
FSH (mIU/mL) | 5.15 ± 1.91 | 5.41 ± 2.25 | 0.597 | 4.86 ± 1.75 | 5.40 ± 2.05 | 0.384 |
LH § (mIU/mL) | 5.91 (7.68) | 2.95 (2.45) | 0.003 | 5.91 (8.48) | 6.3 (7.7) | 0.478 |
E2 § (pg/mL) | 39.15 (24.50) | 28.00 (21.39) | 0.028 | 39 (28.50 | 42 (26) | 0.663 |
PRL§ (ng/mL) | 12.53 (8.23) | 12.85 (8.72) | 0.567 | 12.7 (10.35) | 12.30 (6.99) | 0.839 |
Testosterone § (ng/mL) | 0.41 (0.27) | 0.32 (0.20) | 0.002 | 0.41 (0.35) | 0.42 (0.24) | 0.728 |
FAI § | 3.51 (4.06) | 2.19 (1.91) | 0.001 | 2.76 (2.81) | 4.45 (5.64) | 0.028 |
DHEA-S (μg/dL) | 251.57 ± 109.68 | 246.42 ± 98.34 | 0.837 | 253.91 ± 83.15 | 249.57 ± 130.27 | 0.904 |
D4 § (ng/dL) | 2.89 (1.53) | 2.77 (1.85) | 0.170 | 3.24 (1.74) | 2.56 (1.71) | 0.064 |
25OH-VitD (ng/mL) | 26.48 ± 9.22 | 27.05 ± 7.62 | 0.805 | 25.14 ± 8.69 | 27.83 ± 9.92 | 0.487 |
Ovarian volume (cm3) | 11.59 ± 3.82 | 5.52 ± 2.22 | <0.001 | 11.19 ± 4.58 | 11.94 ± 3.11 | 0.547 |
FibroScan stiffness (kPA) | 6.25 ± 1.54 | 6.87 ± 3.61 | 0.570 | 5.60 ± 1.45 | 6.66 ± 1.45 | 0.245 |
HOMA-IR § | 2.28 (1.55) | 1.86 (1.37) | 0.025 | 1.95 (1.00) | 2.89 (2.61) | 0.015 |
All Adolescents (n = 75) | PCOS (n = 40) | Controls (n = 35) | ||||
---|---|---|---|---|---|---|
Min | Max | Mean ± SD or Median (IQR) | Mean ± SD or Median (IQR) | Mean ± SD or Median (IQR) | p-Value | |
Fetuin A (g/L) | 0.46 | 1.34 | 0.94 ±0.15 | 0.94 ± 0.16 | 0.94 ± 0.16 | 0.972 |
FGF21 § (pg/mL) | 4.40 | 460.00 | 117.30 (106.65) | 90.00 (110.40) | 127.20 (87.80) | 0.077 |
SeP § (μg/mL) | 1.95 | 3.88 | 2.60 (0.39) | 2.47 (0.40) | 2.66 (0.36) | 0.025 |
SHBG (nmol/L) | 4.32 | 110.00 | 47.74 ± 21.58 | 41.71 ± 19.41 | 54.94 ± 22.12 | 0.011 |
PCOS (n = 40) | Controls (n = 35) | p-Value (Comparison among 4 Categories) | |||||
---|---|---|---|---|---|---|---|
Lean (n = 19) | Overweight/ Obese (n = 21) | p | Lean (n = 24) | Overweight/ Obese (n = 11) | p | ||
Fetuin A (g/L) | 0.96 ± 0.15 | 0.92 ± 0.17 | 0.523 | 0.95 ± 0.16) | 0.92 ± 0.12 | 0.659 | 0.892 # |
FGF21 § (pg/mL) | 77.30(113.85) | 108.20 (103.70) | 0.404 | 136.77 ± 67.25 | 150.27± 77.60 | 0.613 | 0.405 * |
SeP § (μg/mL) | 2.44 (0.36) | 2.59 (0.48) | 0.320 | 2.73 (0.37) | 2.61 (0.17) | 0.885 | 0.098 * |
SHBG (nmol/L) | 47.53 ± 20.41 | 36.77 ±17.52 | 0.093 | 60.04 (44.22) | 44.22 (15.26) | 0.061 | 0.005 # |
PCOS with NAFLD (n = 7) | PCOS without NAFLD (n = 32) | p | |
---|---|---|---|
Fetuin A (g/L) | 0.99 ± 0.10 | 0.93 ±0.17 | 0.404 |
FGF21 § (pg/mL) | 198.80 (241.50) | 116.80 (84.70) | 0.028 |
SeP § (μg/mL) | 2.70 (0.54) | 2.45 (0.35) | 0.761 |
SHBG (nmol/L) | 35.70 ± 16.80 | 43.12 ±19.96 | 0.370 |
n | r | p-Value | |
---|---|---|---|
SHBG and | |||
Age | 68 | −0.321 | 0.008 |
35 (controls) | −0.337 | 0.037 | |
BMI | 68 | −0.398 | <0.001 |
35 (controls) | −0.492 | 0.005 | |
SBP | 62 | −0.299 | 0.018 |
28 (controls) | −0.429 | 0.023 | |
WHtR | 67 | −0.407 | <0.001 |
31 (controls) | −0.373 | 0.039 | |
36 (PCOS) | −0.406 | 0.014 | |
TC | 67 | −0.276 | 0.024 |
37 (PCOS) | −0.341 | 0.039 | |
Testosterone | 66 | −0.295 | 0.016 |
Ovarian volume | 66 | −0.312 | 0.011 |
40 (PCOS) | −0.349 | 0.037 | |
HOMA-IR | 62 | −0.400 | 0.001 |
34 (PCOS) | −0.455 | 0.015 | |
SeP and | |||
Testosterone | 68 | 0.325 | 0.007 |
FAI | 68 | 0.361 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannouli, A.; Stefanaki, C.; Kouskoutis, C.; Konidari, M.; Mani, I.; Konidari, K.; Markantonis, S.L.; Mantzou, A.; Dourakis, S.P.; Deligeoroglou, E.; et al. Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case–Control Study. J. Clin. Med. 2023, 12, 5744. https://doi.org/10.3390/jcm12175744
Giannouli A, Stefanaki C, Kouskoutis C, Konidari M, Mani I, Konidari K, Markantonis SL, Mantzou A, Dourakis SP, Deligeoroglou E, et al. Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case–Control Study. Journal of Clinical Medicine. 2023; 12(17):5744. https://doi.org/10.3390/jcm12175744
Chicago/Turabian StyleGiannouli, Aikaterini, Charikleia Stefanaki, Christos Kouskoutis, Marianna Konidari, Iliana Mani, Konstantina Konidari, Sophia L. Markantonis, Aimilia Mantzou, Spyridon P. Dourakis, Efthymios Deligeoroglou, and et al. 2023. "Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case–Control Study" Journal of Clinical Medicine 12, no. 17: 5744. https://doi.org/10.3390/jcm12175744
APA StyleGiannouli, A., Stefanaki, C., Kouskoutis, C., Konidari, M., Mani, I., Konidari, K., Markantonis, S. L., Mantzou, A., Dourakis, S. P., Deligeoroglou, E., & Bacopoulou, F. (2023). Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case–Control Study. Journal of Clinical Medicine, 12(17), 5744. https://doi.org/10.3390/jcm12175744