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Abstract: This study was aimed at observing how the limitation of ankle dorsiflexion ROM affects
hamstring muscle Peak Torque/BW (%), Average Power (W), and Total Work (J), and whether this
effect is similar in football players after ACL rupture and reconstruction and in those without injuries.
The study included 47 professional football players who were divided into two groups: Group 1
(n = 24) after ACL reconstruction and Group 2 (n = 23) without injuries in the past 3 years. Based on the
Weight-Bearing Lunge Test (WBLT), the following subgroups in Groups 1 and 2 were distinguished: N
(normal ankle joint dorsiflexion) and R (restricted ankle joint dorsiflexion). The concentric isokinetic
test (10 knee flexions and extensions at 60◦/s) was performed on both limbs. Significantly lower
values of Peak Torque/BW and Average Power were observed in Group 1 compared to Group 2, as
well as in subjects with normal and restricted ankle dorsiflexion. However, no significant differences
were noted for either group in any of the strength variables comparing subjects with normal and
restricted ankle dorsiflexion. A poor and non-significant correlation was exhibited between the ankle
joint range of dorsiflexion and all the strength variables. The area under the ROC curve (AUC) for
all the evaluated variables in both groups was below 0.5, or very close to this value, indicating that
ankle dorsiflexion ROM has no diagnostic accuracy for hamstring muscle strength. Based on the
obtained results, it can be assumed that ankle dorsiflexion limitation, which is common in football
players, is not a factor in weakening hamstring muscle strength, either in football players after ACL
reconstruction or among those without injuries. However, some authors have reported that limited
mobility of the ankle joint can have a destructive effect on the work of the lower limbs and may
also be a factor in increasing the risk of football injuries in this area. Therefore, we have suggested
that hamstring muscle weakness and increased risk of injury may occur due to factors other than
limited ankle mobility. These observations may be of great importance in the selection of prevention
methods by including a broad spectrum of physical techniques, not just exercises that focus on the
improvement of mobility or stability of the lower limbs.
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1. Introduction

Hamstring injuries have been identified as the most common injury experienced in
football, occurring mainly during sprinting and high-speed running [1–3]. Numerous
potential risk factors for hamstring injuries have been reported, such as decreased flex-
ibility, hamstring muscle weakness, age, past injury history, fatigue and poor warm-up
technique [2,4,5]. Some authors have also found that a decreased ankle dorsiflexion range
of motion may represent a risk factor for hamstring injuries [3]. Moreover, several other
lower limb injuries, i.e., ACL ruptures and Achilles and patellar tendon overuse, have also
been associated with restricted ankle dorsiflexion range of motion (ROM) [6,7].

Previous studies indicated that restricted ankle dorsiflexion ROM significantly in-
creases injury risk by modifying lower limb stiffness and landing forces [6,7]. It can poten-
tially affect an athlete’s performance in multidirectional running and in unilateral dynamic
balance [8], which are fundamental components of football [9]. In professional football,
hamstring injuries most often occur during sharp turns or cutting, or when running at full
speed, one-third occur during training, and the remainder occur during matches [10,11].
It was reported that, during sprinting, decreased ankle mobility may change the touch-
down position of the foot, reducing the horizontal force production [12], and may lead to
increased work required from the hamstring muscle, predisposing it to injury [13].

The integrated concept of kinetic chains indicates that muscle pathways form a large
network of myofascial chains, transferring force between components, while the impair-
ment of one joint may induce injury in others [14–16]. It has also been reported that
longitudinal exposure to high-intensity, eccentric muscle actions, such as rapid acceleration,
deceleration, jumping, and landing tasks, may increase the stiffness of the muscles and ten-
dons [17], leading to decrease in the joint ROM [8,18]. It was further reported that muscles,
which are chronically damaged by indirect trauma are more susceptible to contractures
and muscular straining [14–16]. One of the major reasons for hamstring injuries is athletes
returning to sport before making a complete recovery [19]. But the restrictions remaining
in joint mobility and motor control after injury are an important but still underestimated
factor in prevention strategies.

Moreno-Perez et al. [3] have suggested that the significant involvement of such high-
intensity eccentric muscle actions during training and matches could lead to a reduction in
ankle dorsiflexion ROM. The progressive decrease in ankle dorsiflexion ROM throughout a
season was observed in 30% of all players [6].

Gabbe et al. [4] found that restricted ankle dorsiflexion was associated with the risk
of hamstring injuries. On the other hand„ Van Dyk et al. [2] identified deficits in ankle
dorsiflexion ROM as weak risk factors for hamstring injuries. They concluded that ankle
dorsiflexion measurement has little clinical value in hamstring injury prediction. Thus,
the relationship between ankle mobility and the risk of hamstring injuries is still poorly
understood.

In previous studies, it has been suggested that hamstring muscle weakness [20] and re-
duced ROM at the ankle joint [4] are important risk factors of hamstring muscle strain injury.
As reported by Kim et al. [21], in patients with an ACL rupture, a strength decrease was
noted in both the quadriceps and hamstring muscles, with a significantly higher decrease in
the quadriceps [22]. It is also not clear whether the limitation of ankle dorsiflexion common
among footballers is more pronounced in this group, or if footballers with limited ankle
mobility, having previously undergone ACL reconstruction also have weaker hamstring
muscles than footballers with normal ankle mobility. It has not been clarified so far whether
the limited mobility of the ankle joint may be a factor in weakening the hamstring muscles,
and thereby potentially increasing the risk of their injury.

Although hamstring injuries are common in footballers, there are a limited number of
studies presenting preventive protocols. Biz et al. [5], in a review paper, analyzed the phys-
iotherapy protocols and specific exercises in professional and semi-professional football
players. They concluded that the most common prevention protocols included exercises
without any associated physical or manual therapy techniques. Therefore, there is a need
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for research assessing the impact of limited joint mobility on the risk of hamstring injury,
which may be of great importance in the selection of prevention methods by including
physical techniques.

This study was aimed at observing how the limitation of ankle dorsiflexion ROM
affects hamstring muscle Peak Torque/BW (%), Average Power (W), and Total Work
(J). We also sought to check whether this effect is similar in football players after ACL
reconstruction and in those without injuries.

2. Materials and Methods
2.1. Participants

This study included football players from professional, regional teams (Table 1). They
were divided into 2 groups:

Table 1. Study group characteristics.

Outcome Measure Group 1 Group 2 p

Number of subjects 24 23

Age (years) 22.7 ± 3.6 22.5 ± 3.7 0.86

Body mass (kg) 77.3 ± 7.6 75.3 ± 9.3 0.88

Body height (cm) 175 ± 4 177 ± 3 0.95
p—p value.

Group 1 (n = 24)—football players after ACL reconstruction who had previously
passed the return-to-sport tests (RTS) and were cleared to play. They were active players in
their clubs and performed normal football training (injured leg—after ACL reconstruction,
uninjured leg—contralateral limb without ACL injury).

Group 2 (n = 23)—football players without injuries within the past 3 years (both limbs
were considered as equivalent because the initial statistical analysis did not show any
significant differences between them; therefore, we examined the left limb equivalent of
the involved limb and right limb equivalent of the uninvolved limb).

The inclusion criteria for subjects following ACL reconstruction were regular football
training; first unilateral ACL rupture and reconstruction 2–3 years prior to the study;
no additional injuries to the contralateral leg; age between 20 and 30 years; and normal
BMI. The exclusion criteria were bilateral ACL reconstruction; graft rupture; ACL rupture
without reconstruction; and serious injury in the contralateral leg. The inclusion criteria
in Group 2 were a lack of any lower- or upper-limb or trunk injuries within the previous
3 years; age between 20 and 30 years; and normal BMI.

All football players were informed about the research protocol and provided their written
informed consent to participate in the study. The approval of the Ethical Committee at the
Regional Medical Chamber in Kraków was obtained for this research (23/KBL/OIL/2020).
All procedures were performed in accordance with the 1964 Declaration of Helsinki and its
later amendments.

Based on the previously reported cut-off value of ankle joint dorsiflexion (12 cm in the
Weight-Bearing Lunge Test (WBLT), which is considered the norm) [23,24], the following
subgroups in Groups 1 and 2 were distinguished (Figure 1):

• N (normal)—participants with a normal range of dorsiflexion in the ankle joint (12 cm
or more);

• R (restricted)—participants with a reduced range of dorsiflexion in the ankle joint
(below 12 cm).
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Figure 1. Study protocol.

2.2. Procedures
2.2.1. Measurement of Ankle Joint Dorsiflexion Using the Weight-Bearing Lunge
Test (WBLT)

A measuring tape (cm) was placed on the floor, the starting point (0 cm) aligned with
the bottom corner of the wall. The players were instructed to stand facing the wall on their
front lower limb, with 10 cm between the wall and the tips of the toes. The back lower
limb was positioned by the subjects in such a way that they could stand in a stable and
comfortable position. The subjects were allowed to hold onto the wall for balance during the
test. In this position, the players lunged forward so that the knee touched the wall without
taking their heel off the ground. If the heel lifted, the distance to the wall was shortened
until the heel did not lift. If the heel did not rise, the distance was gradually increased until
the heel rose, and the final distance at which the heel did not lift was marked [24,25]. The
final distance between the tips of the toes and the wall was measured in cm; therefore, a
longer distance indicated higher ankle joint dorsiflexion. Two repetitions of the WBLT were
performed, and the higher score was analyzed. It was reported that the WBLT presented
excellent intra-rater (ICC = 0.99) and inter-rater (ICC = 0.98) reliability [26,27].

2.2.2. Isokinetic Test

Measurements were performed using an isokinetic dynamometer (System 4, Biodex
Medical Systems, Shirley, New York, NY, USA) in a seated position, with the lower limb
flexed in the hip joint to 90◦ and the knee axis of rotation concordant with the anatomical
axis of the joint. The total range of motion (ROM) was set from full extension to full flexion
of the knee joint. The movable arm of the dynamometer was fixed at 1/3 of the distal end
of the tibia. Isokinetic testing in the concentric mode at an angular velocity of 60◦/s was
performed on both legs. The tests consisted of 10 flexions and extensions in the knee joint.
The following hamstring muscle variables were analyzed: Peak Torque/BW (%); Average
Power (W); and Total Work (J). The result was the mean value of 10 contractions. The
reported reliability of the isokinetic test for knee flexion was good ICC = 0.88–0.97 [28,29].

2.2.3. Statistical Analysis

STATISTICA 13.0 Pl software (StatSoft Poland, Krakow, Poland) was used. Data nor-
mality was tested with the Shapiro–Wilk test. The differences in muscle force variables
between the limbs were tested with the paired t-test. Pearson’s correlation coefficient (r) be-
tween the WBLT value and strength variables was calculated (below 0.50—“poor,” between
0.50 and 0.75—“moderate”; between 0.75 and 0.90—“good”; above 0.90—”excellent”). The
MANOVA test was implemented to establish the significance of differences in the strength
variables across two independent factors (study group ×WBLT (N or R)). The Cohen’s d
effect size (ES) was calculated and interpreted as small (0.2–0.3), medium (0.5), or large
(>0.8). Differences were statistically significant at a level of (p < 0.05).

The sensitivity, specificity, ROC (receiver operator characteristics) curve, and AUC
(area under the curve) were calculated. ROC curves plot the true-positive rate (sensitivity)
against the false-positive rate (1 minus the specificity) for the possible cut-off score. The
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AUC may be interpreted as the probability of restriction presence in ankle joint mobility
correctly identifying potential hamstring muscle weakness in a player from randomly
selected pairs of players who have a normal diminishment of their hamstring muscle
strength. The AUC can range from 0.5 (no diagnostic accuracy) to 1.0 (perfect diagnostic
accuracy).

3. Results
3.1. Strength Variables for Injured (Group 1) and Right (Group 2) Leg

Significantly lower values of Peak Torque/BW and Average Power were observed
in Group 1 compared to Group 2, as well as in subjects with normal, as with restricted,
ankle dorsiflexion (Table 2). However, no significant differences were noted in either group
for any strength variables between subjects with normal or restricted ankle dorsiflexion
(Table 2).

Table 2. Comparison of strength variables for injured (Group 1) and right (Group 2) leg.

Outcome Measure
Group 1 Group 2

WBLT Mean ± SD p * ES (d) * Mean ± SD p * ES(d) * p ** ES(d) **

Peak Torque/BW (%)
N 122 ± 23

0.98 0.03
160 ± 30

0.50 0.26
0.006 1.42

R 121 ± 28 168 ± 31 0.0002 1.59

Average Power (W)
N 63 ± 19

0.50 0.29
88 ± 20

0.76 0.10
0.01 1.28

R 58 ± 14 86 ± 18 0.0003 1.76

Total Work (J)
N 578 ± 114

0.26 0.55
610 ± 112

0.92 0.04
0.60 0.28

R 517 ±106 605 ± 117 0.06 0.78

WBLT—Weight-Bearing Lunge Test; N—normal, R—restricted; p *—p value between subjects with normal and
restricted ankle mobility within group; p **—p value between groups; ES *—effect size between subjects with
normal and restricted ankle mobility within group; ES **—effect size between groups. Values are expressed as
mean ± SD.

3.2. Strength Variables for Uninjured (Group 1) and Left (Group 2) Leg

Significantly lower values of Peak Torque/BW were observed in Group 1 compared to
Group 2, as well in subjects with normal and with restricted ankle dorsiflexion (Table 3). The
lower values of Average Power in Group 1 compared to Group 2 was demonstrated only in
subjects with restricted ankle dorsiflexion (Table 3). However, no significant differences
were noted in either group for any of the strength variables between subjects with normal
or restricted ankle dorsiflexion (Table 3).

Table 3. Comparison of strength variables for uninjured (Group 1) and left (Group 2) leg.

Outcome Measure
Group 1 Group 2

WBLT Mean ± SD p * ES (d) * Mean±SD p * ES (d) * p ** ES (d) **

Peak Torque/BW (%)
N 130 ± 17

0.94 0.05
161 ± 37

0.30 0.47
0.02 1.07

R 131 ± 20 178 ± 35 0.0008 1.64

Average Power (W)
N 71 ± 19

0.74 0.17
86 ± 21

0.61 0.22
0.09 0.74

R 68 ± 16 82 ± 14 0.01 0.93

Total Work (J)
N 648 ± 121

0.35 0.97
638 ± 123

0.80 0.10
0.80 0.08

R 531 ±118 625 ± 119 0.10 0.79

WBLT—Weight-Bearing Lunge Test; N—normal, R—restricted; p *—p value between subjects with normal and
restricted ankle mobility within group; p **—p value between groups; ES *—effect size between subjects with
normal and restricted ankle mobility within group; ES **—effect size between groups. Values are expressed as
mean ± SD.
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3.3. Correlations

A poor and non-significant correlation was observed between ankle joint range of
dorsiflexion and all the strength variables (Table 4).

Table 4. Correlation between WBLT and strength variables.

Group 1 Group 2

WBLT (cm) WBLT (cm)

Involved Uninvolved Right Left

r p r p r p r p

Peak Torque/BW (%) −0.06 0.77 0.09 0.65 −0.18 0.40 −0.16 0.45

Average Power (W) 0.08 0.67 0.19 0.35 0.07 0.75 0.25 0.24

Total Work (J) 0.26 0.17 0.15 0.27 −0.07 0.75 0.05 0.79

WBLT—Weight-Bearing Lunge Test; r—Pearson’s correlation coefficient; p—p value.

3.4. Diagnostic Value of Data

The area under the ROC curve (AUC) for all the evaluated variables in both groups
was below 0.5, or very close to this value, indicating that the ankle dorsiflexion ROM has
no diagnostic accuracy for hamstring muscle strength (Table 5).

Table 5. AUC for strength variables.

Group 1 Group 2

Involved Uninvolved Right Left

AUC p AUC p AUC p AUC p

Peak Torque/BW (%) 0.481 0.87 0.50 0.97 0.59 0.43 0.59 0.45

Average Power (W) 0.45 0.71 0.52 0.83 0.48 0.92 0.41 0.48

Total Work (J) 0.40 0.42 0.65 0.16 0.50 0.95 0.47 0.81

p—p value; AUC—area under ROC curve.

4. Discussion

Football players post ACL reconstruction demonstrated significantly lower values of
hamstring muscle strength and power compared to those without injuries. However, in
both groups, no significant differences were noted in hamstring muscle strength between
players with restricted and those with a normal range of ankle dorsiflexion. Footballers
with a restricted range of ankle dorsiflexion presented similar hamstring muscle strength
to those with a normal range. Also, the lack of correlation between hamstring strength and
ankle dorsiflexion, as well as the low AUC value, indicate no effect of ankle joint mobility
limitation on hamstring muscle strength. It is probable that the limited mobility of the
ankle joint is not a factor in hamstring muscle weakness, regardless of whether the athlete
has undergone ACL reconstruction or not. The amount of ankle joint mobility limitation
appears to be similar in footballers after reconstruction and in healthy ones.

Football players often sustain ankle injuries, such as sprains, ligament reconstruction,
or chronic instability, which lead to restrictions in ankle mobility with reduced dorsiflexion
ROM [6]. Nonetheless, it has been reported that daily activities, i.e., walking or descending
stairs, requires 10◦ of ankle dorsiflexion ROM, while sprinting or running require 20◦ to
30◦ [26]. Many authors have stated that restricted ankle dorsiflexion has a destructive effect
on lower limb performance and increases the risk of injury [7,8]. Therefore, this problem
may be especially present among footballers, who are a group of athletes particularly
vulnerable to chronic injuries and overloading of the ankle joint. However, the potential
influence of ankle mobility limitation on athletes’ performance and injury risk has been
studied by many authors [1,4,7,8], and the obtained results are still equivocal.
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In some studies, it has been shown that limited mobility of the ankle joint can have
a destructive effect on the work of the lower limb’s entire kinematic chain and may also
be a factor increasing the risk of football injuries in this area [30,31], especially those of
the hamstring muscles [4]. In certain studies, it has been indicated that altered movement
patterns and greater forces may predispose athletes to tissue overload [7,13]. Additionally,
Almansoof et al. [15] have shown that the limited mobility of the ankle negatively affects
the work of the calf. Based on the concept of myofascial chains and the transfer of forces
through interconnected structures, the limited mobility of the ankle joint may disturb
the work of the calf muscles [15,16]. Due to the fact that both the hamstrings and the
gastrocnemius muscles are elements of the posterior muscle chain, it was suggested that
disturbances in the transfer of forces through the calf affect the functioning of the hamstring
muscles [16].

There are a number of theories suggesting an association between ankle dorsiflexion
restriction and lower limb injury. It has been proposed that reduced ankle dorsiflexion
may restrict the ability to pass the leg forwards over the foot and to lower the center of
mass during squat-type movements [32]. It may also lead to abnormal lower-extremity
biomechanics during closed-chain strengthening exercises [33] and also increase the risk
of injury by altering lower-extremity stiffness and landing forces [7,34]. It has also been
underlined that ankle dorsiflexion ROM has a crucial influence on performance in multidi-
rectional sports movements [9,35] where altered proprioception or neuromuscular control
can impact hamstring function and timing during the terminal phase of swing during
sprinting, increasing the likelihood of hamstring injury at this time [6].

However, some authors have indicated a potential negative impact of foot dorsiflexion
limitation on the hamstring muscle performance [4,20], while others have not confirmed
such a relationship [36]. Furthermore, there are studies in which it is directly shown that
footballers with limited ankle mobility do not suffer from hamstring injuries more often
than footballers with normal mobility [2].

Bennell et al. [36] have found that the ankle dorsiflexion range was not a significant
predictor of hamstring injury risk. Additionally, van Dyk et al. [2] have confirmed that the
ankle dorsiflexion range of motion was a weak risk factor for hamstring injury. In their
study, the differences between the injured and uninjured players were non-significant, with
small effect sizes (d\0.2). Moreover, the ROC curve analyses showed an area under the
curve of 0.61 for ankle dorsiflexion, indicating the poor combined sensitivity and specificity
of these variables [2]. Our results seem to confirm van Dyk’s observation that limited ankle
dorsiflexion is not a factor in hamstring muscle weakness and should not be considered a
cause of hamstring injury. It is probable that the large number of hamstring muscle injuries
experienced by football players has causes other than impaired mobility of the ankle joint.

In various studies, it is clearly indicated that ACL reconstruction in football players
causes long-term deficits in both lower-limb muscle strength and joint mobility. Following
ACL reconstruction, footballers are weaker than those without such an injury, which has
been indicated by other authors [21,22] and in our research [37]. In this study, signifi-
cantly lower hamstring strength and power were also observed in both limbs of football
players after ACL reconstruction. We therefore hypothesized that the potential hamstring-
impairing effect of limited ankle mobility may be greater in these players than in uninjured
individuals. However, the results of this study did not confirm our hypothesis, indicating
no significant relationship between the mobility of the ankle joint and the strength of the
hamstrings in either group. The lack of correlation between the hamstring strength and
ankle dorsiflexion, as well as the low AUC value reported in our study, indicates no effect
of ankle joint mobility limitation on hamstring muscle strength, regardless of whether
the athlete has undergone ACL reconstruction or not. The amount of ankle joint mobility
limitation was similar in footballers post ACL reconstruction and in healthy ones.

There are some limitations of the study. The study is cross-sectional; therefore, no
causal inferences can be concluded. Thus, the longitudinal monitoring of muscle strength
and ankle dorsiflexion ROM would be of interest.
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5. Conclusions

The hamstring muscles in football players following ACL reconstruction were weaker
than those in uninjured players. In both groups, those footballers with a restricted range
of ankle dorsiflexion presented similar hamstring muscle strength to those with a normal
range. Moreover, the poor and non-significant relationship between the hamstring strength
and ankle dorsiflexion, as well as the low AUC value, indicates no effect of ankle joint
mobility limitation on hamstring muscle strength. Based on the obtained results, it can be
assumed that ankle dorsiflexion limitation, which is common in football players, is not
a factor in weakening the hamstring muscle strength of either football players after ACL
reconstruction or of those without injuries. However, some authors have reported that
limited mobility of the ankle joint can have a destructive effect on the work of the lower
limbs and may also be a factor increasing the risk of football injuries in its area [30,31].
Therefore, we have suggested that hamstring muscle weakness and increased risk of injury
may occur due to factors other than limited ankle mobility. These observations may be of
great importance in the selection of prevention methods by including a broad spectrum
of physical techniques, not just exercises, that focus on the improvement of mobility or
stability of the lower limbs.
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