Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Technique, DNA Extraction, PCR Amplification, Library Preparation, and Amplicon Sequencing
2.2. Data Analysis
3. Results
3.1. Comparative Analysis of Microbiome Composition Reveals Significant Differences between Control and Keratoconus Groups at the Phylum Level
3.2. Genus-Level Comparison Reveals Significant Differences in Microbiota Composition between Control and Keratoconus Groups
3.3. Alpha Diversity Analyses Reveal Distinct Microbial Communities in Control and Keratoconus Groups
3.4. Principal Coordinates Analysis Reveals Distinct Microbial Community Structures in Control and Keratoconus Groups
3.5. Heatmap Visualization Highlights Distinct Taxonomic Markers in Control and Keratoconus Groups
4. Discussion
- Pelomonas:
- -
- Habitat: Pelomonas bacteria are commonly found in aquatic environments, including freshwater, wastewater, and other water sources
- -
- Metabolism: These bacteria are typically aerobic and are capable of reducing nitrate to nitrite. They are also known for their ability to metabolize various organic compounds.
- -
- Non-Pathogenic: Pelomonas species are generally considered non-pathogenic to humans, though they have occasionally been isolated from clinical samples.
- -
- Role in Environmental Processes: Pelomonas bacteria play roles in various environmental processes, such as the nitrogen cycle, due to their ability to reduce nitrates.
- Ralstonia
- -
- Habitat: Ralstonia species are widely distributed in the environment and can be found in soil, water, and plants.
- -
- Pathogenicity: Some species of Ralstonia, such as Ralstonia pickettii, can be opportunistic pathogens in humans, causing infections primarily in immunocompromised individuals.
- -
- Plant Pathogen: Ralstonia solanacearum is a well-known plant pathogen causing bacterial wilt in a variety of plants, which can lead to significant agricultural losses.
- -
- Metabolic Diversity: Ralstonia species exhibit metabolic diversity and are capable of degrading a wide range of organic compounds, making them important for bioremediation.
- -
- Resistance: Ralstonia species are known for their resistance to heavy metals and antibiotics, which can make infections caused by these bacteria challenging to treat.
- -
- Biofilm Formation: Ralstonia species can form biofilms, which are communities of bacteria encased in a matrix on various surfaces. This ability can contribute to their persistence in hospital environments and medical devices.
- (1)
- Diagnostic: The specific composition of the microbiome can be helpful in the diagnosis of infectious diseases and monitoring microbial components of noncommunicable chronic or new-onset diseases;
- (2)
- Risk Factor: The microbiome can be involved in the understanding of disease progression. Some ECST KC microbiomes could be linked to quicker KC progression;
- (3)
- Therapeutic: understanding the role of microbiome in KC patients could change the choices of current treatments and/or help develop new treatments focused on KC microbiome improvements.
- -
- Increased Susceptibility to Infections: Lower diversity in microbiota might make the ocular surface more susceptible to pathogenic infections due to reduced competition for resources and colonization sites.
- -
- Altered Immune Response: The diversity of microbiota contributes to the modulation of local immune responses. A decrease in diversity could alter immune regulation, potentially leading to increased inflammation or autoimmune reactions, which could exacerbate KC progression.
- -
- Changes in Metabolite Production: Microbiota produce various metabolites that can influence host tissue. A reduction in microbiota diversity could alter the profile of these metabolites, affecting the nutritional and metabolic environment of the cornea, which might impact KC.
- -
- Disruption of Homeostasis: Microbial diversity is essential for maintaining homeostasis on body surfaces, including the eye. Reduced diversity might disrupt the balance between the host and microbiota, potentially leading to ocular surface disease and affecting the progression of KC.
- -
- Impact on Treatment Response: A less diverse microbiome may impact how patients respond to treatments, as the microbiota can affect drug metabolism and modulate host responses.
- -
- Development of Antibiotic Resistance: Low diversity can result in domination by a few species, leading to antibiotic resistance development and making infections harder to treat.
- -
- Modification of Tear Film Composition: The microbiota can influence the composition of the tear film. Changes in microbiota diversity might affect tear film stability and composition, contributing to ocular surface abnormalities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muftuoglu, O.; Ayar, O.; Ozulken, K.; Ozyol, E.; Akıncı, A. Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J. Cataract. Refract. Surg. 2013, 39, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, J.; Iselin, K.C.; Borroni, D.; Romano, D.; Gokul, A.; McGhee, C.N.J.; Zhao, Y.; Sedaghat, M.-R.; Momeni-Moghaddam, H.; et al. Keratoconus detection of changes using deep learning of colour-coded maps. BMJ Open Ophthalmol. 2021, 6, e000824. [Google Scholar] [CrossRef] [PubMed]
- Léoni-Mesplié, S.; Mortemousque, B.; Touboul, D.; Malet, F.; Praud, D.; Mesplié, N.; Colin, J. Scalability and severity of keratoconus in children. Am. J. Ophthalmol. 2012, 154, 56–62.e1. [Google Scholar] [CrossRef] [PubMed]
- Rocha-de-Lossada, C.; Prieto-Godoy, M.; Sánchez-González, J.-M.; Romano, V.; Borroni, D.; Rachwani-Anil, R.; Alba-Linero, C.; Peraza-Nieves, J.; Kaye, S.B.; Rodríguez-Calvo-de-Mora, M. Tomographic and aberrometric assessment of first-time diagnosed paediatric keratoconus based on age ranges: A multicentre study. Acta Ophthalmol. 2021, 99, e929–e936. [Google Scholar] [CrossRef]
- Shah, Z.; Hussain, I.; Borroni, D.; Khan, B.S.; Wahab, S.; Mahar, P.S. Bowman’s layer transplantation in advanced keratoconus; 18-months outcomes. Int. Ophthalmol. 2022, 42, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Borroni, D.; Bonzano, C.; Hristova, R.; Rachwani-Anil, R.; Sánchez-González, J.M.; de Lossada, C.R. Epithelial Flap Corneal Cross-linking. J. Refract. Surg. 2021, 37, 741–745. [Google Scholar] [CrossRef]
- Borroni, D.; Bonzano, C.; Hristova, R.; Sánchez González, J.M.; Pennisi, F.; Rocha-Bogas, A.; Rocha de Lossada, C. A New Surgical Technique to Deliver Riboflavin Beneath Corneal Epithelium: The Corneal Cross-Linking Epi-Pocket. Asia-Pac. J. Ophthalmol. 2021, 10, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Mgboji, G.E.; Varadaraj, V.; Thanitcul, C.; Canner, J.K.; Woreta, F.A.; Soiberman, U.S.; Srikumaran, D. Deep Anterior Lamellar Keratoplasty and Penetrating Keratoplasty for Keratoconus: A Claims-Based Analysis. Cornea 2023, 42, 663–669. [Google Scholar] [CrossRef]
- Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [CrossRef]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Knight, R.; Petrosino, J.F.; Huang, K.; McGuire, A.L.; Birren, B.W.; Nelson, K.E.; White, O.; Methé, B.A.; Huttenhower, C. The Human Microbiome Project: A community resource for the healthy human microbiome. PLoS Biol. 2012, 10, e1001377. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, J.T.; Asquith, M.J. The Microbiome: A Revolution in Treatment for Rheumatic Diseases? Curr. Rheumatol. Rep. 2016, 18, 62. [Google Scholar] [CrossRef] [PubMed]
- Gallon, P.; Parekh, M.; Ferrari, S.; Fasolo, A.; Ponzin, D.; Borroni, D. Metagenomics in ophthalmology: Hypothesis or real prospective? Biotechnol. Rep. 2019, 23, e00355. [Google Scholar] [CrossRef]
- Roy, S.; LaFramboise, W.A.; Nikiforov, Y.E.; Nikiforova, M.N.; Routbort, M.J.; Pfeifer, J.; Nagarajan, R.; Carter, A.B.; Pantanowitz, L. Next-Generation Sequencing Informatics: Challenges and Strategies for Implementation in a Clinical Environment. Arch. Pathol. Lab. Med. 2016, 140, 958–975. [Google Scholar] [CrossRef]
- Doan, T.; Wilson, M.R.; Crawford, E.D.; Chow, E.D.; Khan, L.M.; Knopp, K.A.; O’Donovan, B.D.; Xia, D.; Hacker, J.K.; Stewart, J.M.; et al. Illuminating uveitis: Metagenomic deep sequencing identifies common and rare pathogens. Genome Med. 2016, 8, 90. [Google Scholar] [CrossRef]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J.; Fadrosh, D.W.; Ma, B.; Gajer, P.; et al. An improved dualindexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef]
- De Filippis, F.; Laiola, M.; Blaiotta, G.; Ercolini, D. Different amplicon targets for sequencingbased studies of fungal diversity. Appl. Environ. Microbiol. 2017, 83, e00905–e00917. [Google Scholar] [CrossRef]
- Banos, S.; Lentendu, G.; Kopf, A.; Wubet, T.; Glöckner, F.O.; Reich, M. A comprehensive fungispecific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol. 2018, 18, 190. [Google Scholar] [CrossRef]
- Pollock, J.; Glendinning, L.; Wisedchanwet, T.; Watson, M. The madness of microbiome: Attempting to find consensus “best practice” for 16S microbiome studies. Appl. Environ. Microbiol. 2018, 84, e02627-17. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Miller, S.A. Clinical metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Pallen, M.J.; Loman, N.J.; Penn, C.W. High-throughput sequencing and clinical microbiology: Progress, opportunities and challenges. Curr. Opin. Microbiol. 2010, 13, 625–631. [Google Scholar] [CrossRef]
- Wilson, M.R.; Naccache, S.N.; Samayoa, E.; Biagtan, M.; Bashir, H.; Yu, G.; Salamat, S.M.; Somasekar, S.; Federman, S.; Miller, S.; et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 2014, 370, 2408–2417. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Bharucha, T.; Breuer, J. Encephalitis diagnosis using metagenomics: Application of next generation sequencing for undiagnosed cases. J. Infect. 2018, 76, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Fukui, Y.; Aoki, K.; Okuma, S.; Sato, T.; Ishii, Y.; Tateda, K. Metagenomic analysis for detecting pathogens in culture-negative infective endocarditis. J. Infect. Chemother. 2015, 21, 882–884. [Google Scholar] [CrossRef]
- Imai, A.; Gotoh, K.; Asano, Y.; Yamada, N.; Motooka, D.; Fukushima, M.; Kanzaki, M.; Ohtani, T.; Sakata, Y.; Nishi, H.; et al. Comprehensive metagenomic approach for detecting causative microorganisms in culture-negative infective endocarditis. Int. J. Cardiol. 2014, 172, e288–e289. [Google Scholar] [CrossRef]
- Lelouvier, B.; Servant, F.; Delobel, P.; Courtney, M.; Elbaz, M.; Amar, J. Identification by highly sensitive 16S metagenomic sequencing of an unusual case of polymicrobial bacteremia. J. Infect. 2017, 75, 278–280. [Google Scholar] [CrossRef]
- Gyarmati, P.; Kjellander, C.; Aust, C.; Kalin, M.; Öhrmalm, L.; Giske, C.G. Bacterial landscape of bloodstream infections in neutropenic patients via high throughput sequencing. PLoS ONE 2015, 10, e0135756. [Google Scholar] [CrossRef]
- Borroni, D.; Rocha de Lossada, C. Microbial keratitis: The clinical impact of metagenomic next-generation sequencing (mNGS). Arch. Soc. Esp. Oftalmol. 2020, 95, 621–623. [Google Scholar] [CrossRef]
- Watane, A.; Raolji, S.; Cavuoto, K.; Galor, A. Microbiome and immune-mediated dry eye: A review. BMJ Open Ophthalmol. 2022, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zysset-Burri, D.C.; Morandi, S.; Herzog, E.L.; Berger, L.E.; Zinkernagel, M.S. The role of the gut microbiome in eye diseases. Prog. Retin. Eye Res. 2022, 92, 101117. [Google Scholar] [CrossRef]
- Borroni, D.; Paytuví-Gallart, A.; Sanseverino, W.; Gómez-Huertas, C.; Bonci, P.; Romano, V.; Giannaccare, G.; Rechichi, M.; Meduri, A.; Oliverio, G.W.; et al. Exploring the Healthy Eye Microbiota Niche in a Multicenter Study. Int. J. Mol. Sci. 2022, 23, 10229. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, J.; Willcox, M.D. The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Curr. Eye Res. 2019, 44, 685–694. [Google Scholar] [CrossRef]
- Aragona, P.; Baudouin, C.; Benitez Del Castillo, J.M.; Messmer, E.; Barabino, S.; Merayo-Lloves, J.; Brignole-Baudouin, F.; Inferrera, L.; Rolando, M.; Mencucci, R.; et al. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv. Ophthalmol. 2021, 66, 907–925. [Google Scholar] [CrossRef] [PubMed]
- López-López, M.; Regueiro, U.; Bravo, S.B.; Del Pilar Chantada-Vázquez, M.; Pena, C.; Díez-Feijoo, E.; Hervella, P.; Lema, I. Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients. Investig. Ophthalmol. Vis. Sci. 2022, 63, 12. [Google Scholar] [CrossRef]
- Tunç, U.; Çelebi, A.C.; Ekren, B.Y.; Yıldırım, Y.; Kepez Yıldız, B.; Okullu, S.Ö.; Sezerman, O.U. Corneal bacterial microbiome in patients with keratoconus using next-generation sequencing-based 16S rRNA gene analysis. Exp. Eye Res. 2023, 228, 109402. [Google Scholar] [CrossRef]
- Monteiro de Barros, M.R.; Chakravarti, S. Pathogenesis of keratoconus: NRF2-antioxidant, extracellular matrix and cellular dysfunctions. Exp. Eye Res. 2022, 219, 109062. [Google Scholar] [CrossRef]
- Loh, I.P.; Sherwin, T. Is Keratoconus an Inflammatory Disease? The Implication of Inflammatory Pathways. Ocul. Immunol. Inflamm. 2022, 30, 246–255. [Google Scholar] [CrossRef]
- Sahebjada, S.; Al-Mahrouqi, H.H.; Moshegov, S.; Panchatcharam, S.M.; Chan, E.; Daniell, M.; Baird, P.N. Eye rubbing in the aetiology of keratoconus: A systematic review and meta-analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2057–2067. [Google Scholar] [CrossRef]
- Unni, P.; Lee, H.J. Systemic Associations with Keratoconus. Life 2023, 13, 1363. [Google Scholar] [CrossRef] [PubMed]
- Alfuzaie, R. The Link Between Gastrointestinal Microbiome and Ocular Disorders. Clin. Ophthalmol. 2023, 17, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.W.; Muste, J.C.; Kuo, B.L.; Wu, A.K.; Singh, R.P. Clinical trials targeting the gut-microbiome to effect ocular health: A systematic review. Eye 2023, 37, 2877–2885. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.J.; Winn, B.J. Perturbations of the ocular surface microbiome and their effect on host immune function. Curr. Opin. Ophthalmol. 2023, 34, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, S.; He, Y.; Zhang, Y. The research progress on the molecular mechanism of corneal cross-linking in keratoconus treatment. Contact Lens Anterior Eye 2023, 46, 101795. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-de-Lossada, C.; Mazzotta, C.; Gabrielli, F.; Papa, F.T.; Gómez-Huertas, C.; García-López, C.; Urbinati, F.; Rachwani-Anil, R.; García-Lorente, M.; Sánchez-González, J.-M.; et al. Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study. J. Clin. Med. 2023, 12, 6354. https://doi.org/10.3390/jcm12196354
Rocha-de-Lossada C, Mazzotta C, Gabrielli F, Papa FT, Gómez-Huertas C, García-López C, Urbinati F, Rachwani-Anil R, García-Lorente M, Sánchez-González J-M, et al. Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study. Journal of Clinical Medicine. 2023; 12(19):6354. https://doi.org/10.3390/jcm12196354
Chicago/Turabian StyleRocha-de-Lossada, Carlos, Cosimo Mazzotta, Federico Gabrielli, Filomena Tiziana Papa, Carmen Gómez-Huertas, Celia García-López, Facundo Urbinati, Rahul Rachwani-Anil, María García-Lorente, José-María Sánchez-González, and et al. 2023. "Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study" Journal of Clinical Medicine 12, no. 19: 6354. https://doi.org/10.3390/jcm12196354
APA StyleRocha-de-Lossada, C., Mazzotta, C., Gabrielli, F., Papa, F. T., Gómez-Huertas, C., García-López, C., Urbinati, F., Rachwani-Anil, R., García-Lorente, M., Sánchez-González, J. -M., Rechichi, M., Rubegni, G., & Borroni, D. (2023). Ocular Surface Microbiota in Naïve Keratoconus: A Multicenter Validation Study. Journal of Clinical Medicine, 12(19), 6354. https://doi.org/10.3390/jcm12196354