Criterion-Referenced Standards of Handgrip Strength for Identifying the Presence of Hypertension in Croatian Older Adults
Abstract
:1. Background
2. Methods
2.1. Study Participants
2.2. Blood Pressure Measurement
2.3. Handgrip Strength Measurement
2.4. Anthropometric Measurement
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Aging and Health. Available online: https://www.who.int/health-topics/ageing#tab=tab_1 (accessed on 20 July 2023).
- United Nations Population Division. World Population Aging, 1950–2050; United Nation Population Divison: New York, NY, USA, 2002. [Google Scholar]
- Beard, J.R.; Officer, A.; De Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.G.; Mahanani, W.R.; et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 20 July 2023).
- World Health Organization. Department of Health Statistics and Infromatics. Causes of Death 2008, Data Sources and Methods. Available online: http://www.who.int/gho/mortality_burden_disease/causes_death_2008/en/ (accessed on 20 September 2022).
- Brook, R.D.; Appel, L.J.; Rubenfire, M.; Ogedegbe, G.; Bisognano, J.D.; Elliott, W.J.; Fuchs, F.D.; Hughes, J.W.; Lackland, D.T.; Staffileno, B.A.; et al. Beyond medications and diet: Alternative approaches to lowering blood pressure: A scientific statement from the American heart association. Hypertension 2013, 61, 1360–1383. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Ageing Collaborators. Global, regional, and national burden of diseases and injuries for adults 70 years and older: Systematic analysis for the Global Burden of Disease 2019 Study. BMJ 2022, 376, e0682082022. [Google Scholar]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2014, 3, 346–350. [Google Scholar] [CrossRef]
- Chahal, J.; Lee, R.; Luo, J. Loading dose of physical activity is related to muscle strength and bone density in middle-aged women. Bone 2014, 67, 41–45. [Google Scholar] [CrossRef]
- McGrath, R.P.; Vincent, B.M.; Lee, I.M.; Kraemer, W.J.; Peterson, M.D. Handgrip strength, function, and mortality in older adults: A time-varying approach. Med. Sci. Sports Exerc. 2018, 50, 2259–2266. [Google Scholar] [CrossRef]
- Jenkins, N.D.; Buckner, S.L.; Bergstrom, H.C.; Cochrane, K.C.; Goldsmith, J.A.; Housh, T.J.; Johnson, G.O.; Schmidt, R.J.; Cramer, J.T. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Exp. Gerontol. 2014, 58, 47–50. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip strength: An indispensable biomarker for older adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef]
- Stessman, J.; Rottenberg, Y.; Fischer, M.; Hammerman-Rozenberg, A.; Jacobs, J.M. Handgrip strength in old and very old adults: Mood, cognition, function, and mortality. J. Am. Geriatr. Soc. 2017, 65, 526–532. [Google Scholar] [CrossRef]
- Laukkanen, J.A.; Voutilainen, A.; Kurl, S.; Araujo, C.G.S.; Jae, S.Y.; Kunutsor, S.K. Handgrip strength is inversely associated with fatal cardiovascular and all-cause mortality events. Ann. Med. 2020, 52, 109–119. [Google Scholar] [CrossRef]
- Viera, A.J. Screening for hypertension and lowering blood pressure for prevention of cardiovascular disease events. Med. Clin. North Am. 2017, 101, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, L.; Peng, X.; Xie, Y.; Bao, X.; Huang, J.; Wang, P. Association of handgrip strength with hypertension among middle-aged and elderly people in Southern China: A cross-sectional study. Clin. Exp. Hypertens. 2020, 42, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Chen, H.; Ying, Y.; Wu, M.; Yang, G.; Jing, C. The relative handgrip strength and risk of cardiometabolic disorders: A prospective study. Front Physiol. 2020, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Safian, N.; Mohammad, Z.; Nurumal, S.R.; Ibadullah, W.A.H.W.; Mansor, J.; Ahmad, S.; Hassan, M.R.; Shobugawa, Y. Factors associated with handgrip strength among older adults in Malaysia. J. Multidiscip. Healthc. 2022, 15, 1023–1034. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Mäkikallio, T.H.; Voutilainen, A.; Hupin, D.; Laukkanen, J.A. Normalized handgrip strength and future risk of hypertension: Findings from a prospective cohort study. Scand. Cardiovasc. J. 2021, 55, 336–339. [Google Scholar] [CrossRef]
- Bahat, G.; Tufan, A.; Tufan, F.; Kilic, C.; Akpinar, T.S.; Kose, M.; Erten, N.; Karan, M.A.; Cruz-Jentoft, A.J. Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin. Nutr. 2016, 35, 1557–1563. [Google Scholar] [CrossRef]
- Stuck, A.K.; Mäder, N.C.; Bertschi, D.; Limacher, A.; Kressig, R.W. Performance of the EWGSOP2 cut-points of low grip strength for identifying sarcopenia and frailty phenotype: A cross-sectional study in older inpatients. Int. J. Environ. Res. Public Health 2021, 18, 3498. [Google Scholar] [CrossRef]
- Alley, D.E.; Shardell, M.D.; Peters, K.W.; McLean, R.R.; Dam, T.-T.L.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Grip strength cutpoints for the identification of clinically relevant weakness. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 559–566. [Google Scholar] [CrossRef]
- Sallinen, J.; Stenholm, S.; Rantanen, T.; Heliövaara, M.; Sainio, P.; Koskinen, S. Hand-grip strength cut points to screen older persons at risk for mobility limitation. J. Am. Geriatr. Soc. 2010, 58, 1721–1726. [Google Scholar] [CrossRef]
- Brown, E.C.; Buchan, D.S.; Madi, S.A.; Gordon, B.N.; Drignei, D. Grip strength cut points for diabetes risk among apparently healthy U.S. adults. Am. J. Prev. Med. 2020, 58, 757–765. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 66–273. [Google Scholar] [CrossRef] [PubMed]
- Kasović, M.; Kalčik, Z.; Štefan, L.; Štefan, A.; Knjaz, D.; Braš, M. Normative data for blood pressure in Croatian war veterans: A population-based study. Int. J. Environ. Res. Public Health 2021, 18, 4175. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension 2019, 73, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Mancia, G.; Kreutz, R.; Bundy, J.D.; Williams, B. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines: Comparisons, Reflections, and Recommendations. Circulation 2022, 146, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Amaral, T.F.; Santos, A.; Guerra, R.S.; Sousa, A.S.; Álvares, L.; Valdiviesso, R.; Afonso, C.; Padrão, P.; Martins, C.; Ferro, G.; et al. Nutritional strategies facing an older demographic: The Nutrition UP 65 Study Protocol. JMIR Res. Protoc. 2016, 5, 184. [Google Scholar] [CrossRef]
- Maranhao Neto, G.A.; Oliveira, A.J.; Pedreiro, R.C.; Pereira-Junior, P.P.; Machado, S.; Neto, S.M.; Farinatti, P.T. Normalizing handgrip strength in older adults: An allometric approach. Arch. Gerontol. Geriatr. 2017, 70, 230–234. [Google Scholar] [CrossRef]
- Nevill, A.M.; Tomkinson, G.R.; Lang, J.J.; Wutz, W.; Myers, T.D. How should adult handgrip strength be normalized? Allometry reveals new insights and associated reference curves. Med. Sci. Sports Exerc. 2022, 54, 162–168. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar]
- Pietiläinen, K.H.; Kaye, S.; Karmi, A.; Suojanen, L.; Rissanen, A.; Virtanen, K.A. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, skeletal muscle and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2013, 109, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.E.; Harris, G.T. Comparing effect sizes in follow-up studies: ROC Area, Cohen’s d, and r. Law Hum. Behav. 2005, 29, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S. Role of body size in the relation between muscle strength and movement performance. Exerc. Sport Sci. Rev. 2003, 31, 8–12. [Google Scholar] [CrossRef]
- Jaric, S.; Radosavljevic-Jaric, S.; Johansson, H. Muscle force and muscle torque in humans require different methods when adjusting for differences in body size. Eur. J. Appl. Physiol. 2002, 87, 304–307. [Google Scholar] [CrossRef]
- Ash, G.I.; Taylor, B.A.; Thompson, P.D.; MacDonald, H.V.; Lamberti, L.; Chen, M.-H.; Farinatti, P.; Kraemer, W.J.; Panza, G.A.; Zaleski, A.L.; et al. The antihypertensive effects of aerobic versus isometric handgrip resistance exercise. J. Hypertens. 2017, 35, 291–299. [Google Scholar] [CrossRef]
- Taekema, D.G.; Maier, A.B.; Westendorp, R.G.; de Craen, A.J. Higher blood pressure is associated with higher handgrip strength in the oldest old. Am. J. Hypertens. 2011, 24, 83–89. [Google Scholar] [CrossRef]
- Parker, B.A.; Smithmyer, S.L.; Jarvis, S.S.; Ridout, S.J.; Pawelczyk, J.A.; Proctor, D.N. Evidence for reduced sympatholysis in leg resistance vasculature of healthy older women. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, 1148–1156. [Google Scholar] [CrossRef]
- MacMahon, S.; Peto, R.; Cutler, J.; Collins, R.; Godwin, J.; Cutler, J.; Sorlie, P.; Abbott, R.; Neaton, J.; Dyer, A.; et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: Prospective observational studies corrected for the regression dilution bias. Lancet 1990, 335, 765–774. [Google Scholar] [CrossRef]
- Gudsoorkar, P.S.; Tobe, S.W. Changing concepts in hypertension management. J. Hum. Hypertens. 2017, 31, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Barone Gibbs, B.; Hivert, M.F.; Jerome, G.J.; Kraus, W.E.; Rosenkranz, S.K.; Schorr, E.N.; Spartano, N.L.; Lobelo, F.; American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; et al. Physical activity as a critical component of first-line treatment for elevated blood pressure or cholesterol: Who, what, and how? A scientific statement From the American Heart Association. Hypertension 2021, 78, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.Z.; Yan, S.; Yuan, W.X. Effect of isometric handgrip training on resting blood pressure in adults: A meta-analysis of randomized controlled trials. J. Sports Med. Phys. Fitness 2017, 57, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Millar, P.J.; McGowan, C.L.; Cornelissen, V.A.; Araujo, C.G.; Swaine, I.L. Evidence for the role of isometric exercise training in reducing blood pressure: Potential mechanisms and future directions. Sports Med. 2014, 44, 345–356. [Google Scholar] [CrossRef]
- Chen, Z.; Ho, M.; Chau, P.H. Handgrip strength asymmetry is associated with the risk of neurodegenerative disorders among Chinese older adults. J. Cachexia Sarcopenia Muscle 2022, 13, 1013–1023. [Google Scholar] [CrossRef]
- McGrath, R.; Clark, B.C.; Cesari, M.; Johnson, C.; Jurivich, D.A. Handgrip strength asymmetry is associated with future falls in older Americans. Aging Clin. Exp. Res. 2021, 33, 2461–2469. [Google Scholar] [CrossRef]
Study Variables | Men (N = 260) | Women (N = 383) | ES | p for Sex |
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
Age (years) | 67.4 (5.5) | 66.9 (5.2) | 0.09 | 0.160 |
Height (cm) | 172.9 (5.0) | 161.1 (6.0) | 2.14 | <0.001 |
Weight (kg) | 84.0 (10.3) | 70.0 (12.1) | 1.25 | <0.001 |
Body mass index (kg/m2) | 27.7 (3.3) | 26.9 (4.2) | 0.21 | 0.027 |
Waist circumference (cm) | 100.1 (9.3) | 90.5 (11.6) | 0.91 | <0.001 |
Waist-to-height ratio | 0.58 (0.1) | 0.56 (0.1) | 0.20 | 0.033 |
Fat mass (%) | 31.2 (7.0) | 38.2 (6.6) | 1.03 | <0.001 |
Fat-free mass (%) | 70.1 (4.6) | 61.8 (6.6) | 1.46 | <0.001 |
Systolic blood pressure (mm/Hg) | 142.5 (17.1) | 140.5 (19.6) | 0.11 | 0.104 |
Diastolic blood pressure (mm/Hg) | 86.5 (10.1) | 86.9 (10.1) | 0.04 | 0.700 |
Hypertension (% of ‘yes’) | 74.5 | 67.0 | / | 0.107 |
Handgrip strength (kg) | 46.9 (7.6) | 30.5 (5.3) | 2.50 | <0.001 |
Study Variables | Hypertension (Systolic Blood Pressure ≥130 mm/Hg or Diastolic Blood Pressure ≥80 mm/Hg) | ||||
---|---|---|---|---|---|
Handgrip Strength (kg/m2) | AUC | 95% CI | Std. Error | p-Value | Cut-Off Point |
Older men (N = 260) | 0.85 | 0.77 to 0.92 | 0.04 | <0.001 | 15.4 kg/m2 |
Older women (N = 383) | 0.84 | 0.80 to 0.89 | 0.03 | <0.001 | 11.8 kg/m2 |
Older Men (N = 260) | Hypertension (Systolic Blood Pressure ≥130 mm/Hg or Diastolic Blood Pressure ≥80 mm/Hg) | |||
---|---|---|---|---|
Handgrip Strength (kg/m2) | ‘No’, N (%) | ‘Yes’, N (%) | Chi-Square Test | p-Value |
<15.4 kg/m2 | 5 (12.2%) | 74 (62.2%) | ||
≥15.4 kg/m2 | 36 (87.8%) | 45 (37.8%) | 30.5 | <0.001 |
Older women (N = 383) | ||||
Handgrip strength (kg/m2) | ||||
<11.8 kg/m2 | 16 (17.2%) | 130 (68.8%) | ||
≥11.8 kg/m2 | 77 (82.8%) | 59 (31.1%) | 66.4 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagat, P. Criterion-Referenced Standards of Handgrip Strength for Identifying the Presence of Hypertension in Croatian Older Adults. J. Clin. Med. 2023, 12, 6408. https://doi.org/10.3390/jcm12196408
Sagat P. Criterion-Referenced Standards of Handgrip Strength for Identifying the Presence of Hypertension in Croatian Older Adults. Journal of Clinical Medicine. 2023; 12(19):6408. https://doi.org/10.3390/jcm12196408
Chicago/Turabian StyleSagat, Peter. 2023. "Criterion-Referenced Standards of Handgrip Strength for Identifying the Presence of Hypertension in Croatian Older Adults" Journal of Clinical Medicine 12, no. 19: 6408. https://doi.org/10.3390/jcm12196408
APA StyleSagat, P. (2023). Criterion-Referenced Standards of Handgrip Strength for Identifying the Presence of Hypertension in Croatian Older Adults. Journal of Clinical Medicine, 12(19), 6408. https://doi.org/10.3390/jcm12196408