Renal Biopsy for Diagnosis in Kidney Disease: Indication, Technique, and Safety
Abstract
:1. Introduction
2. Indications
Biopsy of the native kidney to diagnose unknown renal disease |
Adult nephrotic syndrome [1,2] Excepting new-onset nephrotic syndrome with evidence of PLA2-R-Abs [24,26] |
Proteinuria > 1–2 g/24 h with or without hypertension [2] Excepting proteinuria/albuminuria associated with diabetes mellitus in the presence of proven diabetic retinopathy [2] |
Progressive increase in serum creatinine with microscopic evidence of acanthocytes and/or red blood cell casts [1,2] |
Systemic diseases (immunological or paraneoplastic) with suspected renal involvement [1,2] e.g., clinical/serologic evidence of systemic vasculitis c/p-ANCA positive and PR3-/MPO-Abs positive [1,2,27] e.g., clinical/serologic evidence of systemic lupus erythematosus (SLE) [1,2,30] e.g., serologic evidence of monoclonal gammopathy [1] |
Impaired renal function of unclear etiology (if kidneys are of normal size on ultrasound) with or without sterile pyuria/white blood cell casts/low-grade proteinuria [1,2] |
e.g., drug-induced interstitial nephritis [2,31,33] |
e.g., interstitial nephritis related to autoimmune diseases (sarcoidosis, IgG4-related disease) [2] |
Repeated biopsy to examine severity of damage or progression of an already-known kidney disease |
Nonresponse to an established therapy [22,23] e.g., steroid resistance with glomerular minimal lesions |
Therapy monitoring [1,2,30] e.g., clarification of whether immunosuppressive therapy needs to be intensified or can be suspended in individual cases of SLE or ANCA-associated vasculitis |
Recurrent disease activity [1,2,27,30] e.g., evaluation of active/chronic (scarring) lesions prior to resumption of immunosuppressive therapy. |
Biopsy of the renal graft |
All the conditions of the native kidney |
Special considerations for the kidney transplant |
Primary non-function after transplantation Differentiation of acute tubular necrosis (ATN) from early rejection [41] |
Rapid graft function impairment, in particular when rejection is suspected Grading according to Banff classification with regard to prognosis and treatment [41] Kind of rejection (cellular/antibody-mediated) [41] Differentiation of active/chronic lesions [41] |
Clarification of nonresponse to rejection therapy Guidance of intensified immunosuppressive therapy [44] Detection/exclusion of infectious causes (BK-polyoma nephropathy) [42] |
Deterioration of graft function in the ongoing course with or without proteinuria > 1–2 g/24 h Differentiation of chronic active rejection/late onset rejection/tubulointerstitial fibrosis (IFTA) [41] Diagnosis of recurrent kidney disease [43] Recognition of drug toxicities (calcineurin inhibitor toxicity) [41] |
Control biopsies at predetermined time points (in context of clinical trials only) |
3. Contraindications
4. Performing the Biopsy
5. Complications
6. Follow-Up after Biopsy
Medical indication | According to Table 1 |
Consideration of contraindications | According to Table 2 |
Preparation of the biopsy | |
Discontinuation of anticoagulant drugs | |
Phenprocoumon/warfarin | 5 days before biopsy [1] |
Direct oral factor Xa Inhibitors (DOACs) | 72 h before biopsy [2] |
i.v. heparin for bridging anticoagulation a | to be stopped 6 h before biopsy [1] |
Discontinuation of platelet aggregation inhibitors | |
Including NSAR | 7–10 days before biopsy [1,2] |
Low-dose aspirin (100 meg) | Can be continued in case of urgent indication [53,54,55] |
Written informed consent | To be obtained at least 24 h before biopsy |
Blood pressure (also with medication) | <140/90 mmHg [1,2,3,59,60] |
Coagulation Tests | |
Thrombocyte count | >120 × 103/µL [1,2] |
INR | Must be normal [1,2] |
PTT | Must be normal [46] |
Bleeding time | Significance controversial [48,49,50] |
Administration of desmopressin | Controversial/efficacy not proven [51,52] |
Performing the Biopsy | |
Positioning of the patient | |
Native kidney | Prone with firm pillow under abdomen |
Transplanted kidney | Supine position |
Pain management | Local anesthesia of the puncture canal |
Guidance | Real-time ultrasound [73] |
Biopsy device | Semi-automatic spring operated [72,77,78,79] |
Needle size | 16-gauge preferred [1,3,46,81,82,83,84] |
Follow-up after the Biopsy | |
Bedrest | According to good clinical practice |
Placement of sandbag onto biopsy site | According to good clinical practice |
Monitoring of circulation (pulse/blood pressure) | Low normal BP beneficial (120/80 mmHg) [60] |
Urine monitoring (mico-/macroscopic hematuria) | According to good clinical practice |
Monitoring of hemoglobin | |
Routinely 4–6 h after biopsy | |
Before discharge after native kidney biopsy | |
As needed | |
Ultrasonography after 1–2 h | Negative predictive value for bleeding (95%) [96] |
In-hospital observation with uncomplicated course | |
Native kidney | 24 h [47,59,60] |
Transplanted kidney | 4–6 h [63] |
Resuming anticoagulation after biopsy | Preferably not earlier than 48–72 h [1,2] |
Management bleeding complications | |
Symptomatic hemoglobin drop | Administration of red blood cells as needed |
Gross hematuria with obstructive symptoms/bladder | Insertion of Foley catheter and bladder irrigation if needed [2] |
tamponade (rare) | |
Injury of intrarenal vessels | Selective transcatheter embolization [85,86,87,88,89,90,93,94] Predominantly successful [85,89,90] |
Author/Year | Data Base/Kind of Study | No. of Procedures | Perinephric Hematoma | Macroscopic Hematuria | Major Complications a | Transfusion Required | Intervention Required b,c | Organ Loss | Death |
---|---|---|---|---|---|---|---|---|---|
Poggio [4] 2020 | Meta-analysis | 118,064 | 11.0% | 3.5% | n.a. | 1.6% | 0.3% | n.a. | 0.06% |
Varnell [23] 2019 | Meta-analysis | 5504 ch. | 11–18% | n.a. | n.a. | 0.9% | 0.7% | n.a. | n.a. |
Peters [58] 2019 | Registry | 2835 | 2.2% | n.a. | 5.6% | 1.3% | 0.1% | 0 | 0 |
Lees [54] 2017 | Single center | 2563 | n.a. | n.a. | 4,5% | 1.8% | 0.4% | 0 | 0.4% |
Prasad [60] 2015 | Single center d | 1848 ad. 290 ch. | 1.3% | 4.7% | 5.1% | 0.6% | 0.5% | 0 | 0 |
Corapi [3] 2012 | Meta-analysis | 9474 | 11–17% | 3.5% | 1,9% | 0.9% | 0.6% | 0.01% | 0.02% |
Tøndel [66] 2010 | Registry | 8573 ad. 715 ch. | 3.9–8.1% | 1.9% | 2.6% | 0.9% | 0.2% | n.a. | n.a. |
Stratta [49] 2007 | Single center | 1387 | 7.8% | 16.4% | n.a. | 0.9% | 0.4% | 0.07% | 0 |
Manno [46] 2004 | Single center prospective | 471 | 33.3% | 0.4% | 1.2% | 0.4% | 0.6% | 0.2% | 0 |
Whittier [47] 2004 | Single center | 750 | 4.0% | 4.7% | 6.4% | 5% | 0.7% | 0 | 0.1% |
Ho [64] 2022 | Meta-analysis Tx kidney | 40,082 | 1.6% | 3.2% | 0.9% | 0.3% | 0.2% b 0.1% c | 0.02% | 0.01% |
Furness [63] 2003 | Multi-center Tx kidney control biopsies | 2127 | 2.6% | 1.9% | 0.4% | 0.1% | 0.1% | 0.05% | 0 |
7. Alternative Techniques
8. Conclusions
Funding
Conflicts of Interest
References
- Hogan, J.J.; Mocanu, M.; Berns, J.S. The Native Kidney Biopsy: Update and Evidence for Best Practice. Clin. J. Am. Soc. Nephrol. 2016, 11, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Luciano, R.L.; Moeckel, G.W. Update on the Native Kidney Biopsy: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 73, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Corapi, K.M.; Chen, J.L.; Balk, E.M.; Gordon, C.E. Bleeding complications of native kidney biopsy: A systematic review and meta-analysis. Am. J. Kidney Dis. 2012, 60, 62–73. [Google Scholar] [CrossRef]
- Poggio, E.D.; McClelland, R.L.; Blank, K.N.; Hansen, S.; Bansal, S.; Bomback, A.S.; Canetta, P.A.; Khairallah, P.; Kiryluk, K.; Lecker, S.H.; et al. Systematic Review and Meta-Analysis of Native Kidney Biopsy Complications. Clin. J. Am. Soc. Nephrol. 2020, 15, 1595–1602. [Google Scholar] [CrossRef]
- Fogo, A.B. Approach to renal biopsy. Am. J. Kidney Dis. 2003, 42, 826–836. [Google Scholar] [CrossRef]
- Walker, P.D.; Cavallo, T.; Bonsib, S.M.; Ad Hoc Committee on Renal Biopsy Guidelines of the Renal Pathology Society. Practice guidelines for the renal biopsy. Mod. Pathol. 2004, 17, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Gibson, I.W.; Cohen, A.H.; Weening, J.J.; Jennette, J.C.; Fogo, A.B. Renal Pathology Society. A position paper on standardizing the nonneoplastic kidney biopsy report. Clin. J. Am. Soc. Nephrol. 2012, 7, 1365–1368. [Google Scholar] [CrossRef] [PubMed]
- Williams, W.W.; Taheri, D.; Tolkoff-Rubin, N.; Colvin, R.B. Clinical role of the renal transplant biopsy. Nat. Rev. Nephrol. 2012, 8, 110–121. [Google Scholar] [CrossRef]
- Mengel, M.; Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Akalin, E.; Clahsen-van Groningen, M.C.; Dagobert, J.; Demetris, A.J.; Duong van Huyen, J.P.; et al. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation-Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am. J. Transplant. 2020, 20, 2305–2317. [Google Scholar] [CrossRef]
- Jansen, J.; Reimer, K.C.; Nagai, J.S.; Varghese, F.S.; Overheul, G.J.; de Beer, M.; Roverts, R.; Daviran, D.; Fermin, L.A.S.; Willemsen, B.; et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell 2022, 29, 217–231. [Google Scholar] [CrossRef]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Richards, N.T.; Darby, S.; Howie, A.J.; Adu, D.; Michael, J. Knowledge of renal histology alters patient management in over 40% of cases. Nephrol. Dial. Transplant. 1994, 9, 1255–1259. [Google Scholar] [PubMed]
- Pascual, M.; Vallhonrat, H.; Cosimi, A.B.; Tolkoff-Rubin, N.; Colvin, R.B.; Delmonico, F.L.; Ko, D.S.; Schoenfeld, D.A.; Williams, W.W., Jr. The clinical usefulness of the renal allograft biopsy in the cyclosporine era: A prospective study. Transplantation. 1999, 67, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Fuiano, G.; Mazza, G.; Comi, N.; Caglioti, A.; De Nicola, L.; Iodice, C.; Andreucci, M.; Andreucci, V.E. Current indications for renal biopsy: A questionnaire-based survey. Am. J. Kidney Dis. 2000, 35, 448–457. [Google Scholar] [CrossRef]
- Burke, J.P.; Pham, T.; May, S.; Okano, S.; Ratanjee, S.K.; Thet, Z.; Wong, J.K.W.; Venuthurupalli, S.; Ranganathan, D. Kidney biopsy practice amongst Australasian nephrologists. BMC Nephrol. 2021, 22, 291. [Google Scholar] [CrossRef] [PubMed]
- Bollee, G.; Martinez, F.; Moulin, B.; Meulders, Q.; Rougier, J.P.; Baumelou, A.; Glotz, D.; Subra, J.F.; Ulinski, T.; Vrigneaud, L.; et al. Renal biopsy practice in France: Results of a nationwide study. Nephrol. Dial. Transplant. 2010, 25, 3579–3585. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Nagasawsa, T.; Tsuruya, K.; Miura, K.; Katsuno, T.; Morikawa, T.; Ishikawa, E.; Ogura, M.; Matsumura, H.; Kurayama, R.; et al. A nationwide survey on clinical practice patterns and bleeding complications of percutaneous native kidney biopsy in Japan. Clin. Exp. Nephrol. 2020, 24, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Briganti, E.M.; Dowling, J.; Finlay, M.; Hill, P.A.; Jones, C.L.; Kincaid-Smith, P.S.; Sinclair, R.; McNeil, J.J.; Atkins, R.C. The incidence of biopsy-proven glomerulonephritis in Australia. Nephrol. Dial. Transplant. 2001, 16, 1364–1367. [Google Scholar] [CrossRef] [PubMed]
- Torra, R.; Furlano, M.; Ars, E. How genomics reclassifies diseases: The case of Alport syndrome. Clin. Kidney J. 2020, 13, 933–935. [Google Scholar] [CrossRef]
- Gibson, J.; Fieldhouse, R.; Chan, M.M.Y.; Sadeghi-Alavijeh, O.; Burnett, L.; Izzi, V.; Persikov, A.V.; Gale, D.P.; Storey, H.; Savige, J. Genomics England Research Consortium. Prevalence Estimates of Predicted Pathogenic COL4A3-COL4A5 Variants in a Population Sequencing Database and Their Implications for Alport Syndrome. J. Am. Soc. Nephrol. 2021, 32, 2273–2290. [Google Scholar] [CrossRef]
- Savige, J.; Lipska-Zietkiewicz, B.S.; Watson, E.; Hertz, J.M.; Deltas, C.; Mari, F.; Hilbert, P.; Plevova, P.; Byers, P.; Cerkauskaite, A.; et al. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin. J. Am. Soc. Nephrol. 2022, 17, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Nammalwar, B.R.; Vijayakumar, M.; Prahlad, N. Experience of renal biopsy in children with nephrotic syndrome. Pediatr. Nephrol. 2006, 21, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Varnell CDJr Stone, H.K.; Welge, J.A. Bleeding Complications after Pediatric Kidney Biopsy: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol. 2019, 14, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.H., Jr.; Bonegio, R.G.B.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D. M-type phospholipase A 2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; Seitz-Polski, B.; Ma, H.; Zahner, G.; Dolla, G.; Hoxha, E.; Helmchen, U.; Dabert-Gay, A.S.; et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 2014, 371, 2277–2287. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, T.; Wu, H.H.L.; Sinha, S.; Chinnadurai, R. The Role of PLA2R in Primary Membranous Nephropathy: Do We Still Need a Kidney Biopsy? Genes 2023, 14, 1343. [Google Scholar] [CrossRef]
- Bajema, I.M.; Hagen, E.C.; Hermans, J.; Noël, L.H.; Waldherr, R.; Ferrario, F.; Van Der Woude, F.J.; Bruijn, J.A. Kidney biopsy as a predictor for renal outcome in ANCA-associated necrotizing glomerulonephritis. Kidney Int. 1999, 56, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Weening, J.J.; D’Agati, V.D.; Schwartz, M.M.; Seshan, S.V.; Alpers, C.E.; Appel, G.B.; Balow, J.E.; Bruijn, J.A.; Cook, T.; Ferrario, F.; et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J. Am. Soc. Nephrol. 2004, 15, 241–250. [Google Scholar] [CrossRef]
- Bajema, I.M.; Wilhelmus, S.; Alpers, C.E.; Bruijn, J.A.; Colvin, R.B.; Cook, H.T.; D’Agati, V.D.; Ferrario, F.; Haas, M.; Jennette, J.C.; et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018, 93, 789–796. [Google Scholar] [CrossRef]
- Yu, F.; Haas, M.; Glassock, R.; Zhao, M.H. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol. 2017, 13, 483–495. [Google Scholar] [CrossRef]
- Raghavan, R.; Shawar, S. Mechanisms of Drug-Induced Interstitial Nephritis. Adv. Chronic Kidney Dis. 2017, 24, 64–71. [Google Scholar] [CrossRef]
- Schnuelle, P.; Schwab, C.; Waldherr, R.; Zeier, M.; Bischofs, C. Biopsy-proven acute interstitial nephritis after SARS-CoV-2 mRNA vaccination-adverse vaccine side effect or unrelated complication from self-medication? Lessons for the clinical nephrologist. J. Nephrol. 2023, 36, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Praga, M.; González, E. Acute interstitial nephritis. Kidney Int. 2010, 77, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J Hematol Oncol. 2020, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, Q.; Liu, Y.; Wei, J.; Chen, X. Renal adverse reactions of tyrosine kinase inhibitors in the treatment of tumours: A Bayesian network meta-analysis. Front. Pharmacol. 2022, 13, 1023660. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, K.D.; Wanchoo, R.; Sakhiya, V.; Ross, D.W.; Fishbane, S. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review. Kidney Int. Rep. 2016, 2, 108–123. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Wanchoo, R.; Karam, S.; Uppal, N.N.; Barta, V.S.; Deray, G.; Devoe, C.; Launay-Vacher, V.; Jhaveri, K.D.; Cancer and Kidney International Network Workgroup on Immune Checkpoint Inhibitors. Adverse Renal Effects of Immune Checkpoint Inhibitors: A Narrative Review. Am. J. Nephrol. 2017, 45, 160–169. [Google Scholar] [CrossRef]
- Gupta, S.; Short, S.A.P.; Sise, M.E.; Prosek, J.M.; Madhavan, S.M.; Soler, M.J.; Ostermann, M.; Herrmann, S.M.; Abudayyeh, A.; Anand, S.; et al. ICPi-AKI Consortium Investigators. Acute kidney injury in patients treated with immune checkpoint inhibitors. J. Immunother. Cancer 2021, 9, e003467. [Google Scholar] [CrossRef]
- Moss, E.M.; Perazella, M.A. The role of kidney biopsy in immune checkpoint inhibitor nephrotoxicity. Front. Med. 2022, 9, 964335. [Google Scholar] [CrossRef]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef] [PubMed]
- Nickeleit, V.; Singh, H.K.; Randhawa, P.; Drachenberg, C.B.; Bhatnagar, R.; Bracamonte, E.; Chang, A.; Chon, W.J.; Dadhania, D.; Davis, V.G.; et al. The Banff Working Group Classification of definitive polyomavirus nephropathy: Morphologic definitions and clinical correlations. J. Am. Soc. Nephrol. 2018, 29, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Uffing, A.; Hullekes, F.; Riella, L.V.; Hogan, J.J. Recurrent glomerular disease after kidney transplantation: Diagnostic and management dilemmas. Clin. J. Am. Soc. Nephrol. 2021, 16, 1730–1742. [Google Scholar] [CrossRef] [PubMed]
- Alasfar, S.; Kodali, L.; Schinstock, C.A. Current Therapies in Kidney Transplant Rejection. J. Clin. Med. 2023, 12, 4927. [Google Scholar] [CrossRef] [PubMed]
- Solez, K.; Axelsen, R.A.; Benediktsson, H.; Burdick, J.F.; Cohen, A.H.; Colvin, R.B.; Croker, B.P.; Droz, D.; Dunnill, M.S.; Halloran, P.F.; et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: The Banff working classification of kidney transplant pathology. Kidney Int. 1993, 44, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Manno, C.; Strippoli, G.F.; Arnesano, L.; Bonifati, C.; Campobasso, N.; Gesualdo, L.; Schena, F.P. Predictors of bleeding complications in percutaneous ultrasound-guided renal biopsy. Kidney Int. 2004, 66, 1570–1577. [Google Scholar] [CrossRef]
- Whittier, W.L.; Korbet, S.M. Timing of complications in percutaneous renal biopsy. J. Am. Soc. Nephrol. 2004, 15, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Yang, Y.; Wen, Y.K.; Chang, C.C. Outpatient versus inpatient renal biopsy: A retrospective study. Clin. Nephrol. 2006, 66, 17–24. [Google Scholar] [CrossRef]
- Stratta, P.; Canavese, C.; Marengo, M.; Mesiano, P.; Besso, L.; Quaglia, M.; Bergamo, D.; Monga, G.; Mazzucco, G. Risk management of renal biopsy: 1387 cases over 30 years in a single centre. Eur. J. Clin. Investig. 2007, 37, 954–963. [Google Scholar] [CrossRef]
- Stiles, K.P.; Hill, C.; LeBrun, C.J.; Reinmuth, B.; Yuan, C.M.; Abbott, K.C. The impact of bleeding times on major complication rates after percutaneous real-time ultrasound-guided renal biopsies. J. Nephrol. 2001, 14, 275–279. [Google Scholar]
- Manno, C.; Bonifati, C.; Torres, D.D.; Campobasso, N.; Schena, F.P. Desmopressin acetate in percutaneous ultrasound-guided kidney biopsy: A randomized controlled trial. Am. J. Kidney Dis. 2011, 57, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Athavale, A.; Kulkarni, H.; Arslan, C.D.; Hart, P. Desmopressin and bleeding risk after percutaneous kidney biopsy. BMC Nephrol. 2019, 20, 413. [Google Scholar] [CrossRef] [PubMed]
- Atwell, T.D.; Smith, R.L.; Hesley, G.K.; Callstrom, M.R.; Schleck, C.D.; Harmsen, W.S.; Charboneau, J.W.; Welch, T.J. Incidence of bleeding after 15,181 percutaneous biopsies and the role of aspirin. AJR Am. J. Roentgenol. 2010, 194, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; McQuarrie, E.P.; Mordi, N.; Geddes, C.C.; Fox, J.G.; Mackinnon, B. Risk factors for bleeding complications after nephrologist-performed native renal biopsy. Clin. Kidney J. 2017, 10, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mitchell, M.D.; Umscheid, C.A.; Berns, J.S.; Hogan, J.J. Risk of complications with use of aspirin during renal biopsy: A systematic review. Clin. Nephrol. 2018, 89, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Eiro, M.; Katoh, T.; Watanabe, T. Risk factors for bleeding complications in percutaneous renal biopsy. Clin. Exp. Nephrol. 2005, 9, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Shidham, G.B.; Siddiqi, N.; Beres, J.A.; Logan, B.; Nagaraja, H.N.; Shidham, S.G.; Piering, W.F. Clinical risk factors associated with bleeding after native kidney biopsy. Nephrology 2005, 10, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Nasic, S.; Segelmark, M. Clinical parameters predicting complications in native kidney biopsies. Clin. Kidney J. 2019, 13, 654–659. [Google Scholar] [CrossRef]
- Whittier, W.L.; Korbet, S.M. Renal biopsy: Update. Curr. Opin. Nephrol. Hypertens. 2004, 13, 661–665. [Google Scholar] [CrossRef]
- Prasad, N.; Kumar, S.; Manjunath, R.; Bhadauria, D.; Kaul, A.; Sharma, R.K.; Gupta, A.; Lal, H.; Jain, M.; Agrawal, V. Real-time ultrasound-guided percutaneous renal biopsy with needle guide by nephrologists decreases post-biopsy complications. Clin. Kidney J. 2015, 8, 151–156. [Google Scholar] [CrossRef]
- Mendelssohn, D.C.; Cole, E.H. Outcomes of percutaneous kidney biopsy, including those of solitary native kidneys. Am. J. Kidney Dis. 1995, 26, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Schow, D.A.; Vinson, R.K.; Morrisseau, P.M. Percutaneous renal biopsy of the solitary kidney: A contraindication? J. Urol. 1992, 147, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Furness, P.N.; Philpott, C.M.; Chorbadjian, M.T.; Nicholson, M.L.; Bosmans, J.L.; Corthouts, B.L.; Bogers, J.J.; Schwarz, A.; Gwinner, W.; Haller, H.; et al. Protocol biopsy of the stable renal transplant: A multicenter study of methods and complication rates. Transplantation 2003, 76, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Ho, Q.Y.; Lim, C.C.; Tan, H.Z.; Sultana, R.; Kee, T.; Htay, H. Complications of Percutaneous Kidney Allograft Biopsy: Systematic Review and Meta-analysis. Transplantation 2022, 106, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Andersson, Y.; Stegmayr, B.; Mölne, J.; Jensen, G.; Dahlberg, P.; Holm-Gunnarsson, I.; Ekberg, J.; Bjurström, K.; Haux, S.B.; et al. A study of clinical complications and risk factors in 1001 native and transplant kidney biopsies in Sweden. Acta Radiol. 2014, 55, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Tøndel, C.; Vikse, B.E.; Bostad, L.; Svarstad, E. Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988–2010. Clin. J. Am. Soc. Nephrol. 2012, 7, 1591–1597. [Google Scholar] [CrossRef]
- Haas, M.; Spargo, B.H.; Wit, E.J.; Meehan, S.M. Etiologies and outcome of acute renal insufficiency in older adults: A renal biopsy study of 259 cases. Am. J. Kidney Dis. 2000, 35, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Kohli, H.S.; Jairam, A.; Bhat, A.; Sud, K.; Jha, V.; Gupta, K.L.; Sakhuja, V. Safety of kidney biopsy in elderly: A prospective study. Int. Urol. Nephrol. 2006, 38, 815–820. [Google Scholar] [CrossRef]
- Bomback, A.S.; Herlitz, L.C.; Markowitz, G.S. Renal biopsy in the elderly and very elderly: Useful or not? Adv. Chronic Kidney Dis. 2012, 19, 61–67. [Google Scholar] [CrossRef]
- Moutzouris, D.A.; Herlitz, L.; Appel, G.B.; Markowitz, G.S.; Freudenthal, B.; Radhakrishnan, J.; D’Agati, V.D. Renal biopsy in the very elderly. Clin. J. Am. Soc. Nephrol. 2009, 4, 1073–1082. [Google Scholar] [CrossRef]
- Bomback, A.S.; Appel, G.B.; Radhakrishnan, J.; Shirazian, S.; Herlitz, L.C.; Stokes, B.; D’Agati, V.D.; Markowitz, G.S. ANCA-associated glomerulonephritis in the very elderly. Kidney Int. 2011, 79, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Nyman, R.S.; Cappelen-Smith, J.; al Suhaibani, H.; Alfurayh, O.; Shakweer, W.; Akhtar, M. Yield and complications in percutaneous renal biopsy. A comparison between ultrasound-guided gun-biopsy and manual techniques in native and transplant kidneys. Acta Radiol. 1997, 38, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Maya, I.D.; Maddela, P.; Barker, J.; Allon, M. Percutaneous renal biopsy: Comparison of blind and real-time ultrasound-guided technique. Semin. Dial. 2007, 20, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, M.; Cronan, J.J.; Savadler, L.D. A 5-year experience with 307 CT-guided renal biopsies: Results and complications. J. Vasc. Interv. Radiol. 1991, 2, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Margaryan, A.; Perazella, M.A.; Mahnensmith, R.L.; Abu-Alfa, A.K. Experience with outpatient computed tomographic-guided renal biopsy. Clin. Nephrol. 2010, 74, 440–445. [Google Scholar] [CrossRef]
- Vian, J.; Shabaka, A.; Lallena, S.; Gatius, S.; Lopez de la Manzanara, V.; Barrera-Ortega, J.; Méndez-Fernández, R.J. Efficacy and Safety of CT-Guided Kidney Biopsy for the Diagnosis of Glomerular Diseases in Complicated Patients. Nephron 2023, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.M.; Korbet, S.M.; Schwartz, M.M. The use of the automatic core biopsy system in percutaneous renal biopsies: A comparative study. Am. J. Kidney Dis. 1993, 22, 545–552. [Google Scholar] [CrossRef]
- Doyle, A.J.; Gregory, M.C.; Terreros, D.A. Percutaneous native renal biopsy: Comparison of a 1.2-mm spring-driven system with a traditional 2-mm hand-driven system. Am. J. Kidney Dis. 1994, 23, 498–503. [Google Scholar] [CrossRef]
- Mahoney, M.C.; Racadio, J.M.; Merhar, G.L.; First, M.R. Safety and efficacy of kidney transplant biopsy: Tru-Cut needle vs sonographically guided Biopty gun. AJR Am. J. Roentgenol. 1993, 160, 325–326. [Google Scholar] [CrossRef]
- Riehl, J.; Maigatter, S.; Kierdorf, H.; Schmitt, H.; Maurin, N.; Sieberth, H.G. Percutaneous renal biopsy: Comparison of manual and automated puncture techniques with native and transplanted kidneys. Nephrol. Dial. Transplant. 1994, 9, 1568–1574. [Google Scholar]
- Nicholson, M.L.; Wheatley, T.J.; Doughman, T.M.; White, S.A.; Morgan, J.D.; Veitch, P.S.; Furness, P.N. A prospective randomized trial of three different sizes of core-cutting needle for renal transplant biopsy. Kidney Int. 2000, 58, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Gwinner, W.; Hiss, M.; Radermacher, J.; Mengel, M.; Haller, H. Safety and adequacy of renal transplant protocol biopsies. Am. J. Transplant. 2005, 5, 1992–1996. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.; Yong, J.; Dixson, H.; Makris, A.; Aravindan, A.; Suranyi, M.G.; Wong, J. Is bigger better? A retrospective analysis of native renal biopsies with 16 Gauge versus 18 Gauge automatic needles. Nephrology 2013, 18, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.; Parikh, S.; Makey, D.; Foster, J.; Rozenblit, G.; Satoskar, A.; Nadasdy, G.; Von Visger, J.; Hebert, L.; Rovin, B.H.; et al. When size matters: Diagnostic value of kidney biopsy according to the gauge of the biopsy needle. Am. J. Nephrol. 2013, 37, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Breyer, B.N.; McAninch, J.W.; Elliott, S.P.; Master, V.A. Minimally invasive endovascular techniques to treat renal hemorrhage. J. Urol. 2008, 179, 2248–2252. [Google Scholar] [CrossRef] [PubMed]
- Ginat, D.T.; Saad, W.E.; Turba, U.C. Transcatheter renal artery embolization: Clinical applications and techniques. Tech. Vasc. Interv. Radiol. 2009, 12, 224–239. [Google Scholar] [CrossRef]
- Ramaswamy, R.S.; Akinwande, O.; Tiwari, T. Renal Embolization: Current Recommendations and Rationale for Clinical Practice. Curr. Urol. Rep. 2018, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Rouvière, O. Renal artery embolization-indications, technical approaches and outcomes. Nat. Rev. Nephrol. 2015, 11, 288–301. [Google Scholar] [CrossRef]
- Pappas, P.; Leonardou, P.; Papadoukakis, S.; Zavos, G.; Michail, S.; Boletis, J.; Tzortzis, G. Urgent superselective segmental renal artery embolization in the treatment of life-threatening renal hemorrhage. Urol. Int. 2006, 77, 34–41. [Google Scholar] [CrossRef]
- Floridi, C.; Cacioppa, L.M.; Rossini, N.; Ventura, C.; Macchini, M.; Rosati, M.; Boscarato, P.; Torresi, M.; Candelari, R.; Giovagnoni, A. Predictive factors of selective transarterial embolization failure in acute renal bleeding: A single-center experience. Emerg. Radiol. 2023, 30, 597–606, online ahead of print. [Google Scholar] [CrossRef]
- Al Turk, A.A.; Estiverne, C.; Agrawal, P.R.; Michaud, J.M. Trends and outcomes of the use of percutaneous native kidney biopsy in the United States: 5-Year data analysis of the nationwide inpatient sample. Clin. Kidney J. 2018, 11, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Halimi, J.M.; Gatault, P.; Longuet, H.; Barbet, C.; Goumard, A.; Gueguen, J.; Goin, N.; Sautenet, B.; Herbert, J.; Bisson, A.; et al. Major Bleeding of Transjugular Native Kidney Biopsies. A French Nationwide Cohort Study. Kidney Int. Rep. 2021, 6, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- Sauk, S.; Zuckerman, D.A. Renal artery embolization. Semin. Interv. Radiol. 2011, 28, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Bilge, I.; Rozanes, I.; Acunas, B.; Minareci, O.; Nayir, A.; Oktem, F.; Tonguç, E.; Kozok, Y.; Emre, S.; Ander, H.; et al. Endovascular treatment of arteriovenous fistulas complicating percutaneous renal biopsy in three paediatric cases. Nephrol. Dial. Transplant. 1999, 14, 2726–2730. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, M.C.; Del Moro, R.M.; D’Urbano, M.L.; Ferrario, F.; Porri, M.T.; Maldifassi, P.; D’Amico, G.; Casolo, F. Sonography after renal biopsy: Assessment of its role in 230 consecutive cases. Abdom. Imaging 1994, 19, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, E.; Nomura, S.; Hamaguchi, T.; Obe, T.; Inoue-Kiyohara, M.; Oosugi, K.; Katayama, K.; Ito, M. Ultrasonography as a predictor of overt bleeding after renal biopsy. Clin. Exp. Nephrol. 2009, 13, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Waldo, B.; Korbet, S.M.; Freimanis, M.G.; Lewis, E.J. The value of post-biopsy ultrasound in predicting complications after percutaneous renal biopsy of native kidneys. Nephrol. Dial. Transplant. 2009, 24, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, L.F.; Micali, S.; Chen, R.N.; Moore, R.G.; Kavoussi, L.R.; Scheel, P.J., Jr. Laparoscopic renal biopsy. Kidney Int. 1998, 54, 525–529. [Google Scholar] [CrossRef]
- Gupta, M.; Haluck, R.S.; Yang, H.C.; Holman, M.J.; Ahsan, N. Laparoscopic-assisted renal biopsy: An alternative to open approach. Am. J. Kidney Dis. 2000, 36, 636–639. [Google Scholar] [CrossRef]
- Shetye, K.R.; Kavoussi, L.R.; Ramakumar, S.; Fugita, O.E.; Jarrett, T.W. Laparoscopic renal biopsy: A 9-year experience. BJU Int. 2003, 91, 817–820. [Google Scholar] [CrossRef]
- Zou, G.; Chen, H.; Zhou, X.; Li, W.; Zhuo, L. Retroperitoneal laparoscopic renal biopsy: An 8 year experience at a single centre. Int. Urol. Nephrol. 2023, 55, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.C.; Kingdon, E.; Johnston, M.; Tibballs, J.; Watkinson, A.; Jarmulowicz, M.; Burns, A.; Sweny, P.; Wheeler, D.C. Transjugular kidney biopsy. Am. J. Kidney Dis. 2004, 43, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Cluzel, P.; Martinez, F.; Bellin, M.F.; Michalik, Y.; Beaufils, H.; Jouanneau, C.; Lucidarme, O.; Deray, G.; Grenier, P.A. Transjugular versus percutaneous renal biopsy for the diagnosis of parenchymal disease: Comparison of sampling effectiveness and complications. Radiology 2000, 215, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Gyamlani, G.; Swaminathan, S.; Buehrig, C.K.; Bjarnason, H.; McKusick, M.A.; Andrews, J.C.; Johnson, C.M.; Fervenza, F.C.; Leung, N. Safety and diagnostic yield of transjugular renal biopsy. J. Vasc. Interv. Radiol. 2008, 19, 546–551. [Google Scholar] [CrossRef] [PubMed]
- St Jeor, J.D.; Reisenauer, C.J.; Andrews, J.C.; Fleming, C.J.; Misra, S.; Takahashi, E.A. Transjugular Renal Biopsy Bleeding Risk and Diagnostic Yield: A Systematic Review. J. Vasc. Interv. Radiol. 2020, 31, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Meyrier, A. Transjugular renal biopsy. Update on Hepato-Renal Needlework. Nephrol. Dial. Transplant. 2005, 20, 1299–1302. [Google Scholar] [CrossRef]
- Neumann, E.K.; Patterson, N.H.; Rivera, E.S.; Allen, J.L.; Brewer, M.; deCaestecker, M.P.; Caprioli, R.M.; Fogo, A.B.; Spraggins, J.M. Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney Int. 2022, 101, 137–143. [Google Scholar] [CrossRef]
- Lundberg, E.; Borner, G.H.H. Spatial proteomics: A powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 2019, 20, 285–302. [Google Scholar] [CrossRef]
- McKellar, D.W.; Mantri, M.; Hinchman, M.M.; Parker, J.S.L.; Sethupathy, P.; Cosgrove, B.D.; De Vlaminck, I. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat. Biotechnol. 2023, 41, 513–520. [Google Scholar] [CrossRef]
Clotting disorder [1,2,46] |
Thrombocytopenia (platelet count <120 × 103/µL) [1,2] |
Medication uncontrolled hypertension (>140/90 mmHg) [1,2,3,49,59,60] |
Small hyperechoic kidneys on ultrasound [1,2] |
Patient’s inability to follow instructions [1,2] |
Patient’s inability to provide informed consent [1,2] |
a Anatomic anomaly/horseshoe kidney [2] |
Multiple bilateral cysts [2] |
Hydronephrosis [1,2] |
Active kidney infection/pyelonephritis or perirenal abscess [1,2] |
Skin infection at the site of needle insertion [2] |
Access Route | Clinical Situation | Main Advantage | Limitation |
---|---|---|---|
Percutaneous ultrasound-guided biopsy (PUSB) | Normal bleeding risk Given indication Consideration of contraindications | Little technical effort | Not always practicable |
Percutaneous CT-guided biopsy | Like in PUSB, but kidney cannot be adequately visualized on ultrasound [75,76] Extreme obesity [75,76] Anatomic abnormality (e.g., cysts) | More precise placement of biopsy needle [76] | Higher technical effort Radiation exposure |
Transjugular renal biopsy (TJRB) | Increased bleeding risk Urgent indication Coagulation disorder [102,104,105,106] Anatomic abnormality [102] | Avoidance of blood loss through the renal capsule [102] Simultaneous liver biopsy via the same access if indicated [103,106] | Skilled interventional radiologist required Radiation exposure Contrast media exposure |
Surgical/laparoscopic approach | Like in TJRB [98,100,101] | Sampling and hemostasis under visual control | General anesthesia required Operating theatre required Prolonged hospitalization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnuelle, P. Renal Biopsy for Diagnosis in Kidney Disease: Indication, Technique, and Safety. J. Clin. Med. 2023, 12, 6424. https://doi.org/10.3390/jcm12196424
Schnuelle P. Renal Biopsy for Diagnosis in Kidney Disease: Indication, Technique, and Safety. Journal of Clinical Medicine. 2023; 12(19):6424. https://doi.org/10.3390/jcm12196424
Chicago/Turabian StyleSchnuelle, Peter. 2023. "Renal Biopsy for Diagnosis in Kidney Disease: Indication, Technique, and Safety" Journal of Clinical Medicine 12, no. 19: 6424. https://doi.org/10.3390/jcm12196424
APA StyleSchnuelle, P. (2023). Renal Biopsy for Diagnosis in Kidney Disease: Indication, Technique, and Safety. Journal of Clinical Medicine, 12(19), 6424. https://doi.org/10.3390/jcm12196424