Comprehensive Assessment of Corvis ST Biomechanical Indices in Normal and Keratoconus Corneas with Reference to Corneal Enantiomorphism
Abstract
:1. Introduction
2. Patients and Methods
3. Results
3.1. Control Group
3.2. Keratoconus Group
3.3. Comparison of Keratoconus with Control Corneas
3.4. Stratified Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grieve, K.; Ghoubay, D.; Georgeon, C.; Latour, G.; Nahas, A.; Plamann, K.; Crotti, C.; Bocheux, R.; Borderie, M.; Nguyen, T.-M.; et al. Stromal striae: A new insight into corneal physiology and mechanics. Sci. Rep. 2017, 7, 13194–13196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, C.J.; Dupps, W.J., Jr. Biomechanics of corneal ectasia and biomechanical treatments. J. Cataract. Refract. Surg. 2014, 40, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellara, H.R.; Patel, D.V. Biomechanical properties of the keratoconic cornea: A review. Clin. Exp. Optom. 2015, 98, 31–38. [Google Scholar] [CrossRef]
- Randleman, J.; Russell, B.; A Ward, M.; Thompson, K.P.; Stulting, R. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology 2003, 110, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Kling, S.; Hafezi, F. Corneal biomechanics—A review. Ophthalmic Physiol. Opt. 2017, 37, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Piñero, D.P.; Alcón, N. In vivo characterization of corneal biomechanics. J. Cataract. Refract. Surg. 2014, 40, 870–887. [Google Scholar] [CrossRef]
- Kopito, R.; Gaujoux, T.; Montard, R.; Touzeau, O.; Allouch, C.; Borderie, V.; Laroche, L. Reproducibility of viscoelastic property and intraocular pressure measurements obtained with the Ocular Response Analyzer. Acta Ophthalmol. 2010, 89, e225–e230. [Google Scholar] [CrossRef]
- Schweitzer, C.; Roberts, C.J.; Mahmoud, A.M.; Colin, J.; Maurice-Tison, S.; Kerautret, J. Screening of Forme Fruste Keratoconus with the Ocular Response Analyzer. Investig. Opthalmol. Vis. Sci. 2010, 51, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Saad, A.; Lteif, Y.; Azan, E.; Gatinel, D. Biomechanical Properties of Keratoconus Suspect Eyes. Investig. Opthalmol. Vis. Sci. 2010, 51, 2912–2916. [Google Scholar] [CrossRef] [Green Version]
- Tian-Jie, L.; Ko, M.; Wang, L.-K.; Zhang, J.-Y.; Li, T.-J.; Huang, Y.-F.; Zheng, Y.-P. Assessment of Ocular Biomechanics Using Dynamic Ultra High-Speed Scheimpflug Imaging in Keratoconic and Normal Eyes. J. Refract. Surg. 2014, 30, 785–791. [Google Scholar] [CrossRef]
- Lanza, M.; Cennamo, M.; Iaccarino, S.; Romano, V.; Bifani, M.; Irregolare, C.; Lanza, A. Evaluation of corneal deformation analyzed with a Scheimpflug based device. Contact Lens Anterior Eye 2015, 38, 89–93. [Google Scholar] [CrossRef]
- Ye, C.; Yu, M.; Lai, G.; Jhanji, V. Variability of Corneal Deformation Response in Normal and Keratoconic Eyes. Optom. Vis. Sci. 2015, 92, e149–e153. [Google Scholar] [CrossRef]
- Bekesi, N.; Kochevar, I.E.; Marcos, S. Corneal Biomechanical Response Following Collagen Cross-Linking With Rose Bengal-Green Light and Riboflavin-UVA. Investig. Ophthalmol. Vis. Sci. 2016, 57, 992–1001. [Google Scholar] [CrossRef] [Green Version]
- Jabbarvand, M.; Moravvej, Z.; Shahraki, K.; Hashemian, H.; Ghasemi, H.; Berijani, S.; Amiri, Z.; Jamali, A. Corneal biomechanical outcome of collagen cross-linking in keratoconic patients evaluated by Corvis ST. Eur. J. Ophthalmol. 2020, 31, 1577–1583. [Google Scholar] [CrossRef]
- Touzeau, O.; Gaujoux, T.; Bullet, J.; Allouch, C.; Borderie, V.; Laroche, L. Relationships between refractive parameters: Sphere, cylinder and axis. J. Fr. Ophtalmol. 2012, 35, 587–598. [Google Scholar] [CrossRef]
- Boote, C.; Hayes, S.; Abahussin, M.; Meek, K. Mapping Collagen Organization in the Human Cornea: Left and Right Eyes Are Structurally Distinct. Investig. Opthalmol. Vis. Sci. 2006, 47, 901–908. [Google Scholar] [CrossRef]
- Saad, A.; Guilbert, E.; Gatinel, D. Corneal Enantiomorphism in Normal and Keratoconic Eyes. J. Refract. Surg. 2014, 30, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Temstet, C.; Sandali, O.; Bouheraoua, N.; Hamiche, T.; Galan, A.; El Sanharawi, M.; Basli, E.; Laroche, L.; Borderie, V. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J. Cataract. Refract. Surg. 2015, 41, 812–820. [Google Scholar] [CrossRef]
- Sandali, O.; El Sanharawi, M.; Temset, C.; Hamiche, T.; Galan, A.; Ghouali, W.; Goemaere, I.; Basli, E.; Borderie, V.; Laroche, L. Fourier-Domain Optical coherence tomography imaging in keratoconus: A corneal structural classification. Ophthalmology 2013, 120, 2403–2412. [Google Scholar] [CrossRef]
- Lopes, B.T.; Roberts, C.J.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P.; Reisdorf, S.; Berger, S.; Koprowski, R.; Ambrósio, R. Repeatability and Reproducibility of Intraocular Pressure and Dynamic Corneal Response Parameters Assessed by the Corvis ST. J. Ophthalmol. 2017, 2017, 1–4. [Google Scholar] [CrossRef]
- Yang, K.; Xu, L.; Fan, Q.; Zhao, D.; Ren, S. Repeatability and comparison of new Corvis ST parameters in normal and keratoconus eyes. Sci. Rep. 2019, 9, 15379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herber, R.; Vinciguerra, R.; Lopes, B.; Raiskup, F.; E Pillunat, L.; Vinciguerra, P.; Ambrósio, R. Repeatability and reproducibility of corneal deformation response parameters of dynamic ultra-high-speed Scheimpflug imaging in keratoconus. J. Cataract. Refract. Surg. 2020, 46, 86–94. [Google Scholar] [PubMed]
- Vinciguerra, R.; Ambrosio RJr Elsheikh, A.; Roberts, C.J.; Lopes, B.; Morenghi, E.; Azzolini, C.; Vinciguerra, P. Detection of Keratoconus with a New Biomechanical Index. J. Refract. Surg. 2016, 32, 803–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciguerra, R.; Ambrósio, R.; Elsheikh, A.; Hafezi, F.; Kang, D.S.Y.; Kermani, O.; Koh, S.; Lu, N.; Padmanabhan, P.; Roberts, C.J.; et al. Detection of postlaser vision correction ectasia with a new combined biomechanical index. J. Cataract. Refract. Surg. 2021, 47, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Bak-Nielsen, S.; Pedersen, I.B.; Ivarsen, A.; Hjortdal, J. Dynamic Scheimpflug-based Assessment of Keratoconus and the Effects of Corneal Cross-linking. J. Refract. Surg. 2014, 30, 408–414. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, T.; Yu, M.; Jhanji, V. Comparison of Corneal Dynamic and Tomographic Analysis in Normal, Forme Fruste Keratoconic, and Keratoconic Eyes. J. Refract. Surg. 2017, 33, 632–638. [Google Scholar] [CrossRef]
- Flockerzi, E.; Vinciguerra, R.; Belin, M.W.; Vinciguerra, P.; Ambrosio, R., Jr.; Seitz, B. Combined biomechanical and tomographic keratoconus staging: Adding a biomechanical parameter to the ABCD keratoconus staging system. Acta Ophthalmol. 2021, 30, 2022. [Google Scholar] [CrossRef]
- Flockerzi, E.; Vinciguerra, R.; Belin, M.W.; Vinciguerra, P.; Ambrosio, R., Jr.; Seitz, B. Correlation of the Corvis Biomechanical Factor with tomographic parameters in keratoconus. J. Cataract. Refract. Surg. 2022, 48, 215–221. [Google Scholar] [CrossRef]
- Eliasy, A.; Chen, K.J.; Vinciguerra, R.; Lopes, B.T.; Abass, A.; Vinciguerra, P.; Ambrosio, R., Jr.; Roberts, C.J.; Elsheikh, A. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Front Bioeng Biotechnol. 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin Optical Microscopy for Corneal Biomechanics. Investig. Opthalmology Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef]
- Lopes, B.T.; Elsheikh, A. In Vivo Corneal Stiffness Mapping by the Stress-Strain Index Maps and Brillouin Microscopy. Curr. Eye Res. 2022, 30, 1–7. [Google Scholar] [CrossRef]
- Ghoubay, D.; Borderie, M.; Grieve, K.; Martos, R.; Bocheux, R.; Nguyen, T.-M.; Callard, P.; Chédotal, A.; Borderie, V.M. Corneal stromal stem cells restore transparency after N2 injury in mice. Stem Cells Transl. Med. 2020, 9, 917–935. [Google Scholar] [CrossRef]
- Salomao, M.Q.; Hofling-Lima, A.L.; Gomes Esporcatte, L.P.; Lopes, B.; Vinciguerra, R.; Vinciguerra, P.; Bühren, J.; Sena, N., Jr.; Luz Hilgert, G.S.; Ambrosio, R., Jr. The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients. Int. J. Environ. Res. Public Health 2020, 17, 2113. [Google Scholar] [CrossRef] [Green Version]
- Ambrósio, R., Jr.; Lopes, B.T.; Faria-Correia, F.; Salomão, M.Q.; Bühren, J.; Roberts, C.J.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J. Refract. Surg. 2017, 33, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rueda, A.; Jiménez-Rodríguez, D.; Castro-Luna, G. Diagnosis of Subclinical Keratoconus with a Combined Model of Biomechanical and Topographic Parameters. J. Clin. Med. 2021, 10, 2746. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, D.; Guo, L.; Qin, X.; Zhang, H.; Zhang, H.; Jie, Y.; Li, L. Comparisons of corneal biomechanical and tomographic parameters among thin normal cornea, forme fruste keratoconus, and mild keratoconus. Eye Vis. 2021, 8, 44. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Lopes, B.T.; Eliasy, A.M.; Abass, A.; Vinciguerra, R.; Vinciguerra, P.; Ambrósio, R.J.; Elsheikh, A. Evaluation of corneal biomechanical behavior in vivo for healthy and keratoconic eyes using the stress–strain index. J. Cataract. Refract. Surg. 2022, 48, 1162–1167. [Google Scholar] [CrossRef]
- Liu, Q.; Pang, C.; Liu, C.; Cheng, W.; Ming, S.; Du, W.; Feng, X. Correlations among Corneal Biomechanical Parameters, Stiffness, and Thickness Measured Using Corvis ST and Pentacam in Patients with Ocular Hypertension. J. Ophthalmol. 2022, 3, 7387581. [Google Scholar] [CrossRef]
Corvis Index | Group | N | Mean | Median | Minimum | Maximum | 5th Percentile | 95th Percentile | Standard Deviation | Mean COV | Correlation with Pachymetry (rs) | Mean per 100 µm-CCT | Correlation with IOP (rs) | Mean per 10-mm Hg IOP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arc Length–Applanation 1 | Control | 62 | 2.27 | 2.28 | 1.68 | 2.84 | 1.84 | 2.66 | 0.27 | 10.8% | 0.49 | 0.41 | 0.58 | 1.30 |
Keratoconus | 55 | 1.90 | 1.85 | 1.35 | 2.46 | 1.47 | 2.43 | 0.29 | 11.4% | 0.40 | 0.41 | 0.26 | 1.34 | |
p (KC versus control) | 0.000000 | 0.70 | 0.73 | 0.40 | ||||||||||
Arc Length–Applanation 2 | Control | 62 | 2.07 | 1.99 | 1.56 | 2.89 | 1.67 | 2.69 | 0.32 | 13.3% | 0.56 | 0.38 | 0.39 | 1.19 |
Keratoconus | 55 | 1.54 | 1.51 | 1.01 | 2.16 | 1.08 | 2.04 | 0.29 | 17.2% | 0.43 | 0.33 | 0.23 | 1.08 | |
p (KC versus control) | 0.000000 | 0.07 | 0.000003 | 0.01 | ||||||||||
Corneal Velocity (Apex)–Applanation 1 | Control | 62 | 0.15 | 0.15 | 0.11 | 0.20 | 0.12 | 0.18 | 0.02 | 6.8% | −0.50 | 0.03 | −0.84 | 0.09 |
Keratoconus | 55 | 0.17 | 0.17 | 0.11 | 0.22 | 0.13 | 0.22 | 0.03 | 6.2% | −0.53 | 0.04 | −0.36 | 0.12 | |
p (KC versus control) | 0.000000 | 0.54 | 0.000000 | 0.000000 | ||||||||||
Corneal Velocity (Apex)–Applanation 2 | Control | 62 | −0.26 | −0.26 | −0.32 | −0.20 | −0.30 | −0.21 | 0.03 | 8.0% | 0.27 | −0.05 | 0.65 | −0.15 |
Keratoconus | 55 | −0.88 | −0.31 | −11.90 | −0.18 | −8.52 | −0.22 | 2.43 | 17.7% | 0.52 | −0.20 | 0.46 | −0.63 | |
p (KC versus control) | 0.04 | 0.07 | 0.04 | 0.03 | ||||||||||
Intra Ocular Pressure (IOP. mm Hg) | Control | 62 | 17.5 | 17.0 | 13.2 | 22.7 | 14.5 | 21.5 | 2.1 | 6.2% | 0.39 | 3.2 | ||
Keratoconus | 55 | 14.76 | 14.33 | 7.25 | 31.83 | 10.00 | 19.33 | 3.57 | 9.5% | 0.35 | 3.18 | |||
p (KC versus control) | 0.000001 | 0.14 | 0.97 | |||||||||||
Peak Distance (PD) | Control | 62 | 4.68 | 4.73 | 4.15 | 5.16 | 4.23 | 5.08 | 0.27 | 2.7% | −0.20 | 0.85 | −0.75 | 2.72 |
Keratoconus | 55 | 4.95 | 4.95 | 4.32 | 6.37 | 4.48 | 5.36 | 0.33 | 2.0% | −0.04 | 1.07 | −0.42 | 3.54 | |
p (KC versus control) | 0.000004 | 0.04 | 0.000000 | 0.000000 | ||||||||||
Inverse Concave Radius (Rad) | Control | 62 | 6.89 | 6.82 | 5.76 | 9.17 | 6.11 | 7.86 | 0.55 | 6.3% | 0.50 | 1.25 | 0.16 | 3.98 |
Keratoconus | 55 | 5.18 | 5.24 | 2.86 | 7.48 | 3.00 | 6.99 | 1.02 | 6.3% | 0.60 | 1.10 | 0.27 | 3.62 | |
p (KC versus control) | 0.000000 | 0.93 | 0.000000 | 0.004 | ||||||||||
Deformation Amplitude (DA) | Control | 62 | 1.03 | 1.03 | 0.83 | 1.21 | 0.88 | 1.17 | 0.09 | 4.7% | −0.34 | 0.19 | −0.75 | 0.60 |
Keratoconus | 55 | 1.23 | 1.22 | 0.94 | 1.81 | 1.00 | 1.57 | 0.17 | 3.5% | −0.57 | 0.27 | −0.66 | 0.89 | |
p (KC versus control) | 0.000000 | 0.02 | 0.000000 | 0.000000 | ||||||||||
Pachymetry (µm) | Control | 62 | 551 | 547 | 482 | 635 | 494 | 612 | 37 | 0.9% | 1.00 | 0.39 | ||
Keratoconus | 55 | 470 | 465 | 339 | 606 | 353 | 568 | 56 | 1.3% | 1.00 | 0.35 | |||
p (KC versus control) | 0.000000 | 0.09 | ||||||||||||
Stress-Strain Index | Control | 62 | 0.98 | 0.98 | 0.68 | 1.34 | 0.75 | 1.21 | 0.14 | 5.5% | 0.09 | 0.18 | 0.46 | 0.56 |
Keratoconus | 55 | 0.73 | 0.74 | 0.40 | 1.19 | 0.47 | 1.03 | 0.18 | 5.9% | 0.45 | 0.15 | 0.38 | 0.51 | |
p (KC versus control) | 0.000000 | 0.52 | 0.000035 | 0.004 | ||||||||||
DA Ratio | Control | 62 | 4.12 | 4.08 | 3.27 | 5.20 | 3.55 | 4.87 | 0.43 | 3.6% | −0.67 | 0.75 | −0.74 | 2.41 |
Keratoconus | 55 | 5.72 | 5.57 | 3.73 | 10.30 | 4.23 | 8.07 | 1.23 | 5.5% | −0.78 | 1.26 | −0.43 | 4.17 | |
p (KC versus control) | 0.000000 | 0.02 | 0.000000 | 0.000000 | ||||||||||
Integrated Radius | Control | 62 | 8.31 | 8.30 | 6.17 | 11.10 | 6.30 | 10.07 | 1.04 | 5.1% | −0.61 | 1.52 | −0.69 | 4.86 |
Keratoconus | 55 | 12.62 | 11.90 | 7.23 | 21.45 | 9.25 | 19.45 | 3.10 | 3.8% | −0.66 | 2.78 | −0.53 | 9.30 | |
p (KC versus control) | 0.42 | 0.000000 | 0.000000 | |||||||||||
Ambrosio’s Relational Thickness horizontal | Control | 62 | 519 | 520 | 362 | 819 | 393 | 652 | 94 | 4.3% | 0.63 | 94 | 0.29 | 299 |
Keratoconus | 55 | 261 | 232 | 42 | 1235 | 54 | 577 | 191 | 16.3% | 0.73 | 53.57 | 0.39 | 175.52 | |
p (KC versus control) | 0.000000 | 0.0004 | 0.000000 | 0.000000 | ||||||||||
Stiffness Parameter—Applanation 1 | Control | 62 | 113 | 114 | 78 | 141 | 87 | 137 | 16 | 6.0% | 0.86 | 20 | 0.64 | 65 |
Keratoconus | 55 | 73 | 71 | 22 | 130 | 26 | 122 | 24 | 10.6% | 0.73 | 15.21 | 0.56 | 49.85 | |
p (KC versus control) | 0.04 | 0.000000 | 0.000000 | |||||||||||
Corvis Biomechanical Index | Control | 62 | 0.24 | 0.21 | 0.01 | 0.82 | 0.02 | 0.60 | 0.20 | 28.9% | −0.86 | 0.05 | −0.42 | 0.15 |
Keratoconus | 55 | 0.88 | 0.98 | 0.01 | 1.00 | 0.36 | 1.00 | 0.22 | 6.8% | −0.80 | 0.19 | −0.47 | 0.64 | |
p (KC versus control) | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Corvis Indices | Group | N | Right Eye | Left Eye | p | Thinnest Cornea | Thickest Cornea | p |
---|---|---|---|---|---|---|---|---|
Arc Length—Applanation 1 | Control | 31 | 2.31 | 2.23 | 0.42 | 2.26 | 2.27 | 0.88 |
Keratoconus | 23 | 1.79 | 1.95 | 0.00003 | 1.82 | 1.88 | 0.35 | |
Arc Length—Applanation 2 | Control | 31 | 2.08 | 2.06 | 0.51 | 2.02 | 2.13 | 0.06 |
Keratoconus | 23 | 1.52 | 1.56 | 0.00003 | 1.46 | 1.61 | 0.19 | |
Corneal Velocity (Apex)—Applanation 1 | Control | 31 | 0.15 | 0.15 | 0.22 | 0.15 | 0.15 | 0.52 |
Keratoconus | 23 | 0.18 | 0.17 | 0.02 | 0.18 | 0.18 | 0.47 | |
Corneal Velocity (Apex)—Applanation 2 | Control | 31 | −0.25 | −0.26 | 0.94 | −0.25 | −0.26 | 0.82 |
Keratoconus | 23 | −0.83 | −1.16 | 0.18 | −0.85 | −1.21 | 0.35 | |
Intra Ocular Pressure (IOP. mm Hg) | Control | 31 | 17.9 | 17.2 | 0.009 | 17.6 | 17.5 | 0.61 |
Keratoconus | 23 | 14.1 | 14.4 | 0.82 | 14.0 | 14.5 | 0.31 | |
Peak Distance (PD) | Control | 31 | 4.67 | 4.70 | 0.39 | 4.65 | 4.71 | 0.05 |
Keratoconus | 23 | 4.92 | 4.90 | 0.95 | 4.89 | 4.94 | 0.31 | |
Inverse Concave Radius (Rad) | Control | 31 | 6.81 | 6.96 | 0.17 | 6.85 | 6.92 | 0.42 |
Keratoconus | 23 | 4.83 | 5.36 | 0.03 | 4.68 | 5.43 | 0.002 | |
Deformation Amplitude (DA) | Control | 31 | 1.03 | 1.02 | 0.83 | 1.03 | 1.02 | 0.59 |
Keratoconus | 23 | 1.28 | 1.20 | 0.03 | 1.29 | 1.21 | 0.03 | |
Pachymetry (µm) | Control | 31 | 551 | 551 | 0.84 | 547 | 555 | 0.000001 |
Keratoconus | 23 | 454 | 481 | 0.09 | 444 | 489 | 0.00004 | |
Stress-Strain Index | Control | 31 | 0.98 | 0.98 | 0.42 | 0.99 | 0.97 | 0.09 |
Keratoconus | 23 | 0.68 | 0.75 | 0.03 | 0.66 | 0.75 | 0.04 | |
DA Ratio | Control | 31 | 4.09 | 4.15 | 0.16 | 4.12 | 4.13 | 0.64 |
Keratoconus | 23 | 6.09 | 5.57 | 0.18 | 6.31 | 5.48 | 0.004 | |
Integrated Radius | Control | 31 | 8.23 | 8.39 | 0.25 | 8.30 | 8.31 | 0.90 |
Keratoconus | 23 | 13.82 | 11.97 | 0.02 | 14.19 | 11.85 | 0.002 | |
Ambrosio’s Relational Thickness horizontal | Control | 31 | 532 | 505 | 0.007 | 514 | 524 | 0.41 |
Keratoconus | 23 | 262 | 253 | 0.45 | 179 | 334 | 0.0002 | |
Stiffness Parameter—Applanation 1 | Control | 31 | 112 | 114 | 0.22 | 113 | 113 | 0.67 |
Keratoconus | 23 | 67 | 78 | 0.05 | 63 | 80 | 0.0002 | |
Corvis Biomechanical Index | Control | 31 | 0.21 | 0.27 | 0.003 | 0.25 | 0.23 | 0.37 |
Keratoconus | 23 | 0.90 | 0.88 | 0.96 | 0.96 | 0.82 | 0.002 |
Corvis Indices | Threshold Value | Specificity | Sensitivity | Accuracy (Percentage of True Positive and True Negative Observations) |
---|---|---|---|---|
Arc Length—Applanation 1 | <1.84 | 95% | 49% | 74% |
Arc Length—Applanation 2 | <1.67 | 94% | 71% | 83% |
Corneal Velocity (Apex)—Applanation 1 | >0.18 | 96% | 33% | 67% |
Corneal Velocity (Apex)—Applanation 2 | <−0.30 | 94% | 58% | 77% |
Intra Ocular Pressure | <14.5 mm Hg | 95% | 51% | 74% |
Peak Distance | >5.08 | 95% | 33% | 66% |
Inverse Concave Radius | <6.11 | 95% | 84% | 90% |
Deformation Amplitude | >1.17 | 95% | 62% | 79% |
Pachymetry | <494 µm | 94% | 73% | 84% |
Stress-Strain Index | <0.75 | 95% | 56% | 77% |
DA Ratio | >4.87 | 95% | 71% | 84% |
Integrated Radius | >10.07 | 95% | 82% | 89% |
Ambrosio’s Relational Thickness horizontal | <393 | 95% | 87% | 91% |
Stiffness Parameter—Applanation 1 | <87 | 95% | 78% | 87% |
Corvis Biomechanical Index | >0.60 | 94% | 91% | 92% |
Corvis Indices | Group | N | Mean ± SD | Central versus Control p | Peripheral versus Control p | Peripheral versus Central p |
---|---|---|---|---|---|---|
Arc Length—Applanation 1 | Control | 62 | 2.27 + 0.27 | <0.00001 | 0.00003 | 0.47 |
Central keratoconus Peripheral keratoconus | 31 24 | 1.88 + 0.30 1.93 + 0.28 | ||||
Arc Length—Applanation 2 | Control | 62 | 2.07 + 0.32 | <0.00001 | <0.00001 | 0,92 |
Central keratoconus Peripheral keratoconus | 31 24 | 1.54 + 0.27 1.51 + 0.31 | ||||
Corneal Velocity (Apex)—Applanation 1 | Control | 62 | 0.15 + 0.02 | <0.00001 | 0.00004 | 0.81 |
Central keratoconus Peripheral keratoconus | 31 24 | 0.17 + 0.03 0.17 + 0.02 | ||||
Corneal Velocity (Apex)—Applanation 2 | Control | 62 | −0.26 + 0.03 | 0.03 | 0.31 | 0.40 |
Central keratoconus Peripheral keratoconus | 31 24 | −1.05 + 2.90 −0.67 + 1.67 | ||||
Intra Ocular Pressure (IOP. mm Hg) | Control | 62 | 17.5 + 2.1 | 0.00003 | 0.0001 | 0.98 |
Central keratoconus Peripheral keratoconus | 31 24 | 14.7 + 2.6 14.8 + 4.6 | ||||
Peak Distance (PD) | Control | 62 | 4.68 + 0.27 | 0.0004 | 0.00005 | 0.44 |
Central keratoconus Peripheral keratoconus | 31 24 | 4.92 + 0.37 4.999 + 0.29 | ||||
Inverse Concave Radius (Rad) | Control | 62 | 6.89 + 0.55 | <0.00001 | <0.00001 | 0.61 |
Central keratoconus Peripheral keratoconus | 31 24 | 5.23 + 1.12 5.12 + 0.88 | ||||
Deformation Amplitude (DA) | Control | 62 | 1.03 + 0.09 | <0.00001 | <0.00001 | 0.18 |
Central keratoconus Peripheral keratoconus | 31 24 | 1.20 + 0.17 1.25 + 0.18 | ||||
Pachymetry (µm) | Control | 62 | 551 + 37 | <0.00001 | <0.00001 | 0.53 |
Central keratoconus Peripheral keratoconus | 31 24 | 473 + 61 466 + 49 | ||||
Stress-Strain Index | Control | 62 | 0.98 + 0.14 | <0.00001 | <0.00001 | 0.71 |
Central keratoconus Peripheral keratoconus | 31 24 | 0.73 + 0.19 0.72 + 0.18 | ||||
DA Ratio | Control | 62 | 4.12 + 0.43 | <0.00001 | <0.00001 | 0.57 |
Central keratoconus Peripheral keratoconus | 31 24 | 5.65 + 1.14 5.80 + 1.34 | ||||
Integrated Radius | Control | 62 | 8.31 + 1.04 | <0.00001 | <0.00001 | 0.71 |
Central keratoconus Peripheral keratoconus | 31 24 | 12.72 + 3.36 12.49 + 2.78 | ||||
Ambrosio’s Relational Thickness horizontal | Control | 62 | 519 + 94 | <0.00001 | <0.00001 | 0.92 |
Central keratoconus Peripheral keratoconus | 31 24 | 262 + 160 258 + 229 | ||||
Stiffness Parameter—Applanation 1 | Control | 62 | 113 + 16 | <0.00001 | <0.00001 | 0.41 |
Central keratoconus Peripheral keratoconus | 31 24 | 74 + 26 70 + 23 | ||||
Corvis Biomechanical Index | Control | 62 | 0.24 + 0.20 | <0.00001 | <0.00001 | 0.09 |
Central keratoconus Peripheral keratoconus | 31 24 | 0.84 + 0.27 0.94 + 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borderie, V.; Beauruel, J.; Cuyaubère, R.; Georgeon, C.; Memmi, B.; Sandali, O. Comprehensive Assessment of Corvis ST Biomechanical Indices in Normal and Keratoconus Corneas with Reference to Corneal Enantiomorphism. J. Clin. Med. 2023, 12, 690. https://doi.org/10.3390/jcm12020690
Borderie V, Beauruel J, Cuyaubère R, Georgeon C, Memmi B, Sandali O. Comprehensive Assessment of Corvis ST Biomechanical Indices in Normal and Keratoconus Corneas with Reference to Corneal Enantiomorphism. Journal of Clinical Medicine. 2023; 12(2):690. https://doi.org/10.3390/jcm12020690
Chicago/Turabian StyleBorderie, Vincent, Juliette Beauruel, Roxane Cuyaubère, Cristina Georgeon, Benjamin Memmi, and Otman Sandali. 2023. "Comprehensive Assessment of Corvis ST Biomechanical Indices in Normal and Keratoconus Corneas with Reference to Corneal Enantiomorphism" Journal of Clinical Medicine 12, no. 2: 690. https://doi.org/10.3390/jcm12020690
APA StyleBorderie, V., Beauruel, J., Cuyaubère, R., Georgeon, C., Memmi, B., & Sandali, O. (2023). Comprehensive Assessment of Corvis ST Biomechanical Indices in Normal and Keratoconus Corneas with Reference to Corneal Enantiomorphism. Journal of Clinical Medicine, 12(2), 690. https://doi.org/10.3390/jcm12020690