Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Role of Chemotherapy in Well-Differentiated G1 and G2 NETs
3.1.1. Current Evidence in Well-Differentiated Pancreatic NETs
- STZ-Based Regimens
Study | Type of Study | Study Population | Study Arms | Outcome | ||
---|---|---|---|---|---|---|
ORR | mPFS | OS | ||||
Bajetta et al. [30] | Phase II Prospective | Advanced neuroendocrine tumors (low and high-grade malignancy) | XELOX Low-grade | 27% | NA | 40 months |
Ducreux et al. [31] | Phase II Prospective | well-differentiated endocrine carcinomas | LV5FU2 + irinotecan | NA | 5 months | 15 months |
Kunz et al. [32] | Phase II Prosepctive | Advanced neuroendocrine tumors | Bevacizumab + FOLFOX | 41.7% for pancreatic NET 13.6% for carcinoid | 21 months for pancreatic NET 19.3 months for carcinoid | NA |
E1281 Sun et al. [33] | Phase II-III | Advanced carcinoid tumors | STZ + 5FU vs. DOXO + FU | 16 vs. 15.9% | 5.3 vs. 4.5 months | 24.3 vs. 15.7 months |
FNCLCC–FFCD 9710 Dahan et al. [34] | Phase III | Metastatic carcinoid tumors | STZ-5FU vs. IFNα-2A | NA | 5.5 vs. 14.1 months | 30.4 vs. 44 months |
- TEM and CAPTEM
- DTIC and other alkylating agents
- Anti-metabolite-based treatment
3.1.2. Current Evidence in Well-Differentiated EP-NETs
- STZ-based regimens
- TEM and CAPTEM
- DTIC
- Platinum-based regimens
3.1.3. Chemotherapy in G1 and G2 NETs: Ongoing Trials
3.1.4. Role of Chemotherapy in Neoadjuvant/Adjuvant Setting in G1 and G2 NET
3.2. Role of Chemotherapy in Well-Differentiated G3 NETs
3.2.1. Current Evidence
- Chemotherapy in early-stage disease
- Platinum-based chemotherapy
- Antiangiogenic therapy
- Irinotecan
- STZ
- TMZ
3.2.2. Chemotherapy in G3 NETs: Ongoing Trials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.A. Hereditary Syndromes in Neuroendocrine Tumors. Curr. Treat. Options Oncol. 2020, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.M.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017, 3, 1335. [Google Scholar] [CrossRef] [PubMed]
- Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol. 2013, 24, 152–160. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; the WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.-F.; et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef]
- Rinke, A.; Müller, H.-H.; Schade-Brittinger, C.; Klose, K.-J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.-F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in Metastatic enteropancreatic neuroendocrine Tumors. N. Engl. J. Med. 2014, 37, 1224–1233. [Google Scholar] [CrossRef]
- Brighi, N.; Lamberti, G.; Maggio, I.; Manuzzi, L.; Ricci, C.; Casadei, R.; Santini, D.; Mosconi, C.; Lisotti, A.; Ambrosini, V.; et al. Biliary stone disease in patients receiving somatostatin analogs for neuroendocrine neoplasms. A retrospective observational study. Dig. Liver Dis. 2019, 51, 689–694. [Google Scholar] [CrossRef]
- Brighi, N.; Panzuto, F.; Modica, R.; Gelsomino, F.; Albertelli, M.; Pusceddu, S.; Massironi, S.; Lamberti, G.; Rinzivillo, M.; Faggiano, A.; et al. Biliary stone disease in patients with neuroendocrine tumors treated with somatostatin analogs: A multicenter study. Oncologist 2020, 25, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spada, F.; Campana, D.; Lamberti, G.; Laudicella, R.; Dellamano, R.; Dellamano, L.; Leeuwenkamp, O.; Baldari, S. [177Lu]Lu-DOTA-TATE versus standard of care in adult patients with gastro-enteropancreatic neuroendocrine tumours (GEP-NETs): A cost-consequence analysis from an Italian hospital perspective. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.; Lamberti, G.; Ingaldi, C.; Mosconi, C.; Pagano, N.; Alberici, L.; Ambrosini, V.; Manuzzi, L.; Monari, F.; Malvi, D.; et al. Treatment of advanced gastro-entero-pancreatic neuro-endocrine tumors: A systematic review and network meta-analysis of phase III randomized controlled trials. Cancers 2021, 13, 358. [Google Scholar] [CrossRef]
- Espinosa-Olarte, P.; La Salvia, A.; Riesco-Martinez, M.C.; Anton-Pascual, B.; Garcia-Carbonero, R. Chemotherapy in NEN: Still has a role? Rev. Endocr. Metab. Disord. 2021, 22, 595–614. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.G.; Hanley, J.A.; Johnson, L.A. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 1980, 303, 1189–1194. [Google Scholar] [CrossRef]
- Moertel, C.G.; Lefkopoulo, M.; Lipsitz, S.; Hahn, R.G.; Klaassen, D. Streptozocin–doxorubicin, streptozocin–fluorouracil, or chlorozotocin in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 1992, 326, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.E.; Lam, M.; Halperin, D.M.; Dagohoy, C.G.; Yao, J.C.; Dasari, A. Fluorouracil, doxorubicin with streptozocin and subsequent therapies in pancreatic neuroendocrine tumors. Neuroendocrinology 2022, 112, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Dahan, L.; Smith, D.; O’Toole, D.; Lepère, C.; Dromain, C.; Vilgrain, V.; Baudin, E.; Lombard-Bohas, C.; Scoazec, J.-Y.; et al. Bevacizumab combined with 5-FU/streptozocin in patients with progressive metastatic well-differentiated pancreatic endocrine tumours (BETTER trial)—A phase II non-randomised trial. Eur. J. Cancer 2014, 50, 3098–3106. [Google Scholar] [CrossRef] [PubMed]
- Grupo Espanol de Tumores Neuroendocrinos. Randomized Open Label Study to Compare the Efficacy and Safety of Everolimus Followed by Chemotherapy with Streptozotocin- Fluorouracilo (STZ-5FU) Upon Progression or the Reverse Sequence, in Advanced Progressive Pancreatic NETs (pNETs). Clinicaltrials.gov; NCT02246127. Available online: https://clinicaltrials.gov/ct2/show/NCT02246127 (accessed on 1 December 2022).
- Al-Toubah, T.; Pelle, E.; Valone, T.; Haider, M.; Strosberg, J.R. Efficacy and toxicity analysis of capecitabine and temozolomide in neuroendocrine neoplasms. J. Natl. Compr. Canc. Netw. 2022, 20, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.L.; Graham, N.; Catalano, P.J.; Nimeiri, H.; Fisher, G.A.; Longacre, T.A.; Suarez, C.J.; Rubin, D.; Yao, J.C.; Kulke, M.H.; et al. A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: Final analysis of efficacy and evaluation of MGMT (ECOG-ACRIN E2211). J. Clin. Oncol. 2022, 40 (Suppl. 16), 4004. [Google Scholar] [CrossRef]
- Pavlakis, N.; Ransom, D.T.; Wyld, D.; Sjoquist, K.M.; Wilson, K.; Gebski, V.; Murray, J.; Kiberu, A.D.; Burge, M.E.; Macdonald, W.; et al. Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) and capecitabine plus temozolomide (CAPTEM) for pancreas and midgut neuroendocrine tumours (pNETS, mNETS)—Final results. J. Clin. Oncol. 2022, 40 (Suppl. 16), 4122. [Google Scholar] [CrossRef]
- Ramanathan, R.K.; Cnaan, A.; Hahn, R.G.; Carbone, P.P.; Haller, D.G. Phase II trial of dacarbazine (DTIC) in advanced pancreatic islet cell carcinoma. Study of the Eastern Cooperative Oncology Group-E6282. Ann. Oncol. 2001, 12, 1139–1143. [Google Scholar] [CrossRef]
- Grande, E.; Rodriguez-Antona, C.; López, C.; Alonso-Gordoa, T.; Benavent, M.; Capdevila, J.; Teulé, A.; Custodio, A.; Sevilla, I.; Hernando, J.; et al. Sunitinib and Evofosfamide (TH-302) in systemic treatment-naïve patients with grade 1/2 metastatic pancreatic neuroendocrine tumors: The GETNE-1408 Trial. Oncologist 2021, 26, 941–949. [Google Scholar] [CrossRef]
- Brixi-Benmansour, H.; Jouve, J.-L.; Mitry, E.; Bonnetain, F.; Landi, B.; Hentic, O.; Bedenne, L.; Cadiot, G. Phase II study of first-line FOLFIRI for progressive metastatic well-differentiated pancreatic endocrine carcinoma. Dig. Liver Dis. 2011, 43, 912–916. [Google Scholar] [CrossRef]
- Meyer, T.; Qian, W.; Caplin, M.E.; Armstrong, G.; Lao-Sirieix, S.-H.; Hardy, R.; Valle, J.W.; Talbot, D.C.; Cunningham, D.; Reed, N.; et al. Capecitabine and streptozocin±cisplatin in advanced gastroenteropancreatic neuroendocrine tumours. Eur. J. Cancer 2014, 50, 902–911. [Google Scholar] [CrossRef]
- Bajetta, E.; Catena, L.; Procopio, G.; De Dosso, S.; Bichisao, E.; Ferrari, L.; Martinetti, A.; Platania, M.; Verzoni, E.; Formisano, B.; et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother. Pharmacol. 2007, 59, 637–642. [Google Scholar] [CrossRef]
- Ducreux, M.; Boige, V.; Leboulleux, S.; Malka, D.; Kergoat, P.; Dromain, C.; Elias, D.; de Baere, T.; Sabourin, J.; Duvillard, P.; et al. A phase II study of irinotecan with 5-fluorouracil and leucovorin in patients with pretreated gastroenteropancreatic well-differentiated endocrine carcinomas. Oncology 2006, 70, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.L.; Balise, R.R.; Fehrenbacher, L.; Pan, M.; Venook, A.P.; Fisher, G.A.; Tempero, M.A.; Ko, A.H.; Korn, W.M.; Hwang, J.; et al. Oxaliplatin–fluoropyrimidine chemotherapy plus bevacizumab in advanced neuroendocrine tumors: An analysis of 2 phase II trials. Pancreas 2016, 45, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Lipsitz, S.; Catalano, P.; Mailliard, J.A.; Haller, D.G. Phase II/III Study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. J. Clin. Oncol. 2005, 23, 4897–4904. [Google Scholar] [CrossRef]
- Dahan, L.; Bonnetain, F.; Rougier, P.; Raoul, J.-L.; Gamelin, E.; Etienne, P.-L.; Cadiot, G.; Mitry, E.; Smith, D.; Cvitkovic, F.; et al. Phase III trial of chemotherapy using 5-fluorouracil and streptozotocin compared with interferon α for advanced carcinoid tumors: FNCLCC–FFCD 9710. Endocr. Relat. Cancer 2009, 16, 1351–1361. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Weller, M.; Van Den Bent, M.; Sanson, M.; Weiler, M.; Von Deimling, A.; Plass, C.; Hegi, M.; Platten, M.; Reifenberger, G. MGMT testing—The challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 2014, 10, 372–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Stevens, M.F.; Bradshaw, T.D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012, 5, 102–114. [Google Scholar] [CrossRef]
- Gerson, S.L. MGMT: Its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer 2004, 4, 296–307. [Google Scholar] [CrossRef]
- Mansouri, A.; Hachem, L.D.; Mansouri, S.; Nassiri, F.; Laperriere, N.J.; Xia, D.; Lindeman, N.I.; Wen, P.Y.; Chakravarti, A.; Mehta, M.P.; et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro-Oncol. 2019, 21, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Campana, D.; Walter, T.; Pusceddu, S.; Gelsomino, F.; Graillot, E.; Prinzi, N.; Spallanzani, A.; Fiorentino, M.; Barritault, M.; Dall’Olio, F.; et al. Correlation between MGMT promoter methylation and response to temozolomide-based therapy in neuroendocrine neoplasms: An observational retrospective multicenter study. Endocrine 2018, 60, 490–498. [Google Scholar] [CrossRef]
- Kulke, M.H.; Hornick, J.L.; Frauenhoffer, C.; Hooshmand, S.; Ryan, D.P.; Enzinger, P.C.; Meyerhardt, J.A.; Clark, J.W.; Stuart, K.; Fuchs, C.S.; et al. O 6-Methylguanine DNA Methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 2009, 15, 338–345. [Google Scholar] [CrossRef]
- Cives, M.; Ghayouri, M.; Morse, B.; Brelsford, M.; Black, M.; Rizzo, A.; Meeker, A.; Strosberg, J. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr. Relat. Cancer 2016, 23, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Cros, J.; Hentic, O.; Rebours, V.; Zappa, M.; Gille, N.; Theou-Anton, N.; Vernerey, D.; Maire, F.; Levy, P.; Bedossa, P.; et al. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr. Relat. Cancer 2016, 23, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliaga, P.T.; Spada, F.; Peveri, G.; Bagnardi, V.; Fumagalli, C.; Laffi, A.; Rubino, M.; Gervaso, L.; Rocco, E.G.; Pisa, E.; et al. Should temozolomide be used on the basis of O6-methylguanine DNA methyltransferase status in patients with advanced neuroendocrine tumors? A systematic review and meta-analysis. Cancer Treat. Rev. 2021, 99, 102261. [Google Scholar] [CrossRef] [PubMed]
- Kulke, M.H.; Stuart, K.; Enzinger, P.C.; Ryan, D.P.; Clark, J.W.; Muzikansky, A.; Vincitore, M.; Michelini, A.; Fuchs, C.S. Phase II Study of Temozolomide and Thalidomide in Patients with Metastatic Neuroendocrine Tumors. J. Clin. Oncol. 2006, 24, 401–406. [Google Scholar] [CrossRef]
- Chan, J.A.; Stuart, K.; Earle, C.C.; Clark, J.W.; Bhargava, P.; Miksad, R.; Blaszkowsky, L.; Enzinger, P.C.; Meyerhardt, J.A.; Zheng, H.; et al. Prospective Study of Bevacizumab Plus Temozolomide in Patients with Advanced Neuroendocrine Tumors. J. Clin. Oncol. 2012, 30, 2963–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koumarianou, A.; Kaltsas, G. Bevacizumab Plus Temozolomide: A Novel Treatment Option for Advanced Neuroendocrine Tumors? J. Clin. Oncol. 2013, 31, 975–976. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.A.; Blaszkowsky, L.; Stuart, K.; Zhu, A.X.; Allen, J.; Wadlow, R.; Ryan, D.P.; Meyerhardt, J.; Gonzalez, M.; Regan, E.; et al. A prospective, phase 1/2 study of everolimus and temozolomide in patients with advanced pancreatic neuroendocrine tumor: Everolimus, Temozolomide in Pancreatic NET. Cancer 2013, 119, 3212–3218. [Google Scholar] [CrossRef] [Green Version]
- Fine, R.L.; Gulati, A.P.; Tsushima, D.; Mowatt, K.B.; Oprescu, A.; Bruce, J.N.; Chabot, J.A. Prospective phase II study of capecitabine and temozolomide (CAPTEM) for progressive, moderately, and well-differentiated metastatic neuroendocrine tumors. J. Clin. Oncol. 2014, 32 (Suppl. 3), 179. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Beyer, D.T.; Chauhan, A.; Boudreaux, J.P.; Wang, Y.-Z.; Woltering, E.A. The role of capecitabine/temozolomide in metastatic neuroendocrine tumors. Oncologist 2016, 21, 671–675. [Google Scholar] [CrossRef] [Green Version]
- de Mestier, L.; Walter, T.; Evrard, C.; de Boissieu, P.; Hentic, O.; Cros, J.; Tougeron, D.; Lombard-Bohas, C.; Rebours, V.; Hammel, P.; et al. Temozolomide Alone or Combined with Capecitabine for the Treatment of Advanced Pancreatic Neuroendocrine Tumor. Neuroendocrinology 2020, 110, 83–91. [Google Scholar] [CrossRef]
- Spada, F.; Maisonneuve, P.; Fumagalli, C.; Marconcini, R.; Gelsomino, F.; Antonuzzo, L.; Campana, D.; Puliafito, I.; Rossi, G.; Faviana, P.; et al. Temozolomide alone or in combination with capecitabine in patients with advanced neuroendocrine neoplasms: An Italian multicenter real-world analysis. Endocrine 2021, 72, 268–278. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Fine, R.L.; Choi, J.; Nasir, A.; Coppola, D.; Chen, D.-T.; Helm, J.; Kvols, L. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 2011, 117, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Tafuto, S.; von Arx, C.; Capozzi, M.; Tatangelo, F.; Mura, M.; Modica, R.; Barretta, M.L.; Di Sarno, A.; Tornesello, M.L.; Colao, A.; et al. Safety and Activity of Metronomic Temozolomide in Second-Line Treatment of Advanced Neuroendocrine Neoplasms. J. Clin. Med. 2019, 8, 1224. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, V.; Zanoni, L.; Filice, A.; Lamberti, G.; Argalia, G.; Fortunati, E.; Campana, D.; Versari, A.; Fanti, S. Radiolabeled somatostatin analogues for diagnosis and treatment of neuroendocrine tumors. Cancers 2022, 14, 1055. [Google Scholar] [CrossRef]
- Moertel, C.G.; Kvols, L.K.; O’Connell, M.J.; Rubin, E.J. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 1991, 68, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Fjällskog, M.L.; Granberg, D.P.; Welin, S.L.; Eriksson, C.; Oberg, K.E.; Janson, E.T.; Eriksson, B.K. Treatment with cisplatin and etoposide in patients with neuroendocrine tumors. Cancer 2001, 92, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Spada, F.; Antonuzzo, L.; Marconcini, R.; Radice, D.; Antonuzzo, A.; Ricci, S.; Di Costanzo, F.; Fontana, A.; Gelsomino, F.; Luppi, G.; et al. Oxaliplatin-based chemotherapy in advanced neuroendocrine tumors: Clinical outcomes and preliminary correlation with biological factors. Neuroendocrinology 2016, 103, 806–814. [Google Scholar] [CrossRef]
- Moertel, C.G.; Hanley, J.A. Combination chemotherapy trials in metastatic carcinoid tumor and the malignant carcinoid syndrome. Cancer Clin. Trials 1979, 2, 327–334. [Google Scholar]
- Engstrom, P.F.; Lavin, P.T.; Moertel, C.G.; Folsch, E.; Douglass, H.O. Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1984, 2, 1255–1259. [Google Scholar] [CrossRef]
- Mitry, E.; Walter, T.; Baudin, E.; Kurtz, J.-E.; Ruszniewski, P.; Dominguez-Tinajero, S.; Bengrine-Lefevre, L.; Cadiot, G.; Dromain, C.; Farace, F.; et al. Bevacizumab plus capecitabine in patients with progressive advanced well-differentiated neuroendocrine tumors of the gastro-intestinal (GI-NETs) tract (BETTER trial)—A phase II non-randomised trial. Eur. J. Cancer 2014, 50, 3107–3115. [Google Scholar] [CrossRef]
- Ferolla, P.; Berruti, A.; Spada, F.; Brizzi, M.P.; Ibrahim, T.; Marconcini, R.; Giuffrida, D.; Amoroso, V.; La Salvia, A.; Vaccaro, V.; et al. Efficacy and safety of lanreotide autogel and temozolomide combination therapy in progressive thoracic neuroendocrine tumors (carcinoid): Results from the Phase 2 ATLANT Study. Neuroendocrinology 2022. [Google Scholar] [CrossRef]
- Papaxoinis, G.; Kordatou, Z.; McCallum, L.; Nasralla, M.; Lamarca, A.; Backen, A.; Nonaka, D.; Mansoor, W. Capecitabine and temozolomide in patients with advanced pulmonary carcinoid tumours. Neuroendocrinology 2020, 110, 413–421. [Google Scholar] [CrossRef]
- Bukowski, R.M.; Tangen, C.M.; Peterson, R.F.; Fleming, T.R.; Taylor, S.A.; Rinehart, J.J.; Eyre, H.J.; Rivkin, S.E.; Macdonald, J.S.; A southwest oncology group study. Phase II trial of dimethyltriazenoimidazole carboxamide in patients with metastatic carcinoid. Cancer 1994, 73, 1505–1508. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Strauss, S.J.; Sarker, D.; Gillmore, R.; Kirkwood, A.; Hackshaw, A.; Papadopoulou, A.; Bell, J.; Kayani, I.; Toumpanakis, C.; et al. Chemotherapy with 5-fluorouracil, cisplatin and streptozocin for neuroendocrine tumours. Br. J. Cancer 2010, 102, 1106–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medley, L.; Morel, A.N.; Farrugia, D.; Reed, N.; Hayward, N.; Davies, J.M.; Kirichek, O.; Thakker, R.V.; Talbot, D.C. Phase II study of single agent capecitabine in the treatment of metastatic non-pancreatic neuroendocrine tumours. Br. J. Cancer 2011, 104, 1067–1070. [Google Scholar] [CrossRef] [Green Version]
- Berruti, A.; Fazio, N.; Ferrero, A.; Brizzi, M.P.; Volante, M.; Nobili, E.; Tozzi, L.; Bodei, L.; Torta, M.; D’Avolio, A.; et al. Bevacizumab plus octreotide and metronomic capecitabine in patients with metastatic well-to-moderately differentiated neuroendocrine tumors: The xelbevoct study. BMC Cancer 2014, 14, 184. [Google Scholar] [CrossRef] [Green Version]
- Ekeblad, S.; Sundin, A.; Janson, E.T.; Welin, S.; Granberg, D.; Kindmark, H.; Dunder, K.; Kozlovacki, G.; Örlefors, H.; Sigurd, M.; et al. Temozolomide as Monotherapy Is Effective in Treatment of Advanced Malignant Neuroendocrine Tumors. Clin. Cancer Res. 2007, 13, 2986–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespo, G.; Jiménez-Fonseca, P.; Custodio, A.; López, C.; Carmona-Bayonas, A.; Alonso, V.; Navarro, M.; Aller, J.; Sevilla, I.; Grande, E.; et al. Capecitabine and temozolomide in grade 1/2 neuroendocrine tumors: A Spanish multicenter experience. Future Oncol. 2017, 13, 615–624. [Google Scholar] [CrossRef]
- Claringbold, P.G.; Price, R.A.; Turner, J.H. Phase I-II Study of Radiopeptide 177Lu-Octreotate in Combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother. Radiopharm. 2012, 27, 561–569. [Google Scholar] [CrossRef]
- Granberg, D.; Eriksson, B.; Wilander, E.; Grimfjärd, P.; Fjällskog, M.-L.; Öberg, K.; Skogseid, B. Experience in treatment of metastatic pulmonary carcinoid tumors. Ann. Oncol. 2001, 12, 1383–1391. [Google Scholar] [CrossRef]
- Forde, P.M.; Hooker, C.M.; Boikos, S.A.; Petrini, I.; Giaccone, G.; Rudin, C.; Yang, S.C.; Illei, P.B.; Hann, C.L.; Ettinger, D.S.; et al. Systemic therapy, clinical outcomes, and overall survival in locally advanced or metastatic pulmonary carcinoid: A brief report. J. Thorac. Oncol. 2014, 9, 414–418. [Google Scholar] [CrossRef]
- Chong, C.R.; Wirth, L.J.; Nishino, M.; Chen, A.B.; Sholl, L.M.; Kulke, M.H.; McNamee, C.J.; Jänne, P.A.; Johnson, B.E. Chemotherapy for locally advanced and metastatic pulmonary carcinoid tumors. Lung Cancer 2014, 86, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, R.J.; Van Cutsem, E.; Falcone, A.; Yoshino, T.; Garcia-Carbonero, R.; Mizunuma, N.; Yamazaki, K.; Shimada, Y.; Tabernero, J.; Komatsu, Y.; et al. Randomized Trial of TAS-102 for refractory metastatic colorectal cancer. N. Engl. J. Med. 2015, 372, 1909–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uboha, N.V.; Lubner, S.J.; LoConte, N.K.; Mulkerin, D.L.; Eickhoff, J.C.; Deming, D.A. Phase 1 dose escalation trial of TAS-102 (trifluridine/tipiracil) and temozolomide in the treatment of advanced neuroendocrine tumors. Investig. New Drugs 2020, 38, 1520–1525. [Google Scholar] [CrossRef]
- Titan, A.L.; Norton, J.A.; Fisher, A.T.; Foster, D.S.; Harris, E.J.; Worhunsky, D.J.; Worth, P.J.; Dua, M.M.; Visser, B.C.; Poultsides, G.A.; et al. Evaluation of outcomes following surgery for locally advanced pancreatic neuroendocrine tumors. JAMA Netw. Open 2020, 3, e2024318. [Google Scholar] [CrossRef]
- Pulvirenti, A.; Pea, A.; Chang, D.K.; Jamieson, N.B. Clinical and molecular risk factors for recurrence following radical surgery of well-differentiated pancreatic neuroendocrine tumors. Front. Med. 2020, 7, 385. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2020.00385 (accessed on 8 October 2022). [CrossRef]
- Mayo, S.C.; de Jong, M.C.; Pulitano, C.; Clary, B.M.; Reddy, S.K.; Gamblin, T.C.; Celinksi, S.A.; Kooby, D.A.; Staley, C.A.; Stokes, J.B.; et al. Surgical Management of Hepatic Neuroendocrine Tumor Metastasis: Results from an International Multi-Institutional Analysis. Ann. Surg. Oncol. 2010, 17, 3129–3136. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Anaya, D.A.; Soares, H.; Coppola, D.; Strosberg, J. Analysis of Postoperative Recurrence in Stage I–III Midgut Neuroendocrine Tumors. JNCI J. Natl. Cancer Inst. 2018, 110, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Maire, F.; Hammel, P.; Kianmanesh, R.; Hentic, O.; Couvelard, A.; Rebours, V.; Zappa, M.; Raymond, E.; Sauvanet, A.; Louvet, C.; et al. Is adjuvant therapy with streptozotocin and 5-fluorouracil useful after resection of liver metastases from digestive endocrine tumors? Surgery 2009, 145, 69–75. [Google Scholar] [CrossRef]
- Lamberti, G.; Manuzzi, L.; Maggio, I.; Campana, D. Should we lose hope in adjuvant therapy for neuroendocrine tumors?—In response to: Adjuvant therapy following resection of gastroenteropancreatic neuroendocrine tumors provides no recurrence or survival benefit. J. Surg. Oncol. 2020, 122, 570–571. [Google Scholar] [CrossRef]
- Shah, M.H.; Goldner, W.S.; Benson, A.B.; Bergsland, E.; Blaszkowsky, L.S.; Brock, P.; Chan, J.; Das, S.; Dickson, P.V.; Fanta, P.; et al. Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2021, 19, 839–868. [Google Scholar] [CrossRef]
- Cives, M.; Strosberg, J. Treatment Strategies for Metastatic Neuroendocrine Tumors of the Gastrointestinal Tract. Curr. Treat. Options Oncol. 2017, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Prakash, L.; Bhosale, P.; Cloyd, J.; Kim, M.; Parker, N.; Yao, J.; Dasari, A.; Halperin, D.M.; Aloia, T.; Lee, J.E.; et al. Role of Fluorouracil, Doxorubicin, and Streptozocin Therapy in the Preoperative Treatment of Localized Pancreatic Neuroendocrine Tumors. J. Gastrointest. Surg. 2017, 21, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cloyd, J.M.; Omichi, K.; Mizuno, T.; Kawaguchi, Y.; Tzeng, C.-W.D.; Conrad, C.; Chun, Y.S.; Aloia, T.A.; Katz, M.H.G.; Lee, J.E.; et al. Preoperative Fluorouracil, Doxorubicin, and Streptozocin for the Treatment of Pancreatic Neuroendocrine Liver Metastases. Ann. Surg. Oncol. 2018, 25, 1709–1715. [Google Scholar] [CrossRef]
- Dumont, F.; Goudard, Y.; Caramella, C.; Goéré, D.; Baudin, E.; Elias, D. Therapeutic Strategies for Advanced Pancreatic Neuroendocrine Tumors with Segmental Portal Hypertension. World J. Surg. 2015, 39, 1974–1980. [Google Scholar] [CrossRef]
- Koch, C.; Bambey, C.; Filmann, N.; Stanke, M.; Waidmann, O.; Husmann, G.; Bojunga, J. Survival According to Therapy Regimen for Small Intestinal Neuroendocrine Tumors. J. Clin. Med. 2022, 11, 2358. [Google Scholar] [CrossRef] [PubMed]
- García-Yuste, M.; Matilla, J.M.; Cueto, A.; Paniagua, J.M.R.; Ramos, G.; Cañizares, M.A.; Muguruza, I. Typical and atypical carcinoid tumours: Analysis of the experience of the Spanish Multi-centric Study of Neuroendocrine Tumours of the Lung. Eur. J. Cardiothorac. Surg. 2007, 31, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Steuer, C.E.; Behera, M.; Kim, S.; Chen, Z.; Saba, N.F.; Pillai, R.N.; Owonikoko, T.K.; Khuri, F.R.; Ramalingam, S.S. Atypical Carcinoid Tumor of the Lung: A Surveillance, Epidemiology, and End Results Database Analysis. J. Thorac. Oncol. 2015, 10, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Nussbaum, D.P.; Speicher, P.J.; Gulack, B.C.; Hartwig, M.G.; Onaitis, M.W.; D’Amico, T.A.; Berry, M.F. Defining the Role of Adjuvant Chemotherapy After Lobectomy for Typical Bronchopulmonary Carcinoid Tumors. Ann. Thorac. Surg. 2015, 99, 428–434. [Google Scholar] [CrossRef]
- Daddi, N.; Schiavon, M.; Filosso, P.L.; Cardillo, G.; Ambrogi, M.C.; De Palma, A.; Luzzi, L.; Bandiera, A.; Casali, C.; Ruffato, A.; et al. Prognostic factors in a multicentre study of 247 atypical pulmonary carcinoids. Eur. J. Cardiothorac. Surg. 2014, 45, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.; Frilling, A.; de Herder, W.; Hörsch, D.; Knigge, U.; et al. Lung and thymic carcinoids: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 439–451. [Google Scholar] [CrossRef]
- Garcia-Carbonero, R.; Rinke, A.; Valle, J.W.; Fazio, N.; Caplin, M.; Gorbounova, V.; O’Connor, J.; Eriksson, B.; Sorbye, H.; Kulke, M.; et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: Systemic therapy—Chemotherapy. Neuroendocrinology 2017, 105, 281–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulke, M.H.; Anthony, L.B.; Bushnell, D.; de Herder, W.W.; Goldsmith, S.J.; Klimstra, D.S.; Marx, S.J.; Pasieka, J.L.; Pommier, R.F.; Yao, J.C.; et al. NANETS Treatment Guidelines: Well-Differentiated Neuroendocrine Tumors of the Stomach and Pancreas. Pancreas 2010, 39, 735–752. [Google Scholar] [CrossRef] [Green Version]
- Coriat, R.; Walter, T.; Terris, B.; Couvelard, A.; Ruszniewski, P. Gastroenteropancreatic Well-Differentiated Grade 3 Neuroendocrine Tumors: Review and Position Statement. Oncologist 2016, 21, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Elvebakken, H.; Perren, A.; Scoazec, J.-Y.; Tang, L.H.; Federspiel, B.; Klimstra, D.S.; Vestermark, L.W.; Ali, A.S.; Zlobec, I.; Myklebust, T.Å.; et al. A Consensus-Developed Morphological Re-Evaluation of 196 High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms and Its Clinical Correlations. Neuroendocrinology 2021, 111, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Hijioka, S.; Hosoda, W.; Matsuo, K.; Ueno, M.; Furukawa, M.; Yoshitomi, H.; Kobayashi, N.; Ikeda, M.; Ito, T.; Nakamori, S.; et al. Rb Loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: A Japanese multicenter pancreatic NEN-G3 Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 4625–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Toubah, T.; Morse, B.; Pelle, E.; Strosberg, J. Efficacy of FOLFOX in patients with aggressive pancreatic neuroendocrine tumors after prior capecitabine/temozolomide. Oncologist 2021, 26, 115–119. [Google Scholar] [CrossRef]
- Merola, E.; Buono, A.D.; Denecke, T.; Arsenic, R.; Pape, U.-F.; Jann, H.; Wiedenmann, B.; Pavel, M.E. Efficacy and toxicity of 5-fluorouracil-oxaliplatin in gastroenteropancreatic neuroendocrine neoplasms. Pancreas 2020, 49, 912–917. [Google Scholar] [CrossRef]
- Ono, H.; Kudo, A.; Akahoshi, K.; Ogura, T.; Ogawa, K.; Ban, D.; Tanaka, S.; Tanabe, M. Combination of weekly streptozocin and oral S-1 treatment for patients of unresectable or metastatic pancreatic neuroendocrine neoplasms. J. Cancer Res. Clin. Oncol. 2020, 146, 793–799. [Google Scholar] [CrossRef]
- Raj, N.; Valentino, E.; Capanu, M.; Tang, L.H.; Basturk, O.; Untch, B.R.; Allen, P.J.; Klimstra, D.S.; Reidy-Lagunes, D. Treatment response and outcomes of Grade 3 pancreatic neuroendocrine neoplasms based on morphology: Well Differentiated Versus Poorly Differentiated. Pancreas 2017, 46, 296–301. [Google Scholar] [CrossRef]
- Bongiovanni, A.; Liverani, C.; Foca, F.; Fausti, V.; Di Menna, G.; Mercatali, L.; De Vita, A.; Riva, N.; Calpona, S.; Miserocchi, G.; et al. Temozolomide alone or combined with capecitabine for the treatment of metastatic neuroendocrine neoplasia: A “Real-World” data analysis. Neuroendocrinology 2021, 111, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.A.; Shroff, R.T.; Jacobs, C.; Wolff, R.A.; Ajani, J.A.; Yao, J.C.; Phan, A.T. A phase II study of irinotecan and cisplatin for metastatic or unresectable high grade neuroendocrine carcinoma. J. Clin. Oncol. 2008, 26 (Suppl. 15), 15550. [Google Scholar] [CrossRef]
- A Randomized, Controlled Phase II Study to Compare Irinotecan Combined with Cisplatin (IP) Versus Etoposide Combined with Cisplatin (EP) in Advanced and Metastatic Gastrointestinal Pancreatic and Esophageal Neuroendocrine Carcinoma (NCT03168594). Available online: https://clinicaltrials.gov (accessed on 1 December 2022).
- Al-Toubah, T.; Morse, B.; Strosberg, J. Capecitabine and temozolomide in advanced lung neuroendocrine neoplasms. Oncologist 2020, 25, e48–e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eads, J.R.; Catalano, P.J.; Fisher, G.A.; Rubin, D.; Iagaru, A.; Klimstra, D.S.; Konda, B.; Kwong, M.S.; Chan, J.A.; De Jesus-Acosta, A.; et al. Randomized phase II study of platinum and etoposide (EP) versus temozolomide and capecitabine (CAPTEM) in patients (pts) with advanced G3 non-small cell gastroenteropancreatic neuroendocrine neoplasms (GEPNENs): ECOG-ACRIN EA2142. J. Clin. Oncol. 2022, 40 (Suppl. 16), 4020. [Google Scholar] [CrossRef]
- Riesco Martinez, M.C.; Capdevila Castillon, J.; Alonso, V.; Jimenez-Fonseca, P.; Teule, A.; Grande, E.; Sevilla, I.; Benavent, M.; Alonso-Gordoa, T.; Custodio, A.; et al. Final overall survival results from the NICE-NEC trial (GETNE-T1913): A phase II study of nivolumab and platinum-doublet chemotherapy (CT) in untreated advanced G3 neuroendocrine neoplasms (NENs) of gastroenteropancreatic (GEP) or unknown (UK) origin. Ann. Oncol. 2022, 33 (Suppl. 7), S225–S226. [Google Scholar] [CrossRef]
Study | Type of Study | Study Arms | Outcome | ||
---|---|---|---|---|---|
ORR | mPFS | OS | |||
Moertel et al. [18] | Phase II Prospective | STZ vs. STZ + 5FU | 63 vs. 36% | NA | 26 vs. 16.5 months |
Moertel et al. [19] | Phase III Prospective | STZ + 5FU vs. STZ + DOXO | 69 vs. 45% | 20 vs. 6.9 months | 26 vs. 17 months |
Rogers et al. [20] | Retrospective | STZ + 5FU + DOXO (FAS regimen) | 41% | 20 months | 63 months |
BETTER Ducreux et al. [21] | Phase II Prospective | STZ + 5FU + Bevacizumab | 56% | 23.7 months | OS rate (2 years) 88% |
SEQTOR Grupo Espanol de Tumores Neuroendocrinos, clinicaltrials.gov; NCT02246127 [22] | Phase III Prospective | Everolimus→STZ + 5FU (arm A) STZ + 5FU→Everolimus (arm B) | 11 arm A vs. 30% arm B | mPFS rate 69 arm A vs. 64% arm B | NA |
Al-Toubahet al. [23] | Retrospective | CAPTEM | 51.5% | 18 months | 51 months |
ECOG-ACRIN E2211 Kunz et al. [24] | Phase II Prospective | CAPTEM vs. TEM | 40% vs. 34% | PFS 22.7 vs. 14.4 months | 53.8 vs. 58.7 months |
AGITG CONTROL NET Pavlakis et al. [25] | Phase II Prosepctive | CAPTEM + PRRT vs. CAPTEM | 72.2 vs. 33.3% | mPFS rate (27 months) 61.1 vs. 33.3% | HR 1.28 (27 months) |
Study of the Eastern Cooperative Oncology Group-E6282 Ramanathan. [26] | Phase II Prospective | Dacarbazine | 33% | 10 months | 19.3 months |
SUNEVO Grande et al. [27] | Phase II Prospective | Sunitinib + Evofosfamide (TH-302) | Stopped for toxicity | ||
Brixi-Benmansour et al. [28] | Phase II Prospective | FOLFIRI | 9.1 months | 65% months |
Study | Type of Study | Study Population | Study Arms | Outcome | ||
---|---|---|---|---|---|---|
ORR | mPFS | OS | ||||
Moertel et al. [59] | Carcinoid tumors | STZ + 5FU vs. STZ + cyclophosphamide | 33 vs. 26% | NA | NA | |
EST 5275 Engstrom et al. [60] | II-III phase Prospective | Carcinoid tumor | STZ + 5FU vs. DOXO | 22 vs. 21% | 7.75 vs. 16 months | 16 vs. 12 months or 6.5 vs. 12 months |
BETTER Mitry et al. [61] | II phase Prospective | GI-NETs | CAP + Bevacizumab | NA | 23.4 months | Survival rate (2 years) 85%. mOS not reached |
ATLANT Ferolla et al. [62] | II phase Prospective Lung NETs | Lung NETs | TEM + SSA | NA | 9.3 months | NA |
Papaxoinis et al. [63] | Retrospective | Lung NETs | CAPTEM | 18% | 9.0 months | 30.4 months |
AGITG CONTROL NET Pavlakis et al. [25] | II phase Prospective | siNETs | PRRT + CAPTEM vs. PRRT | 34 vs. 23% | mPFS rate (36 months) 62 vs. 60% | HR 0.61 (36 months) |
Bukowski et al. [64] | Phase II Prospective | Metastatic carcinoid tumors | Dacarbazine | 20% high doses 16% low doses | NA | 20 months |
Study | Study Population | Study Arms | Primary End-Point |
---|---|---|---|
SONNET, phase II trial (NCT02231762) | Progressive G1-2 GEP-NETs | Lanreotide + TEM (single arm) | DCR at 6 months |
COMPOSE, phase III trial (NCT04919226) | G2-G3 GEP-NETs (SSTR+) | 177Lu-edo-PRRT vs. SOC (CAPTEM/EVE/FOLFOX) | PFS |
BETTER 2, phase II trial (NCT03351296) | G1-3 panNETs | -CAPTEM +/− BEV -STZ-5FU +/− BEV | PFS |
MGMT-NET, prospective interventional trial (NCT03217097) | G1-3 panNETs—EP-NETs | - Unmethylated MGMT Oxaliplatin-based chemotherapy vs. Alkylating-based chemotherapy (1:1) - Methylated MGMT Oxaliplatin-based chemotherapy vs. Alkylating-based chemotherapy (1:2) | OR in NETs treated with alkylating-based chemotherapy according to MGMT methylation status |
CapTemY90, phase II trial (NCT04339036) | liver-dominant metastases from G2 p-EP-NETs | Oral CapTem + Y90 Radioembolization (single arm) | Intra-hepatic PFS |
ECOG-ACRIN EA2142, phase II trial (NCT02595424) | G3 GEP-NETs and non-small cell NECs | PE vs. CAPTEM | PFS |
NCT02611024, phase I/II trial | Pretreated advanced solid tumors (including NETs) | Lurbinectedin + irinotecan (single arm) | MTD |
TNE-bien-DIF, retrospective study (NCT04365023) | G3 GEP-NETs | - first-line platinum-based chemotherapy - first-line non-platinum-based chemotherapy | OS |
Study | Type of Study | Study Population | Study Arms | Endpoints of the Study |
---|---|---|---|---|
Al-Toubah et al. [98] | Retrospective | G1, G2, G3 panNETs | FOLFOX | ORR |
Merola et al. [99] | Retrospective | G1, G2, G3 GEP-NENs | FOLFOX | DCR, PFS, OS |
Ono et al. [100] | Retrospective | G1, G2, G3 panNETs, G3 NEC | Weekly streptozotocin + oral S1 | TVRR, PSF, OS |
Raj et al. [101] | Retrospective | G3 panNETs, G3 NEC | Platinum-based regimens or alkylating agents (dacarbazine and temozolomide) | OS, ORR |
Bongiovanni et al. [102] | Retrospective | G1, G2, G3 NENs, G3 NEC | Temozolomide alone or in combination with capecitabine | OS, PFS, ORR, DCR |
NCT03980925, phase II | Prospective non-randomized | G3 GEP/UK-NENs | First line Nivolumab + Carboplatin AUC 5 + Etoposide followed by nivolumab maintenance (single arm) | OS, PFS, ORR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappi, A.; Persano, I.; Galvani, L.; Parlagreco, E.; Andrini, E.; Campana, D.; Brizzi, M.P.; Lamberti, G.; La Salvia, A. Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review. J. Clin. Med. 2023, 12, 717. https://doi.org/10.3390/jcm12020717
Zappi A, Persano I, Galvani L, Parlagreco E, Andrini E, Campana D, Brizzi MP, Lamberti G, La Salvia A. Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review. Journal of Clinical Medicine. 2023; 12(2):717. https://doi.org/10.3390/jcm12020717
Chicago/Turabian StyleZappi, Arianna, Irene Persano, Linda Galvani, Elena Parlagreco, Elisa Andrini, Davide Campana, Maria Pia Brizzi, Giuseppe Lamberti, and Anna La Salvia. 2023. "Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review" Journal of Clinical Medicine 12, no. 2: 717. https://doi.org/10.3390/jcm12020717
APA StyleZappi, A., Persano, I., Galvani, L., Parlagreco, E., Andrini, E., Campana, D., Brizzi, M. P., Lamberti, G., & La Salvia, A. (2023). Chemotherapy in Well Differentiated Neuroendocrine Tumors (NET) G1, G2, and G3: A Narrative Review. Journal of Clinical Medicine, 12(2), 717. https://doi.org/10.3390/jcm12020717