Comparison of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Patients with Completely Lower Pole Renal Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Trocar Placement and Surgery Procedure
2.3. Study Variables and Outcomes
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, S.C.; Novick, A.C.; Belldegrun, A.; Blute, M.L.; Chow, G.K.; Derweesh, I.H.; Faraday, M.M.; Kaouk, J.H.; Leveillee, R.J.; Matin, S.F.; et al. Guideline for management of the clinical T1 renal mass. J. Urol. 2009, 182, 1271–1279. [Google Scholar] [CrossRef]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef]
- Lee, H.; Liss, M.; Derweesh, I. Outcomes of partial nephrectomy for clinical T1b and T2 renal tumors. Curr. Opin. Urol. 2014, 24, 448–452. [Google Scholar] [CrossRef]
- Ghani, K.R.; Sukumar, S.; Sammon, J.; Rogers, C.; Trinh, Q.-D.; Menon, M. Practice patterns and outcomes of open and minimally invasive partial nephrectomy since the introduction of robotic partial nephrectomy: Results from the nationwide inpatient sample. J. Urol. 2014, 191, 907–912. [Google Scholar] [CrossRef]
- Cacciamani, G.; Medina, L.G.; Gill, T.; Abreu, A.; Sotelo, R.; Artibani, W.; Gill, I.S. Impact of Surgical Factors on Robotic Partial Nephrectomy Outcomes: Comprehensive Systematic Review and Meta-Analysis. J. Urol. 2018, 200, 258–274. [Google Scholar] [CrossRef]
- Harke, N.N.; Darr, C.; Radtke, J.P.; Von Ostau, N.; Schiefelbein, F.; Eraky, A.; Hamann, C.; Szarvas, T.; Hadaschik, B.A.; Tropmann-Frick, M.; et al. Retroperitoneal Versus Transperitoneal Robotic Partial Nephrectomy: A Multicenter Matched-pair Analysis. Eur. Urol. Focus 2021, 7, 1363–1370. [Google Scholar] [CrossRef]
- Kim, E.; Larson, J.; Potretzke, A.; Hulsey, N.; Bhayani, S.; Figenshau, R. Retroperitoneal Robot-Assisted Partial Nephrectomy for Posterior Renal Masses Is Associated with Earlier Hospital Discharge: A Single-Institution Retrospective Comparison. J. Endourol. 2015, 29, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Gin, G.; Maschino, A.; Spaliviero, M.; Vertosick, E.; Bernstein, M.; Coleman, J. Comparison of perioperative outcomes of retroperitoneal and transperitoneal minimally invasive partial nephrectomy after adjusting for tumor complexity. Urology 2014, 84, 1355–1360. [Google Scholar] [CrossRef]
- Ludwig, W.; Gorin, M.; Pierorazio, P.; Allaf, M. Frontiers in robot-assisted retroperitoneal oncological surgery. Nat. Rev. Urol. 2017, 14, 731–741. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, X.; Guo, G.; Zhang, N.; Shi, T.; Wang, Y.; Gu, L. Comparison of Outcomes Between Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy: A Meta-Analysis Based on Comparative Studies. Front. Oncol. 2020, 10, 592193. [Google Scholar] [CrossRef]
- Hung, A.; Cai, J.; Simmons, M.; Gill, I. “Trifecta” in partial nephrectomy. J. Urol. 2013, 189, 36–42. [Google Scholar] [CrossRef]
- Zargar, H.; Allaf, M.E.; Bhayani, S.; Stifelman, M.; Rogers, C.; Ball, M.; Larson, J.; Marshall, S.; Kumar, R.; Kaouk, J.H. Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: A multi-institutional study. BJU Int. 2015, 116, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhao, W.; Xu, J.; Wang, B.; Cheng, Q.; Shen, D.; Xuan, Y.; Zhao, X.; Li, H.; Ma, X.; et al. Comparison of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Patients With Complete Upper Pole Renal Tumors. Front. Oncol. 2021, 11, 773345. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.; Schmid, C.; Zhang, Y.; Castro, A., 3rd; Feldman, H. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Gu, L.; Liu, K.; Shen, D.; Li, H.Z.; Gao, Y.; Huang, Q.; Fan, Y.; Ai, Q.; Xie, Y.; Yao, Y.; et al. Comparison of Robot-Assisted and Laparoscopic Partial Nephrectomy for Completely Endophytic Renal Tumors: A High-Volume Center Experience. J. Endourol. 2020, 34, 581–587. [Google Scholar] [CrossRef]
- Choi, C.I.; Kang, M.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Jeon, S.S.; Lee, H.M.; Seo, S.I. Comparison by Pentafecta Criteria of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Large Renal Tumors. J. Endourol. 2020, 34, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Stroup, S.P.; Hamilton, Z.A.; Marshall, M.T.; Lee, H.J.; Berquist, S.W.; Hassan, A.-E.S.; Beksac, A.T.; Field, C.A.; Bloch, A.; Wan, F.; et al. Comparison of retroperitoneal and transperitoneal robotic partial nephrectomy for Pentafecta perioperative and renal functional outcomes. World J. Urol. 2017, 35, 1721–1728. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, X.; Wang, X.; Xu, T.; Qin, L.; Zhang, X.; Zhong, S.; Shen, Z. Transperitoneal versus retroperitoneal robot-assisted partial nephrectomy: A systematic review and meta-analysis. Int. J. Surg. 2016, 30, 109–115. [Google Scholar] [CrossRef]
- Pavan, N.; Derweesh, I.H.; Hampton, L.J.; White, W.M.; Porter, J.R.; Challacombe, B.J.; Dasgupta, P.; Bertolo, R.; Kaouk, J.; Mirone, V.G.; et al. Retroperitoneal Robotic Partial Nephrectomy: Systematic Review and Cumulative Analysis of Comparative Outcomes. J. Endourol. 2018, 32, 591–596. [Google Scholar] [CrossRef]
- McLean, A.; Mukherjee, A.; Phukan, C.; Veeratterapillay, R.; Soomro, N.; Somani, B.; Rai, B.P. Trans-peritoneal vs. retroperitoneal robotic assisted partial nephrectomy in posterior renal tumours: Need for a risk-stratified patient individualised approach. A systematic review and meta-analysis. J. Robot. Surg. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Carbonara, U.; Crocerossa, F.; Campi, R.; Veccia, A.; Cacciamani, G.E.; Amparore, D.; Checcucci, E.; Loizzo, D.; Pecoraro, A.; Marchioni, M.; et al. Retroperitoneal Robot-assisted Partial Nephrectomy: A Systematic Review and Pooled Analysis of Comparative Outcomes. Eur. Urol. Open Sci. 2022, 40, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Buffi, N.; Lista, G.; Larcher, A.; Lughezzani, G.; Ficarra, V.; Cestari, A.; Lazzeri, M.; Guazzoni, G. Margin, ischemia, and complications (MIC) score in partial nephrectomy: A new system for evaluating achievement of optimal outcomes in nephron-sparing surgery. Eur. Urol. 2012, 62, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Tyagi, S.; Mavuduru, R.; Bora, G.; Sharma, A.; Devana, S.; Guazzoni, F. External validation of SPARE nephrometery score in predicting overall complications, trifecta and pentafecta outcomes following robot-assisted partial nephrectomy. Minerva Urol. E Nefrol. = Ital. J. Urol. Nephrol. 2021, 74, 63–71. [Google Scholar] [CrossRef]
Overall | TRPN | RRPN | p Value | |
---|---|---|---|---|
No. patients | 151 | 116 | 35 | |
Age, years, median (IQR) | 52 (45–61) | 53 (45–61) | 51 (46–60) | 0.592 |
Male patients, n (%) | 120 (79.5) | 93 (80.2) | 27 (77.1) | 0.811 |
BMI, kg/m2, median (IQR) | 25.8 (23.7–28.1) | 25.7 (23.8–28.0) | 26.0 (23.6–28.4) | 0.836 |
ASA score, n (%) | 0.199 | |||
1 and 2 | 143 (94.7) | 108 (93.1) | 35 (100.0) | |
3 and 4 | 8 (5.3) | 8 (6.9) | 0 (0.0) | |
CCI score, n (%) | 1.000 | |||
0–1 | 129 (85.4) | 99 (85.3) | 30 (85.7) | |
≥2 | 22 (14.6) | 17 (14.7) | 5 (14.3) | |
Clinical symptoms, n (%) | 9 (6.0) | 7 (6.0) | 2 (5.7) | 1.000 |
Presence of diabetes, n (%) | 24 (15.9) | 20 (17.2) | 4 (11.4) | 0.449 |
Presence of hypertension, n (%) | 42 (27.8) | 33 (28.4) | 9 (25.7) | 0.832 |
Prior abdominal surgery, n (%) | 27 (17.9) | 18 (15.5) | 9 (25.7) | 0.208 |
Solitary kidney, n (%) | 1 (0.7) | 1 (0.9) | 0 (0.0) | 1.000 |
Left tumor, n (%) | 75 (49.7) | 55 (47.4) | 20 (57.1) | 0.340 |
Tumor size, cm, median (IQR) | 3.3 (2.5–4.3) | 3.3 (2.5–4.3) | 3.3 (2.5–3.8) | 0.187 |
R.E.N.A.L. score, median (IQR) | 6 (5–7) | 6 (5–7) | 6 (5–7) | 0.310 |
R.E.N.A.L. complexity class | 1.000 | |||
Low (4–6) | 80 (53.0) | 61 (52.6) | 19 (54.3) | |
Moderate (7–9) | 71 (47.0) | 55 (47.4) | 16 (45.7) | |
High (10–12) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Anterior/Posterior aspect, n (%) | 0.106 | |||
Anterior | 57 (37.7) | 47 (40.5) | 10 (28.6) | |
Posterior | 58 (38.4) | 46 (39.7) | 12 (34.3) | |
Not determined | 36 (23.8) | 23 (19.8) | 13 (37.1) | |
Hypothermic ischemia, n (%) | 1 (0.7) | 1 (0.9) | 0 (0.0) | 1.000 |
Preoperative creatinine (umol/L), median (IQR) | 75.6 (63.9–85.3) | 74.1 (63.7–85.2) | 76.6 (67.5–85.4) | 0.492 |
Preoperative eGFR (mL/min/1.73 m2), median (IQR) | 96.3 (85.8–104.4) | 96.2 (85.8–106.2) | 96.3 (85.3–101.8) | 0.785 |
Variable | TRPN | RRPN | p Value |
---|---|---|---|
No. patients (%) | 116 (76.8) | 35 (23.2) | |
Operating time, min, median (IQR) | 120 (101–150) | 120 (100–175) | 0.710 |
Estimated blood loss, mL, median (IQR) | 50 (50–100) | 40 (20–100) | 0.015 |
Renal artery clamping time, min, median (IQR) | 19 (15–25) | 20 (13–25) | 0.828 |
Transfusion, n (%) | 1 (0.9) | 0 (0.0) | 1.000 |
Conversion to radical, n (%) | 0 (0.0) | 0 (0.0) | 1.000 |
Conversion to open, n (%) | 0 (0.0) | 0 (0.0) | 1.000 |
Positive surgical margin, n (%) | 0 (0.0) | 1 (2.9) | 0.232 |
Postoperative hospital stay, d, median (IQR) | 5 (5–7) | 6 (4–7) | 0.735 |
Postoperative complications, n (%) | 14 (12.1) | 2 (5.7) | 0.364 |
Minor | 11 (9.5) | 2 (5.7) | 0.733 |
Clavien 1 | 6 (5.2) | 2 (5.7) | |
Clavien 2 | 5 (4.3) | 0 (0.0) | |
Major | 3 (2.6) | 0 (0.0) | 1.000 |
Clavien 3 | 2 (1.7) | 0 (0.0) | |
Clavien 4 | 1 (0.9) | 0 (0.0) |
Variable | TRPN | RRPN | p Value |
---|---|---|---|
Tumor histology, n (%) | 0.213 | ||
Clear cell RCC | 103 (88.8) | 29 (82.9) | |
Papillary RCC | 6 (5.2) | 1 (2.9) | |
Chromophobe RCC | 5 (4.3) | 2 (5.7) | |
Other types | 2 (1.7) | 3 (8.6) | |
Pathologic stage, n (%) | 0.134 | ||
T1a | 80 (69.0) | 29 (82.9) | |
T1b | 36 (31.0) | 6 (17.1) | |
Fuhrman grade, n (%) | 0.205 | ||
Low (1–2) | 94 (81.0) | 29 (82.9) | |
High (3–4) | 9 (7.8) | 0 (0.0) | |
Tumor necrosis, n (%) | 15 (12.9) | 2 (5.7) | 0.362 |
Postoperative 1-day eGFR, mL/min/1.73 m2 | 87.6 (72.7–99.7) | 86.4 (72.1–99.7) | 0.930 |
Postoperative 1-day% eGFR decline | 8.4 (2.9–16.0) | 8.2 (1.8–17.7) | 0.991 |
Postoperative 12-month eGFR, mL/min/1.73 m2 | 92.5 (79.7–101.5) | 91.0 (76.9–99.7)) | 0.764 |
Postoperative 12-month% eGFR decline | 3.9 (0.2–7.9) | 5.4 (2.1–9.4) | 0.196 |
Follow-up, months, median (IQR) | 65.2 (54.0–76.1) | 64.3 (59.0–66.6) | 0.341 |
Oncological outcomes, n (%) | |||
Local recurrence | 1 (0.9) | 1 (2.9) | 0.411 |
Distant metastasis | 2 (1.7) | 1 (2.9) | 1.000 |
Outcome | TRPN | RRPN | p Value |
---|---|---|---|
Negative margins, n (%) | 115 (99.1) | 35 (100.0) | 1.000 |
No complications, n (%) | 102 (87.9) | 33 (94.3) | 0.733 |
Ischemia time ≤ 25 min, n (%) | 93 (80.2) | 32 (91.4) | 0.136 |
eGFR > 90% of preop, n (%) | 94 (81.0) | 30 (85.7) | 0.622 |
No CKD upstaging, n (%) | 116 (100.0) | 33 (94.3) | 0.053 |
“Pentafecta”, n (%) | 67 (57.8) | 26 (74.3) | 0.112 |
Variable | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age | 0.992 (0.967–1.018) | 0.529 | ||
BMI | 0.919 (0.832–1.014) | 0.092 | 0.930 (0.837–1.033) | 0.176 |
Sex (male vs. female) | 0.854 (0.375–1.943) | 0.707 | ||
Diabetes | 0.568 (0.236–1.367) | 0.207 | ||
Hypertension | 0.674 (0.327–1.390) | 0.286 | ||
CCI (≥2 vs. 0–1) | 1.108 (0.433–2.830) | 0.831 | ||
ASA score (3 + 4 vs. 1 + 2) | 0.679 (0.329–1.162) | 0.109 | ||
Prior abdominal surgery | 1.074 (0.454–2.539) | 0.871 | ||
Tumor laterality (right vs. left) | 1.205 (0.624–2.326) | 0.579 | ||
Tumor size | 0.505 (0.359–0.710) | <0.001 | 0.523 (0.371–0.736) | <0.001 |
Preoperative eGFR | 1.000 (0.978–1.023) | 0.999 | ||
RENAL score | 0.888 (0.683–1.154) | 0.375 | ||
Surgical type (TRPN vs. RRPN) | 2.113 (0.910–4.908) | 0.082 | 1.779 (0.730–4.334) | 0.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Ding, Y.; Chen, D.; Xuan, Y.; Chen, Z.; Zhao, X.; Jiang, B.; Wang, B.; Li, H.; Yin, C.; et al. Comparison of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Patients with Completely Lower Pole Renal Tumors. J. Clin. Med. 2023, 12, 722. https://doi.org/10.3390/jcm12020722
Zhao W, Ding Y, Chen D, Xuan Y, Chen Z, Zhao X, Jiang B, Wang B, Li H, Yin C, et al. Comparison of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Patients with Completely Lower Pole Renal Tumors. Journal of Clinical Medicine. 2023; 12(2):722. https://doi.org/10.3390/jcm12020722
Chicago/Turabian StyleZhao, Wenlei, Yancai Ding, Dong Chen, Yundong Xuan, Zhiqiang Chen, Xupeng Zhao, Bin Jiang, Baojun Wang, Hongzhao Li, Chengliang Yin, and et al. 2023. "Comparison of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Patients with Completely Lower Pole Renal Tumors" Journal of Clinical Medicine 12, no. 2: 722. https://doi.org/10.3390/jcm12020722
APA StyleZhao, W., Ding, Y., Chen, D., Xuan, Y., Chen, Z., Zhao, X., Jiang, B., Wang, B., Li, H., Yin, C., Ma, X., Guo, G., Gu, L., & Zhang, X. (2023). Comparison of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Patients with Completely Lower Pole Renal Tumors. Journal of Clinical Medicine, 12(2), 722. https://doi.org/10.3390/jcm12020722