Resin Infiltration of Non-Cavitated Proximal Caries Lesions in Primary and Permanent Teeth: A Systematic Review and Scenario Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
- Population (P): Children and adults with non-cavitated proximal carious lesions (presumed intact surface status) in either permanent or primary teeth.
- Intervention (I): Infiltration of proximal caries.
- Comparison (C): Non-invasive strategies (e.g., oral hygiene and dietary control, topical fluoride, etc.) and/or placebo treatment should have been used for comparison to the intervention (infiltration).
- Outcome (O): Caries lesion progression detected by radiographs (digital subtraction radiography (DSR) or, if not available, pairwise reading or, if not available, lesion staging (for example according to radiographic enamel depth).
- Study design (S): Randomized controlled trials (RCTs) with either a parallel group or a split-mouth design.
2.3. Study Selection
2.4. Data Extraction and Risk of Bias
2.5. Effective Sample Size
2.6. Data Synthesis and Statistical Heterogeneity
- Per-protocol (PP): Only participants who completed the treatment originally allocated and were followed up are included. This scenario aims to account for possible bias introduced by attrition and protocol deviations [34].
- Best-case (BC) and worst-case (WC) scenarios: In the best-case scenario all of the missing participants were assumed to have a favorable outcome in the resin infiltration group and a poor outcome in the control group, whereas the worst-case scenario assumes the converse. This approach is an imputation technique aiming to validate data reliability and robustness by providing an interval that includes all of the uncertainty related to the missing data [35,36].
2.7. Quality of the Evidence
2.8. Trial Sequential Analysis (TSA)
3. Results
3.1. Search Details
3.2. Study Characteristics
3.3. Risk of Bias
3.4. Meta-Analysis and TSA
3.5. GRADE Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jordan, A.R.; Micheelis, W. Fünfte Deutsche Mundgesundheitsstudie (DMS V); Institut der Deutschen Zahnärzte (IDZ), Deutscher Zahnärzte Verlag DÄV: Cologne, Germany, 2016; Volume 35. [Google Scholar]
- Centers for Disease Control and Prevention. Oral Health Surveillance Report: Trends in Dental Caries and Sealants, Tooth Retention, and Edentulism, United States, 1999–2004 to 2011–2016; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Splieth, C.H.; Santamaria, R.M.; Basner, R.; Schüler, E.; Schmoeckel, J. 40-Year Longitudinal Caries Development in German Adolescents in the Light of New Caries Measures. Caries Res. 2019, 53, 609–616. [Google Scholar] [CrossRef]
- National Dental Public Health Team. National Dental Epidemiology Programme for England: Oral Health Survey of 5-Year-Olds 2019; Public Health England: London, UK, 2020. [Google Scholar]
- GBD 2017 Oral Disorders Collaborators. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Zandoná, A.; Santiago, E.; Eckert, G.J.; Katz, B.P.; Pereira de Oliveira, S.; Capin, O.R.; Mau, M.; Zero, D.T. The natural history of dental caries lesions: A 4-year observational study. J. Dent. Res. 2012, 91, 841–846. [Google Scholar] [CrossRef] [Green Version]
- Schwendicke, F.; Meyer-Lueckel, H.; Stolpe, M.; Dörfer, C.E.; Paris, S. Costs and effectiveness of treatment alternatives for proximal caries lesions. PLoS ONE 2014, 9, e86992. [Google Scholar] [CrossRef]
- Brantley, C.F.; Bader, J.D.; Shugars, D.A.; Nesbit, S.P. Does the cycle of rerestoration lead to larger restorations? J. Am. Dent. Assoc. 1995, 126, 1407–1413. [Google Scholar] [CrossRef]
- Schwendicke, F.; Splieth, C.; Breschi, L.; Banerjee, A.; Fontana, M.; Paris, S.; Burrow, M.F.; Crombie, F.; Page, L.F.; Gatón-Hernández, P.; et al. When to intervene in the caries process? An expert Delphi consensus statement. Clin. Oral Investig. 2019, 23, 3691–3703. [Google Scholar] [CrossRef]
- Splieth, C.H.; Kanzow, P.; Wiegand, A.; Schmoeckel, J.; Jablonski-Momeni, A. How to intervene in the caries process: Proximal caries in adolescents and adults-a systematic review and meta-analysis. Clin. Oral Investig. 2020, 24, 1623–1636. [Google Scholar] [CrossRef]
- Demirci, M.; Tuncer, S.; Yuceokur, A.A. Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients. Eur. J. Dent. 2010, 4, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Chestnutt, I.G.; Schafer, F.; Jacobson, A.P.; Stephen, K.W. Incremental susceptibility of individual tooth surfaces to dental caries in Scottish adolescents. Community Dent. Oral Epidemiol. 1996, 24, 11–16. [Google Scholar] [CrossRef]
- Pretty, I.A.; Ekstrand, K.R. Detection and monitoring of early caries lesions: A review. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2016, 17, 13–25. [Google Scholar] [CrossRef]
- Kühnisch, J.; Ekstrand, K.R.; Pretty, I.; Twetman, S.; van Loveren, C.; Gizani, S.; Spyridonos Loizidou, M. Best clinical practice guidance for management of early caries lesions in children and young adults: An EAPD policy document. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2016, 17, 3–12. [Google Scholar] [CrossRef]
- Slayton, R.L.; Urquhart, O.; Araujo, M.W.B.; Fontana, M.; Guzmán-Armstrong, S.; Nascimento, M.M.; Nový, B.B.; Tinanoff, N.; Weyant, R.J.; Wolff, M.S.; et al. Evidence-based clinical practice guideline on nonrestorative treatments for carious lesions: A report from the American Dental Association. J. Am. Dent. Assoc. 2018, 149, 837–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorri, M.; Dunne, S.M.; Walsh, T.; Schwendicke, F. Micro-invasive interventions for managing proximal dental decay in primary and permanent teeth. Cochrane Database Syst. Rev. 2015, 2015, Cd010431. [Google Scholar] [CrossRef]
- Chatzimarkou, S.; Koletsi, D.; Kavvadia, K. The effect of resin infiltration on proximal caries lesions in primary and permanent teeth. A systematic review and meta-analysis of clinical trials. J. Dent. 2018, 77, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elrashid, A.H.; Alshaiji, B.S.; Saleh, S.A.; Zada, K.A.; Baseer, M.A. Efficacy of Resin Infiltrate in Noncavitated Proximal Carious Lesions: A Systematic Review and Meta-Analysis. J. Int. Soc. Prev. Community Dent. 2019, 9, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, D.; Lin, H. Infiltration and sealing for managing non-cavitated proximal lesions: A systematic review and meta-analysis. BMC Oral Health 2021, 21, 13. [Google Scholar] [CrossRef]
- Ammari, M.M.; Soviero, V.M.; da Silva Fidalgo, T.K.; Lenzi, M.; Ferreira, D.M.; Mattos, C.T.; de Souza, I.P.; Maia, L.C. Is non-cavitated proximal lesion sealing an effective method for caries control in primary and permanent teeth? A systematic review and meta-analysis. J. Dent. 2014, 42, 1217–1227. [Google Scholar] [CrossRef]
- Liang, Y.; Deng, Z.; Dai, X.; Tian, J.; Zhao, W. Micro-invasive interventions for managing non-cavitated proximal caries of different depths: A systematic review and meta-analysis. Clin. Oral Investig. 2018, 22, 2675–2684. [Google Scholar] [CrossRef]
- Tedesco, T.K.; Calvo, A.F.B.; Pássaro, A.L.; Araujo, M.P.; Ladewig, N.M.; Scarpini, S.; Lara, J.S.; Braga, M.M.; Gimenez, T.; Raggio, D.P. Nonrestorative treatment of initial caries lesion in primary teeth: A systematic review and network meta-analysis. Acta Odontol. Scand. 2021, 80, 1–8. [Google Scholar] [CrossRef]
- Krois, J.; Gostemeyer, G.; Reda, S.; Schwendicke, F. Sealing or infiltrating proximal carious lesions. J. Dent. 2018, 74, 15–22. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.2.0 (Updated June 2017); Higgins, J.P.T., Churchill, R., Chandler, J., Cumpston, M.S., Eds.; John Wiley & Sons: Cochrane, AB, Canada, 2017. [Google Scholar]
- Higgins, J.P.T.; Deeks, J.J.; Altman, D.G. Chapter 16: Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.2.0 (Updated June 2017); Higgins, J.P.T., Churchill, R., Chandler, J., Cumpston, M.S., Eds.; John Wiley & Sons: Cochrane, AB, Canada, 2017. [Google Scholar]
- Donner, A. Statistical methods in ophthalmology: An adjusted chi-square approach. Biometrics 1989, 45, 605–611. [Google Scholar] [CrossRef]
- Masood, M.; Masood, Y.; Newton, J.T. The clustering effects of surfaces within the tooth and teeth within individuals. J. Dent. Res. 2015, 94, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Stedman, M.R.; Curtin, F.; Elbourne, D.R.; Kesselheim, A.S.; Brookhart, M.A. Meta-analyses involving cross-over trials: Methodological issues. Int. J. Epidemiol. 2009, 40, 1732–1734. [Google Scholar] [CrossRef]
- Elbourne, D.R.; Altman, D.G.; Higgins, J.P.; Curtin, F.; Worthington, H.V.; Vail, A. Meta-analyses involving cross-over trials: Methodological issues. Int. J. Epidemiol. 2002, 31, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Hollis, S.; Campbell, F. What is meant by intention to treat analysis? Survey of published randomised controlled trials. BMJ (Clin. Res. Ed.) 1999, 319, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Newell, D.J. Intention-to-treat analysis: Implications for quantitative and qualitative research. Int. J. Epidemiol. 1992, 21, 837–841. [Google Scholar] [CrossRef] [Green Version]
- Porta, N.; Bonet, C.; Cobo, E. Discordance between reported intention-to-treat and per protocol analyses. J. Clin. Epidemiol. 2007, 60, 663–669. [Google Scholar] [CrossRef]
- Gamble, C.; Hollis, S. Uncertainty method improved on best-worst case analysis in a binary meta-analysis. J. Clin. Epidemiol. 2005, 58, 579–588. [Google Scholar] [CrossRef]
- Unnebrink, K.; Windeler, J. Sensitivity Analysis by Worst and Best Case Assessment: Is it Really Sensitive? Ther. Innov. Regul. Sci. 1999, 33, 835–839. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ (Clin. Res. Ed.) 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin. Res. Ed.) 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clin. Res. Ed.) 2008, 336, 924–926. [Google Scholar] [CrossRef] [Green Version]
- Group, T.G.W. Grade Handbook for Grading Quality of Evidence and Strength of Recommendations. Updated October 2013. 2013. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 14 February 2022).
- Castellini, G.; Bruschettini, M.; Gianola, S.; Gluud, C.; Moja, L. Assessing imprecision in Cochrane systematic reviews: A comparison of GRADE and Trial Sequential Analysis. Syst. Rev. 2018, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Wetterslev, J.; Jakobsen, J.C.; Gluud, C. Trial Sequential Analysis in systematic reviews with meta-analysis. BMC Med. Res. Methodol. 2017, 17, 39. [Google Scholar] [CrossRef] [Green Version]
- Kulinskaya, E.; Mah, E.Y. Cumulative meta-analysis: What works. Res. Synth. Methods 2022, 13, 48–67. [Google Scholar] [CrossRef]
- Keus, F.; Wetterslev, J.; Gluud, C.; Gooszen, H.G.; van Laarhoven, C.J. Trial sequential analyses of meta-analyses of complications in laparoscopic vs. small-incision cholecystectomy: More randomized patients are needed. J. Clin. Epidemiol. 2010, 63, 246–256. [Google Scholar] [CrossRef]
- Wetterslev, J.; Thorlund, K.; Brok, J.; Gluud, C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J. Clin. Epidemiol. 2008, 61, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Brok, J.; Thorlund, K.; Gluud, C.; Wetterslev, J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J. Clin. Epidemiol. 2008, 61, 763–769. [Google Scholar] [CrossRef] [PubMed]
- DeMets, D.L.; Lan, K.K. Interim analysis: The alpha spending function approach. Stat. Med. 1994, 13, 1341–1346, 1341–1352; discussion 1353–1346. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.C.; Fleming, T.R. A multiple testing procedure for clinical trials. Biometrics 1979, 35, 549–556. [Google Scholar] [CrossRef]
- Thorlund, K.; Engstrøm, J.; Wetterslev, J.; Brok, J.; Imberger, G.; Gluud, C. User Manual for Trial Sequential Analysis (TSA), 2nd ed.; Copenhagen Trial Unit: Copenhagen, Denmark, 2017; 119p, Available online: https://ctu.dk/tsa (accessed on 14 January 2022).
- Meyer-Lueckel, H.; Balbach, A.; Schikowsky, C.; Bitter, K.; Paris, S. Pragmatic RCT on the Efficacy of Proximal Caries Infiltration. J. Dent. Res. 2016, 95, 531–536. [Google Scholar] [CrossRef]
- Meyer-Lueckel, H.; Bitter, K.; Paris, S. Randomized controlled clinical trial on proximal caries infiltration: Three-year follow-up. Caries Res. 2012, 46, 544–548. [Google Scholar] [CrossRef]
- Paris, S.; Hopfenmuller, W.; Meyer-Lueckel, H. Resin infiltration of caries lesions: An efficacy randomized trial. J. Dent. Res. 2010, 89, 823–826. [Google Scholar] [CrossRef]
- Peters, M.C.; Hopkins, A.R., Jr.; Yu, Q. Resin infiltration: An effective adjunct strategy for managing high caries risk-A within-person randomized controlled clinical trial. J. Dent. 2018, 79, 24–30. [Google Scholar] [CrossRef]
- Ammari, M.M.; Jorge, R.C.; Souza, I.P.R.; Soviero, V.M. Efficacy of resin infiltration of proximal caries in primary molars: 1-year follow-up of a split-mouth randomized controlled clinical trial. Clin. Oral Investig. 2017, 22, 1355–1362. [Google Scholar] [CrossRef]
- Meyer-Lueckel, H.; Wardius, A.; Krois, J.; Bitter, K.; Moser, C.; Paris, S.; Wierichs, R.J. Proximal caries infiltration—Pragmatic RCT with 4 years of follow-up. J. Dent. 2021, 111, 103733. [Google Scholar] [CrossRef]
- Arslan, S.; Kaplan, M.H. The Effect of Resin Infiltration on the Progression of Proximal Caries Lesions: A Randomized Clinical Trial. Med. Princ. Pract. Int. J. Kuwait Univ. Health Sci. Cent. 2020, 29, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.; Bitter, K.; Krois, J.; Meyer-Lueckel, H. Seven-year-efficacy of proximal caries infiltration—Randomized clinical trial. J. Dent. 2020, 93, 103277. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.C.; Hopkins, A.R., Jr.; Zhu, L.; Yu, Q. Efficacy of Proximal Resin Infiltration on Caries Inhibition: Results from a 3-Year Randomized Controlled Clinical Trial. J. Dent. Res. 2019, 98, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.A.; Zenkner, J.E.; d’Ornellas Pereira Junior, J.C.; Correia, R.T.; Alves, L.S.; Maltz, M. Proximal carious lesions infiltration-a 3-year follow-up study of a randomized controlled clinical trial. Clin. Oral Investig. 2018, 22, 469–474. [Google Scholar] [CrossRef]
- Martignon, S.; Ekstrand, K.R.; Gomez, J.; Lara, J.S.; Cortes, A. Infiltrating/sealing proximal caries lesions: A 3-year randomized clinical trial. J. Dent. Res. 2012, 91, 288–292. [Google Scholar] [CrossRef]
- Sarti, C.S.; Vizzotto, M.B.; Filgueiras, L.V.; Bonifácio, C.C.; Rodrigues, J.A. Two-Year Split-Mouth Randomized Controlled Clinical Trial on the Progression of Proximal Carious Lesions on Primary Molars After Resin Infiltration. Pediatr. Dent. 2020, 42, 110–115. [Google Scholar]
- Jorge, R.C.; Ammari, M.M.; Soviero, V.M.; Souza, I.P.R. Randomized controlled clinical trial of resin infiltration in primary molars: 2 years follow-up. J. Dent. 2019, 90, 103184. [Google Scholar] [CrossRef]
- Bagher, S.M.; Hegazi, F.M.; Finkelman, M.; Ramesh, A.; Gowharji, N.; Swee, G.; Felemban, O.; Loo, C.Y. Radiographic Effectiveness of Resin Infiltration in Arresting Incipient Proximal Enamel Lesions in Primary Molars. Pediatr. Dent. 2018, 40, 195–200. [Google Scholar]
- Foster Page, L.A.; Beckett, A.; Ahmadi, R.; Schwass, D.R.; Leon de la Barra, S.; Moffat, S.M.; Meldrum, A.; Thomson, W.M. Resin Infiltration of Caries in Primary Molars in a Community Setting: 24-Month Randomized Controlled Trial Findings. JDR Clin. Trans. Res. 2017, 2, 287–294. [Google Scholar] [CrossRef]
- Ekstrand, K.R.; Bakhshandeh, A.; Martignon, S. Treatment of proximal superficial caries lesions on primary molar teeth with resin infiltration and fluoride varnish versus fluoride varnish only: Efficacy after 1 year. Caries Res. 2010, 44, 41–46. [Google Scholar] [CrossRef]
- Martignon, S.; Ekstrand, K.R.; Ellwood, R. Efficacy of sealing proximal early active lesions: An 18-month clinical study evaluated by conventional and subtraction radiography. Caries Res. 2006, 40, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Egger, M.; Mohe, D. Chapter 10: Addressing reporting biases. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.2.0 (Updated June 2017); Higgins, J.P.T., Churchill, R., Chandler, J., Cumpston, M.S., Eds.; John Wiley & Sons: Cochrane, AB, Canada, 2017. [Google Scholar]
- Unnebrink, K.; Windeler, J. Intention-to-treat: Methods for dealing with missing values in clinical trials of progressively deteriorating diseases. Stat. Med. 2001, 20, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
Resin Infiltration Compared to Control for Proximal Caries Lesions. | ||||||
---|---|---|---|---|---|---|
Patient or Population: Intervention: Comparison: | Non-Cavitated Proximal Caries Lesions in Primary or Permanent Teeth Resin Infiltration + Non-Invasive Measures Non-Invasive Measures | |||||
Outcomes | Anticipated absolute effects * (95% CI) | Relative effect (95% CI) | No. of lesions (studies) | Certainty of the evidence (GRADE) | ||
Risk with Non-invasive | Risk with Resin Infiltration + non-invasive | Risk difference with Resin Infiltration + non-invasive | ||||
Per-protocol (PP) scenario | ||||||
Permanent teeth | 372 per 1.000 | 125 per 1.000 (92 to 168) | 248 fewer per 1.000 (281 fewer to 204 fewer) | OR 0.24 (0.17 to 0.34) | 564 (6 RCTs) | ⨁⨁⨁⨁ High a,b |
Primary teeth | 581 per 1.000 | 279 per 1.000 (208 to 351) | 301 fewer per 1.000 (372 fewer to 230 fewer) | OR 0.28 (0.19 to 0.39) | 370 (5 RCTs) | ⨁⨁⨁⨁ High a,b |
Intention-to-treat (ITT) scenario | ||||||
Permanent teeth | 493 per 1.000 | 300 per 1.000 (237 to 368) | 193 fewer per 1.000 (256 fewer to 125 fewer) | OR 0.44 (0.32 to 0.60) | 702 (6 RCTs) | ⨁⨁⨁⨁ High a,b |
Primary teeth | 701 per 1.000 | 490 per 1.000 (405 to 572) | 211 fewer per 1.000 (296 fewer to 129 fewer) | OR 0.41 (0.29 to 0.57) | 522 (5 RCTs) | ⨁⨁⨁⨁ High a,b |
Best-case (BC) scenario | ||||||
Permanent teeth | 493 per 1.000 | 104 per 1.000 (80 to 142) | 388 fewer per 1.000 (412 fewer to 351 fewer) | OR 0.12 (0.09 to 0.17) | 702 (6 RCTs) | ⨁⨁⨁⨁ High a,c |
Primary teeth | 701 per 1.000 | 190 per 1.000 (123 to 260) | 511 fewer per 1.000 (578 fewer to 441 fewer) | OR 0.10 (0.06 to 0.15) | 522 (5 RCTs) | ⨁⨁⨁⨁ High a,c |
Worst-case (WC) scenario | ||||||
Permanent teeth | 296 per 1.000 | 330 per 1.000 (191 to 508) | 34 more per 1.000 (105 fewer to 211 more) | OR 1.17 (0.56 to 2.45) | 702 (6 RCTs) | ⨁◯◯◯ Very low a,d,e,f |
Primary teeth | 414 per 1.000 | 495 per 1.000 (334 to 655) | 81 more per 1.000 (80 fewer to 241 more) | OR 1.39 (0.71 to 2.69) | 522 (5 RCTs) | ⨁◯◯◯ Very low a,d,e,g |
* The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). CI: confidence interval; OR: odds ratio | ||||||
Grade Working Group grades of evidence High certainty: we are very confident that the true effect lies close to that of the estimate of the effect. Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. | ||||||
a High or unclear risk of bias in all studies (Risk of bias: serious) b Large effect (OR < 0.5) c Very large effect (OR < 0.2) d No large effect (0.5 < OR < 2.0) e Substantial heterogeneity (I2 > 80%) f CI crosses the clinical decision threshold & DARIS not reached (see Figure 4b and Figure 5b) (Imprecision: very serious) g DARIS not reached (see Figure 4b and Figure 5b) (Imprecision: serious) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebula, M.; Göstemeyer, G.; Krois, J.; Pitchika, V.; Paris, S.; Schwendicke, F.; Effenberger, S. Resin Infiltration of Non-Cavitated Proximal Caries Lesions in Primary and Permanent Teeth: A Systematic Review and Scenario Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 727. https://doi.org/10.3390/jcm12020727
Cebula M, Göstemeyer G, Krois J, Pitchika V, Paris S, Schwendicke F, Effenberger S. Resin Infiltration of Non-Cavitated Proximal Caries Lesions in Primary and Permanent Teeth: A Systematic Review and Scenario Analysis of Randomized Controlled Trials. Journal of Clinical Medicine. 2023; 12(2):727. https://doi.org/10.3390/jcm12020727
Chicago/Turabian StyleCebula, Marcus, Gerd Göstemeyer, Joachim Krois, Vinay Pitchika, Sebastian Paris, Falk Schwendicke, and Susanne Effenberger. 2023. "Resin Infiltration of Non-Cavitated Proximal Caries Lesions in Primary and Permanent Teeth: A Systematic Review and Scenario Analysis of Randomized Controlled Trials" Journal of Clinical Medicine 12, no. 2: 727. https://doi.org/10.3390/jcm12020727
APA StyleCebula, M., Göstemeyer, G., Krois, J., Pitchika, V., Paris, S., Schwendicke, F., & Effenberger, S. (2023). Resin Infiltration of Non-Cavitated Proximal Caries Lesions in Primary and Permanent Teeth: A Systematic Review and Scenario Analysis of Randomized Controlled Trials. Journal of Clinical Medicine, 12(2), 727. https://doi.org/10.3390/jcm12020727