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Abstract: We employed an unsupervised clustering method that integrated demographic, clinical,
and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients
with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled
in the Myocardial Iron Overload in Thalassemia (MIOT) Network who underwent MR for the
quantification of hepatic and cardiac iron overload (T2* technique), the assessment of biventricular
size and function and atrial dimensions (cine images), and the detection of replacement myocardial
fibrosis (late gadolinium enhancement technique). Three mutually exclusive phenogroups were
identified based on unsupervised hierarchical clustering of principal components: PG1, women; PG2,
patients with replacement myocardial fibrosis, increased biventricular volumes and masses, and
lower left ventricular ejection fraction; and PG3, men without replacement myocardial fibrosis, but
with increased biventricular volumes and masses and lower left ventricular ejection fraction. The
hematochemical parameters and the hepatic and cardiac iron levels did not contribute to the PG
definition. PG2 exhibited a significantly higher risk of future cardiovascular events (heart failure,
arrhythmias, and pulmonary hypertension) than PG1 (hazard ratio-HR = 10.5; p = 0.027) and PG3
(HR = 9.0; p = 0.038). Clustering emerged as a useful tool for risk stratification in TI, enabling the
identification of three phenogroups with distinct clinical and prognostic characteristics.
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1. Introduction

Beta-thalassemias are inherited disorders determined by a decrease (β+) or absence
(β0) of the production of β-globin chains [1,2]. The spectrum of beta-thalassemias ranges
from thalassemia minor, which presents as mild hypochromic microcytic anemia without
significant clinical symptoms, to beta-thalassemia major (β-TM), which is characterized
by severe anemia starting in early childhood and requiring lifelong regular blood trans-
fusions [3]. Beta-thalassemia intermedia (β-TI) falls between these two extremes, with
manifestations that are less severe than those of β-TM, but more significant than those
of thalassemia minor [4]. β-TI is categorized as one of the non-transfusion-dependent
thalassemias (NTDTs), along with mild/moderate HbE/β-thalassemia and α-thalassemia
intermedia. NTDT refers to thalassemic conditions in which regular transfusions are un-
necessary for the patient’s survival [5]. However, certain β-TI patients may necessitate
transfusions during specific circumstances, such as pregnancy, acute infections, and surgery,
or may require regular blood transfusions at some stage of their lives to ensure proper
growth, prevent complications, or manage existing ones [6–8].

In β-TI, the clinical manifestations are heterogeneous and arise from three main under-
lying factors: ineffective erythropoiesis, chronic anemia, and iron overload. The ineffective
production of red blood cells and the presence of chronic anemia result in the suppression of
hepcidin, a hormone involved in regulating iron levels [9,10]. This reduction in the hepcidin
levels causes an increase in iron absorption from the gastrointestinal tract and prompts
the release of previously recycled iron from the reticuloendothelial system [11]. In β-TI,
the liver is the main site for iron accumulation, while the heart is relatively spared [12–17].
Chronic anemia triggers a series of compensatory mechanisms within the cardiovascular
system. Initially, the body responds to hypoxia by increasing cardiac output through
various adaptations, including an elevation in heart rate and an increase in stroke vol-
ume [18,19]. To sustain the increased workload, the heart undergoes structural changes,
including the enlargement of its chambers [20]. Since this remodeling can lead to decreased
cardiac function and heart failure over time, regular cardiac monitoring, allowing for
prompt intervention and therapy, may help to slow the progression of early stage disease
and avoid the onset of overt cardiovascular disease.

Cardiac magnetic resonance (CMR) imaging provides a valuable means to assess and
understand the physiological and pathological aspects of the heart. CMR is considered the
gold standard for the quantification of biventricular volumes, masses, and functions due to its
exceptional accuracy and reproducibility [21,22]. Moreover, CMR is the reference standard
for the non-invasive quantification of tissue iron overload by the T2* technique [23–25] and
allows the non-invasive detection of myocardial fibrosis [22,26,27].

The interpretation and integration of CMR, demographic, and clinical parameters can
be complex and challenging, often requiring expert knowledge and experience. Machine
learning algorithms provide a means to uncover hidden patterns within complex and het-
erogeneous datasets [28–30]. Supervised learning involves training a model to classify or
predict specific outputs or outcomes based on labeled training data. Conversely, unsuper-
vised learning algorithms work by exploring the intrinsic characteristics and organization
of the data themselves to discover hidden insights, detect anomalies, or identify similarities
or patterns between variables. Common unsupervised learning methods include clustering
algorithms that classify data points into distinct groups or categories based on their intrinsic
characteristics or proximity to one another [31,32]. Cluster analysis has been successfully
applied in healthcare, allowing the identification of phenogroups or clusters with specific
clinical and prognostic profiles in different disease settings [33–39].
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The aims of this multicenter study were: (1) to demonstrate the ability of an unsu-
pervised clustering approach to identify phenogroups among patients with β-TI using
demographic, clinical, and CMR data; (2) to determine the clinical implications of the
detected phenogroups by discovering their association with distinct profiles in the baseline
characteristics; and (3) to assess the prognostic value of the detected phenogroups by
comparing the cardiovascular outcomes.

2. Materials and Methods
2.1. Patient Population

We considered 342 β-TI patients (mean age: 38.4 ± 11.7 years; 50.9% females) consecu-
tively enrolled within the Myocardial Iron Overload in Thalassemia (MIOT) Network. The
MIOT Network was an Italian Network of 70 thalassemia centers and 10 magnetic reso-
nance imaging (MRI) sites adopting a standardized and homogeneous MRI protocol [40,41].
All patients underwent their first MRI examination between April 2006 and May 2014.
According to the study’s protocol, patients underwent regular MRI follow-up examina-
tions every 18 ± 3 months. All the MIOT centers were interconnected through a shared
web-based database, where a detailed clinical history of the patients was recorded [42]. The
clinical and instrumental data were updated in correspondence to each new MRI scan.

The study received approval from the institutional ethics committee and was con-
ducted in compliance with the principles stated in the Declaration of Helsinki. Informed
consent was obtained from all patients.

2.2. Patient Follow-Up and Outcomes

A comprehensive follow-up was conducted for all patients until the end of the MIOT
project (November 2015). For each patient, a case report form detailing cardiovascular
outcomes between the last available MRI and November 2015 was completed by the
caring hematologist.

The following cardiovascular events were considered: heart failure (HF), arrhythmias,
and pulmonary hypertension (PH). HF diagnosis was performed by clinicians based on
symptoms, signs, and instrumental findings according to the American Heart Associa-
tion (AHA)/American College of Cardiology (ACC) guidelines [43]. Arrhythmias were
diagnosed if documented by electrocardiogram (ECG) or 24 h Holter ECG and if specific
medications were required. The classification of arrhythmias was carried out according
to the AHA/ACC guidelines [44]. PH was diagnosed if the trans-tricuspidal velocity jet
measured by echocardiography exceeded 3.2 m/s [45]. If a patient had more than one
complication, only the first one was taken into account.

2.3. Magnetic Resonance Imaging

MRI examinations were conducted using 1.5 T scanners from three main vendors (GE
Healthcare, Milwaukee, WI, USA; Philips, Best, The Netherlands; and Siemens Healthineers,
Erlangen, Germany) equipped with phased-array coils. Breath-holding end-expiration and
ECG gating were employed for signal reception.

To assess iron overload, T2* gradient-echo multiecho sequences were used. A single
axial mid-hepatic slice [40] and three parallel short-axis views (basal, medium, and apical)
of the left ventricle (LV) were acquired [41]. Analysis of the T2* images was carried out
using custom-written, previously validated software (HIPPOMIOT®,Version 1.0, Consiglio
Nazionale delle Ricerche and Fondazione Toscana Gabriele Monasterio, Pisa, Italy) [46].
The liver T2* value was measured within a standard-sized region of interest (ROI), carefully
selected to be devoid of blood vessels and distant from areas more susceptible to artifacts
caused by magnetic susceptibility [40,47]. The conversion of liver T2* into liver iron
concentration (LIC) values was performed by employing the calibration curve introduced
by Wood et al. [48]. The software provided T2* values for all 16 segments of the LV following
the standard AHA/ACC model [49]. To account for susceptibility and geometric artifacts,
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an appropriate correction map was applied [46]. The global heart T2* value was derived
from the average of the 16 segmental T2* values.

To quantify biventricular function parameters, steady-state free procession (SSFP)
end-expiration breath-hold cines were acquired in contiguous short-axis slices (slice thick-
ness 8 mm, without gap) from the atrioventricular ring to the apex. The analysis of the
images followed a standard procedure conducted by experienced observers [50]. The
process involved manual contouring of the epicardial and endocardial borders in relevant
slices during the end-diastolic and end-systolic phases. The interventricular septum was
considered part of the LV. Additionally, the papillary muscles and trabeculations within
the LV and right ventricular (RV) cavities were included in the respective cavity volumes.
The end-diastolic volume (EDV) and end-systolic volume (ESV) were calculated without
making geometric assumptions. The ejection fraction (EF) was determined by dividing the
stroke volume (difference between EDV and ESV) by the EDV. The wall mass was obtained
by multiplying the volume of the myocardium by its specific weight, which was assumed
to be 1.05 g/cm3. The assessment of the RV mass was centralized in the coordinating center
of the MIOT Network and performed by a single experienced operator. The left and right
atrial areas were assessed from the four-chamber view projection during the ventricular
end-systolic phase. To account for individual variations, the biventricular volumes, masses,
and atrial areas were indexed to the body surface area (BSA).

To detect the presence of focal/replacement myocardial fibrosis, late gadolinium
enhancement (LGE) images were obtained 10–18 min after the intravenous administration
of a standard dose (0.2 mmol/kg) of Gadobutrol (Gadovist®; Bayer Schering Pharma; Berlin,
Germany) using a fast gradient-echo inversion recovery T1 weighted sequence. Short-axis
and vertical, horizontal, and oblique long-axis views were acquired. LGE images were not
acquired in patients with a glomerular filtration rate inferior to 30 mL/min/1.73 m2, nor
in patients who declined the administration of the contrast medium. The presence of LGE
was determined based on visual assessment in at least two different views [51].

2.4. Cluster Analysis

The cluster analysis was performed using the free software R (version 4.3.1).
A total of 16 clinical and CMR variables were selected for the clustering model and

the determination of phenogroups. There were three categorical variables (sex, presence
of regular transfusions, and replacement myocardial fibrosis) and 13 continuous variables
(age, mean serum hemoglobin, mean serum ferritin, MRI LIC, global heart T2* values, LV
and RV end-diastolic volume index, LV and RV mass index, LV and RV EF, and left and
right atrial area index).

2.5. Data Pre-Processing

The raw clinical data were pre-elaborated before the application of clustering algorithms.
To handle the missing data, the complete case analysis strategy was adopted: patients

with missing data on any input variable were excluded from the analysis.
To ensure that variables with different ranges contributed equally to the clustering

process, normalization of continuous variables was performed. Z-score normalization (or
standardization), scaling the data by the mean and standard deviation, was chosen.

2.6. Evaluation of Clustering Tendency

The Hopkins statistic was computed by the Hopkins function (Hopkins 1.0 package)
to determine if the observations within the dataset were clusterizable [52]. The Hopkins
statistic measures the probability that a given data set is created by a uniform data distribu-
tion. The Hopkins statistic score is between 0 and 1, with a value of >0.5 indicating that the
dataset is clusterizable.
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2.7. Definition of Phenogroups

Phenogroups were defined using an unsupervised hierarchical clustering on princi-
pal components (HCPC) approach, performed by the functions MFA and HCPC of the
FactoMineR 2.8 package.

The algorithm consisted of two steps. First, a multiple-factor analysis (MFA) was
conducted. MFA is an extension of principal component analysis (PCA), which is able to
handle both continuous and categorical variables [53]. PCA is a technique for reducing the
dimensionality of large datasets containing highly correlated variables [54]. It identifies
the underlying structure in a single set of variables by creating a smaller set of synthetic
variables that explain most of the variability in the original data. Conversely to PCA, MFA
allows for the analysis of multiple related data tables simultaneously. Individual PCA
is conducted on each data table (table of continuous variables and table of categorical
variables) to obtain the principal components and their associated variance. These individ-
ual PCA results are then combined using appropriate weighting schemes to create a joint
factorial space. This joint space captures the overall relationships and variability between
the different groups.

In the second step, the hierarchical clustering algorithm was applied to the principal
component space [55]. The data points were grouped into phenogroups based on their
proximity in the principal component space. The Euclidean distance, based on the concept
of Euclidean geometry, where distances are measured along straight paths, was employed
to determine the similarity between pairs of data points. This information was crucial for
constructing the dendrogram, which visually represents the clustering process and enables
the identification of phenogroups at different levels of similarity. Ward’s method was used
to build the dendrogram tree.

The optimal number of phenogroups was suggested by the HCPC function itself, and
the estimation was based on the between-variance. The optimal number of phenogroups
was also estimated by using the NbClust function (Nbclust 3.0.1 package), which provided
the calculation of 30 different indexes.

The over- or under-representation of variables in each phenogroup was evaluated by
the v-test, based on the hypergeometric distribution, using the catdes function (FactoMineR
2.8 package).

2.8. Supervised Random Forest

Random forest (RF) is a machine learning algorithm classified as an ensemble method,
comprising multiple decision trees trained on distinct subsets of data and features [56,57].
In the supervised setting, it necessitates labeled data with known target variables during
the training phase.

In this study, the phenogroups generated by the unsupervised HCPC method were
used as inputs for the supervised RF algorithm (randomForest function of the randomForest
4.7.1.1 package) to detect which patient parameters or features were most influential in
distinguishing the phenogroups. The sample variables and number of trees were set to 4
and 500, respectively.

The mean decrease in the Gini coefficient was used to assess the importance of each
input variable. A high mean decrease Gini score signifies higher relevance.

2.9. Statistical Analysis

All data were analyzed using SPSS version 27.0 (Chicago, IL, USA).
Continuous variables were presented as mean ± standard deviation (SD). Categorical

variables were represented as counts with percentages.
The normality of the parameter distribution was evaluated through the Kolmogorov–

Smirnov test.
Group comparisons were conducted using one-way ANOVA for continuous values

with normal distribution and the Kruskal–Wallis test for continuous values with non-
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normal distributions. X2 testing was employed for categorical variables. The Bonferroni
test was used for the post hoc analysis where appropriate.

The Cox proportional hazard model was employed to determine the effect of the
phenogroups on the outcome. The results were presented as the hazard ratio (HR) with
95% confidence intervals (CI). Kaplan–Meier curves were generated and the log-rank test
was employed to compare the different phenogroups regarding event-free survival.

In all tests, a 2-tailed probability value of 0.05 was considered statistically significant.

3. Results
3.1. Patients’ Characteristics

Twenty-three patients were excluded from the present study because a cardiac compli-
cation was present at the time of their first MRI. Specifically, seven patients had HF, six had
arrhythmias, six had PH, two had HF and arrhythmias, and two had HF and PH.

Among the remaining 319 patients, 101 (31.7%) did not receive the contrast medium
and were excluded from the analysis, reducing the study size to 218. SSFP images were not
acquired for 13 patients because the lack of collaboration caused the advanced interruption
of the exam. Moreover, out of the available 205 SSFP acquisitions, 67 were not collected
in Pisa, making it not possible to assess the RV mass index. Therefore, the final study
population comprised 138 patients for which all MRI parameters were measured.

Table 1 shows the clinical and MRI characteristics of the 138 considered patients. All
patients were white and had a homogeneous sex distribution.

Table 1. Demographic, clinical, and MRI data at the baseline MRI.

All β-TI Patients (N = 138)

Females, N (%) 72 (52.2)

Age (years) 38.1 ± 11.4

Regular transfusions, N (%) 73 (52.9)

Serum hemoglobin (g/dL) 9.1 ± 1.1

Serum ferritin (ng/L) 813.8 ± 911.9

MRI LIC (mg/g/dw) 7.9 ± 7.7

Global heart T2* (ms) 35.9 ± 8.4

LV EDVI (mL/m2) 97.1 ± 20.6

LV mass index (g/m2) 63.6 ± 12.9

LV EF (%) 62.8 ± 5.9

RV EDVI (mL/m2) 90.0 ± 22.2

RV mass index (g/m2) 22.7 ± 6.2

RV EF (%) 65.3 ± 6.4

Replacement myocardial fibrosis, N(%) 37 (26.8)

LA area index (cm2/m2) 14.2 ± 2.6

RA area index (cm2/m2) 13.1 ± 2.5
β-TI = beta thalassemia intermedia, N = number, MRI = magnetic resonance imaging, LIC = liver iron concen-
tration, LV = left ventricular, EDVI = end-diastolic volume index, EF = ejection fraction, RV = right ventricular,
LA = left atrial, RA = right atrial.

Replacement myocardial fibrosis was detected in 37 (26.8%) patients. Thirty-six pa-
tients had non-ischemic LGE patterns, while a subendocardial LGE pattern, typical of
coronary artery disease, was found in one patient. Eleven patients had a single focus,
while twenty-six had at least two foci. The mean number of LGE segments per patient was
2.4 ± 1.3. LGE involved the septal region in 81.1% of patients.
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3.2. Clustering Results

The Hopkins statistic score was 0.99, revealing a strong clustering tendency within the
set of observations.

The number of PCs to use as input for hierarchical clustering was chosen to guarantee
at least 80% of the explained variance, and this was obtained with seven or more PCs.
By choosing seven PCs, the dimension of the problem was strongly reduced: the sixteen
original variables were replaced by seven synthetic variables (the seven PCs). Table 2 shows
the percentage contributions of the variables to the seven dimensions.

Table 2. Contribution of continuous and categorical variables to the 7 dimensions. Only variables
with a contribution > 5% are reported. Variables are ordered on the basis of the contribution level.

Dimension Variance/
Cumulative Variance (%) Variables with Contribution > 5%

1 22.3/22.3 Sex, LV EDVI, RV EDVI, LV mass index, RV
mass index

2 16.5/38.8 Regular transfusions, replacement
myocardial fibrosis

3 13.2/52.0 Replacement myocardial fibrosis,
regular transfusions

4 11.4/63.4 Sex, RA area index, LA area index, RV EDVI,
hemoglobin, LV EDVI, RV mass index

5 7.9/71.3 Ferritin, RV EF

6 6.9/78.2 Age, LV EF, RV EF, ferritin

7 4.6/82.8 Age, LA area index, RA area index,
hemoglobin, RV EF, RV mass index

LV = left ventricular, EDVI = end-diastolic volume index, RV = right ventricular; RA = right atrial, LA = left atrial.

Hierarchical clustering analysis indicated that the achievement of the highest gain in
inertia or within-group variance was achieved with three phenogroups. Accordingly, the
majority of indexes (18/30) evaluated by the Nbclust package proposed three as the best
number of phenogroups for the considered dataset.

The three phenogroups are visible upon projection into a two-dimensional correspon-
dence analysis biplot (Figure 1A). A dendrogram representation of the three phenogroups
is presented in Figure 1B.

3.3. Comparison among Phenogroups

Nine input variables contributed differently to the definition of the patient’s phenogroups
(Figure 2). Age, hematochemical parameters, hepatic and cardiac iron levels, left trial
area index, and RV EF did not contribute. Table 3 shows the differences among the
three phenogroups.
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Figure 1. Cluster analysis. (A) Biplot with the first two components from the principal component
analysis. Points represent individual patients displayed based on their individual characteristics.
The colors represent the clear differentiation of the three phenogroups from the cluster analysis.
(B) Dendrogram of the hierarchical cluster analysis. The ordinate axis represents the distance between
merged phenogroups. Dashed lines indicate the partitioning with three phenogroups.
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Figure 2. Characteristic plots of the three mutually exclusive phenogroups, including their most
representative clinical variables. The over- or underrepresentation of a variable within a cluster was
analyzed by a v-test within the hierarchical clustering of principal component function based on the
hypergeometric distribution. A positive value indicates that the variable is overrepresented in the
relevant phenogroup, while a negative value implies an underrepresentation of the corresponding
variable. Only significant variables with p < 0.05 are listed.

Phenogroup 1 (56 patients; 40.6%) comprised almost exclusively women (98.2%).
It exhibited significantly lower biventricular end-diastolic volume indexes and masses
indexed by BSA and significantly higher LV EF compared with both phenogroups 2 and 3.
No patient in this group had replacement myocardial fibrosis.

Phenogroup 2 (37 patients; 26.8%) was well balanced between sexes (45.9% females)
and included all patients with replacement myocardial fibrosis.

Phenogroup 3 (45 patients; 32.6%) comprised only men and was characterized by the
absence of replacement myocardial fibrosis.
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Table 3. Comparison of baseline demographic, clinical, and MRI findings among the three phenogroups.

Phenogroup 1
(N = 56)

Phenogroup 2
(N = 37)

Phenogroup 3
(N = 45) p-Value Pairwise

Comparisons

Females, N (%) 55 (98.2) 17 (45.9) 0 (0.0) <0.0001
1 vs. 2: p < 0.0001
1 vs. 3: p < 0.0001
2 vs. 3: p < 0.0001

Age (years) 36.6 ± 12.3 39.8 ± 9.9 38.8 ± 11.5 0.380

Regular transfusions, N (%) 34 (60.7) 21 (56.8) 18 (40.0) 0.100

Serum hemoglobin (g/dL) 8.9 ± 0.8 9.0 ± 0.9 9.3 ± 1.4 0.349

Serum ferritin (ng/L) 860.1 ± 956.1 977.9 ± 1142.9 621.1 ± 560.7 0.351

MRI LIC (mg/g/dw) 8.5 ± 8.1 8.7 ± 8.4 6.5 ± 6.4 0.228

Global heart T2* (ms) 36.3 ± 8.5 34.6 ± 10.6 36.6 ± 6.2 0.931

LV EDVI (ml/m2) 87.6 ± 15.1 101.2 ± 20.8 105.7 ± 21.8 <0.0001 1 vs. 2: p = 0.003
1 vs. 3: p < 0.0001

LV mass index (g/m2) 56.7 ± 10.5 65.6 ± 12.2 70.6 ± 11.8 <0.0001 1 vs. 2: p = 0.001
1 vs. 3: p < 0.0001

LV EF (%) 64.9 ± 6.7 61.7 ± 4.9 61.0 ± 4.8 0.005 1 vs. 2: p = 0.045
1 vs. 3: p = 0.009

RV EDVI (mL/m2) 80.3 ± 17.2 96.3 ± 23.4 97.0 ± 22.6 <0.0001 1 vs. 2: p = 0.001
1 vs. 3: p < 0.0001

RV mass index (g/m2) 20.3 ± 3.8 24.7 ± 8.1 23.9 ± 6.0 <0.0001 1 vs. 2: p = 0.009
1 vs. 3: p < 0.0001

RV EF (%) 66.3 ± 7.1 63.9 ± 5.5 65.1 ± 6.2 0.201

Replacement myocardial
fibrosis, N (%) 0 (0.0) 37 (100.0) 0 (0.0) <0.0001 1 vs. 2: p < 0.0001

2 vs. 3: p < 0.0001

LA area index (cm2/m2) 14.0 ± 2.6 14.3 ± 3.1 14.4 ± 2.3 0.765

RA area index (cm2/m2) 12.7 ± 2.5 12.7 ± 2.5 13.8 ± 2.4 0.053
N = number, MRI = magnetic resonance imaging, LIC = liver iron concentration, LV = left ventricular, EDVI = end-
diastolic volume index, EF = ejection fraction, RV = right ventricular, LA = left atrial, RA = right atrial.

3.4. Relevant Features for Clustering

In the supervised RF analysis, sex and replacement myocardial fibrosis by LGE
emerged as the key parameters that significantly contributed to the differentiation of pa-
tients in each phenogroup (Figure 3). The presence of regular transfusions was associated
with the lower mean Gini index.

3.5. Association of Phenogroups with Cardiovascular Complications

The mean follow-up time was 55.8 ± 22.7 months (median 54.0 months).
Cardiac events were recorded in 10 patients (7.2%). There was one episode of HF, five

arrhythmias (all supraventricular), and four PH. The overall mean time elapsing between
the first MR scan and the occurrence of a cardiac complication was 37.4 ± 26.5 months, and
three (30.0%) cardiac events occurred within the first year of follow-up.

The prevalence of cardiovascular events was significantly higher in phenogroup 2
than in both phenogroup 1 (21.6% vs. 1.8%; p = 0.006) and phenogroup 3 (21.6% vs. 2.2%;
p = 0.027) (Figure 4A). Phenogroup 2 was associated with a significantly increased risk of
cardiovascular complications compared with phenogroup 1 (HR = 10.5, 95%CI = 1.3–83.9;
p = 0.027) as well as phenogroup 3 (HR = 9.0, 95%CI = 1.1–72.1; p = 0.038). Figure 4B shows
the Kaplan–Meier curve. The log-rank test demonstrated significant differences in the
occurrence of cardiovascular complications across phenogroups (p = 0.002).
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4. Discussion

Machine learning algorithms possess the ability to process large volumes of data,
identify patterns, and make predictions, which makes them well-suited for analyzing
complex and diverse datasets commonly found in medical research. In the present study,
we employed unsupervised clustering analysis on demographic, clinical, and CMR data
with the aim of uncovering meaningful patterns and groupings within the β-TI population.
Within the β-TI population, a substantial heterogeneity exists in patient characteristics, ill-
ness severity, and responses to treatment. Gaining a deeper insight into such heterogeneity
could pave the way for more personalized care to better suit patient profiles. The statistical
method of cluster analysis is a means by which such heterogeneity can be understood.
We identified three mutually exclusive phenogroups of patients characterized by different
levels of cardiac involvement and risks of cardiovascular outcomes.

Phenogroup 1 was primarily composed of female patients, while phenogroup 3 com-
prised only males. This gender difference may be the main cause of the difference between
these two phenogroups in biventricular volumes and masses. Indeed, in healthy sub-
jects [58,59] as well as in patients with hemoglobinopathies [50,60], all biventricular volume
indexes as well as the LV mass index were demonstrated to be significantly greater in males
compared with females. Conversely, phenogroup 1 was associated with a significantly
higher LV EF. Several recent large-scale studies that used CMR or echocardiographic tech-
niques detected a significantly greater LV EF in women compared with men [59,61,62].
Kerkhof et al. suggested that this finding may be explained by the disproportional in-
crease in EF at smaller end-systolic volumes in women [63]. However, it is important to
underline that phenogroups 1 and 3 were comparable in terms of prognosis. Therefore,
although gender emerged as one of the key parameters that significantly contributed to
the differentiation of patients in phenogroups, it did not play a significant role in cardiac
risk stratification.

Phenogroup 2 included all patients with replacement myocardial fibrosis. These pa-
tients accounted for more than one-quarter of the total β-TI population (26.8%), indicating
that replacement myocardial fibrosis is relatively common among Italian β-TI patients.
Importantly, participants belonging to phenogroup 2 had a significantly increased risk
of cardiovascular events compared with those in both phenogroups 1 and 3. The fre-
quency of positive LGE was the only CMR parameter that significantly differed between
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phenogroups 2 and 3. At the same time, no difference was detected in biventricular vol-
umes, ejection fractions, masses, or bi-atrial areas. These results suggest that, in β-TI,
replacement myocardial fibrosis is potentially a better marker of cardiovascular risk stratifi-
cation than conventional cardiac function parameters. In line with our findings, a growing
body of evidence has shown the prognostic significance of LGE in predicting cardiovascular
complications and death in both ischemic and nonischemic cardiomyopathies [64–68]. In
particular, in thalassemia major, where the introduction of the T2* technique allowed for
better management and control of cardiac iron, myocardial fibrosis emerged as the most
potent predictor of HF and cardiac complications [69]. Unlike cardiac dysfunction and iron
accumulation, fibrosis appears to be an irreversible process, suggestive of a potentially
more significant and lasting injury to the myocardium. Although more studies involving
larger cohorts of patients are needed to confirm the important prognostic implications of
replacement myocardial fibrosis, the inclusion of LGE imaging within the cardiac MRI
exam, if not contraindicated, can indeed be of significant value in the cardiological man-
agement of TI patients. The serial injection of Gadobutrol in patients with thalassemia
without neurological lesions was demonstrated to be safe [51] and to not cause a signal
hyperintensity of the dentate nucleus, globus pallidum, pons, and thalamus, potentially
associated with the tissue deposition of the contrast media [70].

The cardiac T2* values did not provide sufficient discriminatory information to effec-
tively distinguish or separate patients into their respective phenogroups. This result can be
explained by the fact that the majority of our patients had normal (>20 ms) or only slightly
reduced T2* values. It is well known that the T2* technique has reduced sensitivity for
detecting changes associated with mild or early myocardial iron overload [71,72].

The three phenogroups were comparable in terms of the frequency of regular trans-
fusions. This finding recalls a recent study that applied unsupervised RF clustering to
identify subgroups of clinical severity in a large cohort of β-thalassemia patients, including
TM patients, regularly transfused TI patients, and non-transfused TI patients [73]. Nineteen
indicators of phenotype severity, which did not include MRI data, were considered, and
the presence of regular transfusions did not play a significant role in grouping the patients
into phenogroups.

Limitations

Our study is not free from limitations.
The study was completed over 7 years ago and had a relatively small sample size.

Moreover, all patients were from Italy, which possesses one of the best standards of care for
thalassemia, arising from the high prevalence of the disease and availability of resources.
All these factors may limit the generalizability of our findings. Therefore, new larger
studies involving patients from different countries and backgrounds are needed to confirm
our results.

As usual in clinical trials [74], complete case analysis (case deletion) was selected as
the method for handling missing data in our dataset: all cases (patients) with missing data
were discarded from the analysis. We basically assumed that the missing data were missing
at random or completely at random (i.e., missingness was unrelated to the variables of
interest or other observed characteristics). In this scenario, complete case analysis can yield
unbiased estimates. Complete case analysis led to a significant decrease in the sample size,
potentially reducing the statistical power of the analysis. Different approaches, like multiple
imputation, maximum likelihood estimation, or weighted methods, can be used to impute
or estimate the missing values [75]. Replacing missing clinical values with synthetically
generated values enables the inclusion of all available cases in the analysis. However,
imputing missing data involves making assumptions about the missing values, and these
assumptions may not accurately represent the true values for the missing observations. In
addition, imputation can alter the intrinsic characteristics of a dataset, introduce biases,
and distort the relationships between variables.



J. Clin. Med. 2023, 12, 6706 14 of 18

Due to the limited number of events, we had to pool multiple types of cardiovascular
events together, combining them into a single composite endpoint. Therefore, we could not
evaluate the associations of the phenogroups with specific outcomes.

The current study was not designed to assess which CMR or clinical parameter was
most powerful in predicting cardiovascular events.

The adopted approach represents a significant departure from traditional studies.
Although phenogrouping holds the potential to pave the way for a more personalized
approach to patient management, its actual impact on clinical decision-making is yet to be
fully explored and understood.

5. Conclusions

Within the β-TI population, unsupervised learning algorithms, which integrated
routinely measured CMR parameters, led to the identification of three phenogroups with
distinct clinical and prognostic characteristics. Unsupervised phenogrouping conveys
the potential to significantly impact patient care and improve cardiovascular outcomes
by enabling the early detection of cardiac remodeling and damage, as well as enhanced
risk stratification.
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