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Abstract: Gastrointestinal cancers are characterized by high incidence and mortality. However, there
are well-established methods of screening. The endoscopy exam provides the macroscopical image
and enables harvesting the tissue samples for further histopathological diagnosis. The efficiency of
endoscopies relies not only on proper patient preparation, but also on the skills of the personnel
conducting the exam. In recent years, a number of reports concerning the application of artificial
intelligence (AI) in medicine have arisen. Numerous studies aimed to assess the utility of deep
learning/ neural network systems supporting endoscopies. In this review, we summarized the
most recent reports and randomized clinical trials regarding the application of AI in screening
and surveillance of gastrointestinal cancers among patients suffering from esophageal, gastric, and
colorectal cancer, along with the advantages, limitations, and controversies of those novel solutions.

Keywords: artificial intelligence; endoscopy; gastrointestinal tract; gastric cancer; colorectal cancer;
esophageal cancer

1. Introduction

Cancers of the gastrointestinal tract, especially of the stomach and large intestine, are
a frequent cause of death due to malignant neoplasms. For this reason, there is a need to
develop new technologies supporting diagnostics, mainly endoscopic methods in detecting
gastrointestinal cancers [1]. The gold standard examination for reducing morbidity and
mortality in colorectal cancer (CRC) is a colonoscopy with the detection and removal
of adenomatous polyps [2–4]. However, in order to reduce morbidity and mortality in
cancers of the upper gastrointestinal tract, endoscopic methods are used, such as: confocal
laser endomicroscopy and narrow-band imaging [5–8]. Nevertheless, the method largely
depends on the experience of the doctor performing the examination.

In recent years, the application of artificial intelligence (AI) in the medical field has
expanded [9]. The use of artificial intelligence can support classical methods by reducing
the percentage of overlooked changes [1,10]. AI-assisted endoscopy, which uses facial
recognition technologies based on AI, can detect abnormal conditions quickly, based on the
analysis of colorectal images, thereby reducing the need for nontumor polypectomy [11].
Furthermore, computer-aided endoscopy has a high degree of accuracy and sensitivity,
indicating potential applications in early CRC diagnosis. AI technology has rapidly de-
veloped over the past few years, allowing us to develop a computer-based screening
system [12]. Artificial intelligence (AI)-powered endoscopic systems are supporting the
clinician in various ways. They can detect and classify lesions with image and video
analysis (computer vision algorithms). Machine learning algorithms may be helpful in the
interpretation of the data collected during the exam. However, real-time assistance is also
possible, such as guiding and providing information about screened colon tissues [13]. The
use of artificial intelligence in endoscopic examinations of the gastrointestinal tract may
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help in distinguishing benign, non-cancerous lesions from neoplastic lesions. The use of
artificial intelligence in endoscopic examinations of the gastrointestinal tract may help in
distinguishing benign, non-cancerous lesions from neoplastic lesions [1] (Figure 1).
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The aim of this narrative review was to summarize the most recent findings of clinical
trials and to propose further directions in the research regarding the utility of modern AI
technologies in the diagnostic and therapeutic processes of gastrointestinal neoplasms.

2. Esophageal and Gastric Cancer

Esophageal cancer and gastric cancer are some of the most common malignant tumors
in the world. Characterized by high mortality rate, they are a major financial burden on
health care systems. Detection of early gastric cancer and precancerous lesions is based on
an endoscopic examination. One of the most common methods of gastroscopy is called
white light gastroscopy. Early detection of suspicious lesions is important in extending
survival [14–18]. Due to latent and non-specific symptoms, upper gastrointestinal cancer
is usually detected at advanced stages, leading to a poor prognosis. But, if detected early,
five-year survival can be up to 90% [19–21].

2.1. Esophagogastroduodenoscopy

Esophagogastroduodenoscopy (EGD) is a basic examination that visualizes the inside
of the stomach. However, the subjective assessment and experience of the endoscopist
influence the error rate, estimated at 20–40% in the case of early gastric cancer (EGC).
Therefore, detailed guidelines for upper gastrointestinal endoscopy would standardize the
results of these studies [14,22,23]. In the case of early gastric cancer, which is characterized
by subtle changes that are difficult to see by an inexperienced endoscopist, it is essential to
image the entire stomach to exclude EGC and avoid imaging blind spots [24,25].

High definition endoscopy is recommended as a gold standard in screening and also
as a monitoring tool for Barrett’s esophagus, which is the most common precancerous
condition of the esophagus [26–28]. Narrow-band imaging (NBI) is also a frequently used
method in the diagnosis of the esophagus; additionally, targeted biopsies taken with this
method resulted in the detection of a greater number of dysplastic areas, which in turn
could reduce the number of samples taken [29].
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2.2. Comparison of AI with EGD

Lianlian Wu et al., developed an AI-based system to analyze EGD images using a
special grid model for the stomach to indicate the existence of blind spots on raw EGD films.
Based on 200 gastroscopic images with or without lesions, DCNN correctly diagnosed the
tumor with 92.5% accuracy, a 94% sensitivity, and a 91% specificity. Endoscopists of varying
experience achieved rates ranging from 81.2% to 89.7%. Thus, the accuracy with DCNN
was significantly higher than that of endoscopy specialists [25]. In a study by Niikura
R et al., comparing endoscopic methods with those using artificial intelligence, it was
shown that gastric cancer was diagnosed in 49 out of 49 patients (100%) in the group using
AI and in 48 out of 51 (94.12%) in the group diagnosed using standard endoscopy. The
situation was similar in the case of early gastric cancer, where AI diagnosed it in 100% of
patients and endoscopy in 88.46% of patients. A significant increase in diagnosis of gastric
cancer per image, defined as the number of images analyzed to determine a diagnosis,
was observed in the AI group (747 out of 748 images, 99.87%) compared to the expert
endoscopist group (693 out of 786 images, 88.17%). However, the intersection-over-union
(IOU) gastric cancer diagnosis, explained as the amount of overlap between predicted areas
and gold-standard borderlines, was lower (0.842) in the AI group than in the specialist
endoscopist group (0.972) [10]. Similarly, a study by Gong EJ et al. all aimed to establish
and validate a DCNN-based automatic detection and classification of gastric tumors in
real-time endoscopy. DCNN-assisted endoscopy showed a higher lesion detection rate in
DCNN-assisted endoscopy than in classical endoscopy. However, these results were not
statistically significant (2.0% vs. 1.3%; p = 0.21) [30]. A study using an artificial intelligence
system called ENDOANGEL-LD with the ability to detect gastric cancer in China found
that the rate of unrecognized cases of gastric cancer was lower in the group of patients
tested with AI (6.1%) compared to routinely performed endoscopy (27.3%) [14] (Table 1).
There is evidence of the effectiveness of the DCNN-based method in the diagnosis of gastric
cancer. This method may have an advantage in detecting early gastric cancer, but there is
still a need for more knowledge and more clinical trials on a large group of patients.

Table 1. Randomized controlled trials regarding the usage of AI in upper GI endoscopy.

Authors, Year Study Groups Endoscopy, AI Technology Findings Bibliography

Niikura R, et al., 2022

500 patients (249 were
allocated to the AI diagnosis
group and 251 to the expert

endoscopist diagnosis group)

White light endoscopy,
SKOUT; Iterative Scopes,

Cambridge, MA

The per-image rate of gastric
cancer diagnosis was higher in

the AI group (99.87%,
747/748 images) than in the

expert endoscopist group
(88.17%, 693/786 images)

[10]

Lianlian, W et al., 2021

1812 patients (907 were
allocated to the AI diagnosis
group and 905 to the routine-
first group, endoscopy group)

White light endoscopy,
ENDOANGEL-LD system

The use of an AI system
during upper gastrointestinal

endoscopy significantly
reduced the gastric neoplasm

miss rate.

[14]

Zhang, X et al., 2019 215 patients SSD for Gastric Polyps
(SSD-GPNet)

SSD-GPNet improves polyp
detection recalls over 10% [31]

Kanesaka, T et al., 2018
147 patients (127 patients with

EGC and 20 non-EGC
participants)

Magnifying narrow-band
imaging (M-NBI),

computer-aided diagnostics
(CADx)

96.3% EGC detection accuracy
based on irregular

microvessel imaging
[24]

Kahn, A et al., 2022
67 patients underwent virtual
chromoendoscopy (VLE)-IRIS,

66 in the IRIS-VLE group

High-definition white light
(HDWLE) and narrow-band

imaging (NBI), intelligent
real-time image

segmentation (IRIS)

100% of dysplastic areas were
identified when applying IRIS

and 76.9% with VLE as the
first interpretation modality

(p = 0.06)

[17]
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2.3. Advantages of AI in Gastric and Esophageal Cancer Diagnosis

A randomized, prospective study enrolled 133 patients with Barrett’s esophagus
(BE). There were two groups of participants: one received IRIS-enhanced virtual chro-
moendoscopy first (IRIS-VLE), followed by unenhanced VLE, while the other received the
reverse sequence (VLE-IRIS). The unenhanced VLE assessment after the first IRIS review
was found to be less time-consuming. Furthermore, 100% of the dysplastic areas of interest
(ROIs) were identified with this test setup in comparison to 76.9% found in unenhanced
VLE. A significant difference was not found between VLEs that had been enhanced with
IRIS and those that were not [17]. In a pilot study of 65 patients with early esophageal
neoplasia in BE as well as high-grade dysplasia or T1 cancer, the DCNN algorithm was
used to detect dysplasia changes and draw boxes around these areas. In an analysis of
458 test images (225 with dysplasia and 233 without dysplasia), the system correctly de-
tected early cancer with 96.4% sensitivity, 94.2% specificity, and 95.4% accuracy [32].

The advantage of using AI in the diagnosis of gastric polyps using the SSD-GPNet
system is an increase in the mean average precision (mAP) of detecting gastric polyps by
2%, while the examination time is slightly longer. This method may be useful for real-time
detection of gastric polyposis with less risk of false negative test results, which may be
due to human factors [31]. In a study of 1099 patients with gastritis with or without H.
pylori eradication, a machine learning (ML) model was used to predict gastric cancer risk
in a personalized way. It allows for the creation of an individual follow-up strategy after
the initial EGD in accordance with the risk assessment of gastric cancer [33]. One of the
first computer-aided diagnostics (CADx) systems to identify irregular microvessels in EGC
images used the gray-level co-occurrence matrix (GLCM). A magnifying narrow-band
imaging (M-NBI) system was able to recognize EGC with an accuracy of 96.3%. Results
were based on 147 patients, including 127 who had EGC [24].

One of the largest studies using the GRADIDS AI system for the diagnosis of cancer of
the upper gastrointestinal tract, conducted in six hospitals with various degrees of reference,
confirmed that the method can improve the skills of all endoscopists to the level of experts
in this field. In addition, the increased sensitivity of the GRAIDS system in detecting
neoplastic lesions may help in the earlier detection of gastric cancer and, consequently,
reduce the high cost of treatment of cancers of the upper gastrointestinal tract [1]. In a study
by Lianlian Wu et al., it was shown that the time to diagnose gastric cancer with DCNN
was shorter than with standard diagnosis by an endoscopist. Shorter screening time, and
lack of fatigue and the influence of subjective judgment, depending on the experience of
endoscopists, may facilitate EGC diagnostics, enabling it to be carried out online. This
system was also enriched with CAM or weighted linear sum of the presence of visual
patterns with different characteristics and a grid model for the stomach to exclude the
presence of dead spots in the stomach [25]. Another study tested deep learning networks
for use in differentiating gastric ulcer and cancer through lesion classifications. A total
of 200 healthy cases, 367 cancer cases and 220 ulcer cases were included in the study,
and inception models, ResNet and VGGNet pre-trained in ImageNet were used. Cases
involving a healthy stomach image, that is, normal vs. ulceration and normal vs. cancer,
were compared, with an accuracy greater than 90%. While the differentiation between ulcer
and cancer was recognized with an accuracy of 77.1%, this may be related to the smaller
difference in the appearance of the stomach [34].

2.4. Disadvantages of AI in Gastric and Esophageal Cancer Diagnosis

The positive predictive value (PPV) of the GRAIDS system, which uses AI to diagnose
the upper gastrointestinal tract, was lower compared to the opinion of real-time endo-
scopists. The GRAIDS system has the ability to recognize normal structures, for example,
the pylorus, angle of the stomach and mucus, as well as the raised stomach wall during
peristalsis, which may result in an increase in false-positive results. These normal structures
would be easily recognized by the endoscopic physician and probably, in clinical practice
with real-time GRAIDS, the false positive rate would be lower [1].
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3. Colorectal Cancer

Colonoscopy is the most frequently employed screening method for CRC in the
United States [35,36]. This exam is characterized by a high level of operator variability [37].
According to a meta-analysis, 26% of adenomas were missed [38,39]. Furthermore, the
adenoma detection rate (ADR) is regarded as one of the most crucial quality metrics for
assessing the effectiveness of colonoscopy. A colonoscopy requires a biopsy of every polyp;
however, it is difficult in clinical practice. An alternative, simpler quality indicator called
polyp detection rate (PDR) can be used as a good proxy for ADR [40,41], increasing the
detection rate of adenoma by 1% [42]. Clinical approaches founded on the optical diagnosis
of diminutive (5 mm) colorectal polyps have the potential to yield significant economic
and financial benefits [43–45]. A total of 84% of European endoscopists report that they do
not use the “leave-in-situ” and “resect-and-discard” strategies for fear of errors in optical
diagnostics [43,46,47]. There are two most important factors affecting the percentage of
incorrect diagnoses: blind spots and human error. It is feasible to mitigate blind spots, for
instance, through the utilization of a wide-angle range or wide-angle remote attachment.
However, addressing human fallibility proves to be a considerably more challenging
task [48–50].

ADR varies among physicians, and tandem colonoscopy studies have shown that
adenoma miss rates (AMR) can range from 6% to 41% [42,49,51,52]. As a result of the new
CADe (computer-aided detection) system (GI-Genius; Medtronic, Minneapolis, Minnesota),
an additional display is no longer necessary to display the AI detection field on endoscopic
images, making it fully integrated into the endoscopy process, allowing real-time video
processing at the same frame rate as the standard procedure, without any artificial modifi-
cations required to the colonoscopy procedure as usual [53]. It has been proven that for
every 1.0% increase in the adenoma detection rate (ADR), there is a 3.0% reduction in the
risk of intraoperative CRC [42,53,54]. However, polyps can be overlooked, with a miss
rate of up to 27% due to the characteristics of both the polyps and the operator [49,50,53].
Several studies have shown that the assistance of a second observer increases the PDR;
however, this strategic option is still controversial in terms of increasing the ADR [53,55–58]
(Table 2).

Table 2. Randomized controlled trials regarding the usage of AI in lower GI endoscopy.

Authors, Year Study Groups Endoscopy, AI Technology Findings Bibliography

Gimeno-García,
AZ et al., 2023

400 (study group—2060,
control group—194)

White light imaging,
ENDO-AID CADe AI

device, (Olympus Medical
Systems, Tokyo, Japan)

higher PDR and ADR rate
with the AI device (not
statistically significant)

[13]

Ahmad, A et al., 2023 554 (study group—293, control
group—286)

High—definition endoscopy,
Endo- cuff Vision (Olympus,

Tokyo, Japan) or a
transparent plastic cap

(Olympus)
GI Genius system

Borderline statistically
significant increase in PDR with
the use of CADe in comparison

to the control group

[59]

Wang, P et al., 2020

CADe + routine colonoscopy
group (n = 184), routine

colonoscopy + CADe group
(n = 185)

White light endoscopy,
EndoScreener, Shanghai

Wision AI Co, Ltd.,
Shanghai, China

AMR significantly lower with
CADe colonoscopy than with

routine white-light
colonoscopy (13.89% vs.

40.00%, p < 0.0001), PMR;
lower with CADe colonoscopy
than with routine white-light

colonoscopy (12.98% vs.
45.90%, p < 0.0001), no

statistical differences in the
miss rate of advanced

adenomas and SSAs/Ps.

[16]
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Table 2. Cont.

Authors, Year Study Groups Endoscopy, AI Technology Findings Bibliography

Yao, L. et al., 2022

1120 participants divided into
four groups: control group,
CAD group, CAQ group,

COMBO group

“EndoAngle”; real-time
CADe model (Wuhan
EndoAngel Medical

Technology Company Co.,
Ltd., Wuhan, China),

YOLO V3

ADR was higher in the
COMBO group compared

with the CADe group
[60]

Deding, U et al., 2020

97 patients, who underwent
computed tomography

colonoscopy (CTC) and colon
capsule colonoscopy (CCE)

Olympus Evis Exera III 190®

(Olympus, Tokyo, Japan),
PillCam2®, Medtronic,
Minneapolis, MN, US

CCE has a higher sensitivity
than CTC. The accordance of
developed algorithm to the

actual state was 77%

[61]

Kamba, S et al., 2021

179 patients in the standard
colonoscopy group and 179 in

the CADe as a first
exam performed

White light imaging,
YOLOv3, EVIS LUCERA
ELITE (Olympus Medical

Systems, Tokyo, Japan)

ADR of CADe first group was
significantly higher than that

of standard colonoscopy in the
first pass of the SC-first group

(p = 0.036)

[62]

Repici, A et al., 2022
660 patients divided into

control group and
CADe group

High-definition endoscopy,
GI Genius, Medtronic,

Minneapolis, MN, USA

Overall ADR was higher in the
CADe than in the control
group (53.3% vs. 44.5%)

[63]

Wallace, MB et al., 2022

230 patients randomized (1:1)
to undergo 2 same-day,

back-to-back colonoscopies
with or without AI

White light colonoscopy,
GI-Genius, Medtronic,

Minneapolis, MN, USA

AMR was 15.5% in the arm
with AI and 32.4% in non-AI
colonoscopy first; AMR was

lower for AI first for the
≤5 mm and nonpolypoid

lesions and it was lower both in
the proximal and distal colon

[64]

Luo, Y et al., 2021

150 patients divided into
traditional colonoscopy group

and AI-assisted
colonoscopy group

White light endoscopy,
real-time automatic polyp
detection system Xiamen

Innovision Co., Ltd., Jimei,
Fujian, China,

YOLO network architecture

AI system significantly
increased the PDR (34.0% vs.

38.7%), AI-assisted
colonoscopy increased the
detection of polyps smaller

than 6 mm

[48]

Repici, A et al., 2020

685 patients divided into
groups who underwent

high-definition colonoscopies
with the CADe system or

without (controls)

High-definition endoscopy,
GI-Genius, Medtronic,

Minneapolis, MN, USA

In the CADe group, the ADR
was significantly higher than
in the control group (40.4%),

adenomas detected per
colonoscopy were higher in

the CADe group

[65]

Wang, P et al., 2019

1058 patients (536 standard
colonoscopy, 522 colonoscopy

with computer-
aided diagnosis)

White light endoscopy,
real-time automatic polyp

detection system (Shanghai
Wision AI Co, Ltd.,
Shanghai, China)

AI system significantly
increased ADR (29.1% vs.

20.3%) and the mean number
of adenomas per patient

[53]

Rondonotti, E et al., 2023 389 patients

Blue light imaging, real-time
convolutional neural

network-based AI system
(CAD-EYE), Fujifilm Co.,

Tokyo, Japan)

AI-assisted high confidence
optical diagnosis was made in

92.3%; The NPV (negative
predictive value) of AI-assisted

optical diagnosis for DRSPs
(Preservation and Incorporation

of Valuable endoscopic
Innovations) was 91.0%

[43]

Glissen Brown,
JR et al., 2022

232 patients (116 CADe
colonoscopy first, 116 HDWL

colonoscopy first)

High-definition white light
(HDWL), Olympus CLV
190-series colonoscopes

AMR was lower in the
CADe-first group compared
with the HDWL-first group

(20.12% vs. 31.25%); SSL miss
rate was lower in the

CADe-first group (7.14%) vs.
the HDWL-first group (42.11%)

[51]
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Table 2. Cont.

Authors, Year Study Groups Endoscopy, AI Technology Findings Bibliography

Yamada, A et al., 2020 15,933 (training images)
4784 (testing images)

Single Shot Multibox
Detector for capsule

endoscopic colon
lesions detection

specificity 87.0%
sensitivity 79.0%,
accuracy 83.9%,

AUC 0.902,

[66]

Gong, D et al., 2019 704 (study group—355, control
group—349) The ENDOANGEL system

ADR: ENDOANGEL group
(58 (16%) of 355) vs. the

control group (27 (8%) of 349),
(odds ratio [OR] 2.30, 95% CI

1.40–3.77; p = 0.0010)

[67]

Wang, P et al., 2018–2019 962 (study group—484, control
group—478)

computer-aided detection
(CADe)

Adenomas detected: the CADe
group (165 (34%) of 484) vs.

control group (132 (28%) of 478)
[68]

3.1. Lynch Syndrome (LS) and Endoscopy

The Lynch syndrome (LS) is the most prevalent hereditary CRC syndrome resulting
from pathogenic variants in DNA mismatch repair genes (MMRs) [69]. LS patients should
be screened every 1–2 years with high-definition white-light endoscopes (HD-WLE) to de-
tect small lesions, as recommended by the National Comprehensive Cancer Network [70]. It
has been reported that from 12% to 62% of adenomas in LS are missed during colonoscopy,
and specifically, small lesions and flat adenomas, which are characteristic of LS, are fre-
quently missed [38,71]. In a randomized trial, 96 patients with LS were tested for adenoma
detection rate (ADR) in HD-WLE with real-time AI (CADEYE) (50 patients) and without
(46 patients). In the HD-WLE arm, adenomas were detected in 12/46 patients with ADR
(26.1%) versus 18/50 patients in the AI arm with ADR (36.0%). In AI-assisted colonoscopies,
0.60 adenomas were detected per procedure, compared to 0.43 in conventional colono-
scopies. Within the AI group, a larger percentage of the identified adenomas exhibited
a completely flat morphology (56.6% vs. 20% (p = 0.018)). The utilization of AI-assisted
colonoscopy in real-time holds promise for enhancing endoscopic surveillance in Lynch
syndrome patients, especially in terms of improving the detection of flat lesions [72].

3.2. Adenoma Detection Rate (ADR)

The aim of Wang P. et al.’s work was to assess the effectiveness of a real-time automatic
polyp detection system in enhancing the detection rates of polyps and adenomas within
real clinical contexts. Their study demonstrated that the CADe system, founded on deep
learning, produced a notable boost in the detection rates of colorectal polyps and adenomas
in a region known by a low ADR prevalence. Due to its high precision and reliability,
the current CADe system exhibits promising potential for integration into contemporary
clinical practice to enhance the detection of colonic polyps [53]. A randomized trial was
conducted with colonoscopists in their qualifying period (AID-2). Within the age range of
40–80, a total of 660 patients underwent high-resolution colonoscopies, administered by
10 non-expert endoscopists, each with less than 2000 colonoscopies to their credit. These
procedures were conducted with or without real-time deep learning computer-assisted
detection (CADe), using the GI Genius system from Medtronic. The results showed that
in this cohort with evenly distributed study parameters, the collective ADR was notably
higher in the CADe group compared to the control group (53.3% vs. 44.5%). Similar
increases were observed in the number of adenomas and in small and distal lesions. It
has been demonstrated that AI can enhance the ADR, serving as the primary surrogate
endpoint for assessing colonoscopy quality. [63]. Other analyses presented by Yao L. et al.
compared the results of four groups: the control group; the standard colonoscopy video,
CADe group; the detected polyp location signalized with a hollow blue box, CAQ; the
real-time withdrawal speed with a dashboard, COMBO; and a combination of CADe
and CAQ. The ADR exhibited a significant increase in both the CADe and CAQ groups.
However, it was notably higher in the COMBO group compared to the CADe group. No
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significant differences were observed between the CAQ and COMBO groups [60]. This
suggests the importance of proper withdrawal time as a factor deciding of the final ADR.
However, the authors confronted those results with previous literature reports. Some
of them indicate that there is a correlation between the lesion detection and withdrawal
time, while some of them contradict it [73–75]. A study conducted in Italy examined data
from 685 patients who underwent screening colonoscopies for colorectal cancer (CRC),
follow-up examinations after polyp removal, or investigations prompted by positive stool
immunochemistry or signs/symptoms of CRC. These tests were conducted using the CADe
system. The adenoma detection rate (ADR) was notably higher in the CADe group (54.8%)
than in the control group (40.4%). Additionally, the number of adenomas detected during
colonoscopy was significantly greater in the CADe group compared to the control group.
Adenomas 5 mm or smaller were detected in a significantly higher percentage of people
in the CADe group (33.7%) than in the control group (26.5%), as were adenomas 6 to
9 mm (detected in 10.6% of people in the CADe group vs. 5.8% in the control group),
irrespective of the morphological characteristics and the location. No significant difference
in withdrawal time was observed between the groups. The inclusion of CADe in real-time
colonoscopy was found to significantly increase the ADR and detection of adenomas during
colonoscopy without increasing the withdrawal time [65].

3.3. Polyp Detection Rate (PDR)

The prospective, single-center randomized trial had the objective of comparing PDR
and ADR in colonoscopies. The exams of the 400 patients were included. The exclusion
criteria comprised the following: prior experience of a colonoscopy, a medical diagnosis
of inflammatory bowel disorders, a hereditary polyposis syndrome or colorectal cancer
diagnosis, or a history of prior colorectal surgical procedures. Other circumstances such as
existing contradictions for polypectomy or bad bowel preparation were also an exclusion
criterion. Performed colonoscopies, which were incomplete, were not taken into account
in the primary analysis. Study participants were divided into two groups. Exams were
performed by two endoscopists—one with more than 15 years’ experience and one with 8
years’ experience. The analysis of exams performed in the morning and afternoon aimed to
check the effect of the examiners’ fatigue on the PDR and ADR. No statistically significant
disparities between the control and study groups were identified. Nevertheless, both in
the morning and during the afternoon hours, the PDR and ADR demonstrated higher
values when AI systems were employed [13]. A marginally statistically noteworthy aug-
mentation in PDR with the use of computer-aided detection (CADe) (85.7%) in comparison
to the control group (79.7%) was found in a study by Ahmed et al., and there was no
statistically significant difference in ADR among those two groups [59]. One study used a
new computer-aided diagnostic system (CAD-EYE; Fujifilm Co., Tokyo, Japan) to provide
real-time polyp characterization using standard endoscopy. This study was designed to
evaluate whether real-time artificial intelligence (AI) optical diagnosis by endoscopists with
varying backgrounds is accurate enough to implement a leave-in-situ strategy for small
(≤5 mm) rectosigmoid polyps (DRSPs). The accuracy of AI-assisted optical diagnostics
was significantly lower for non-experts (82.3%) than for experts (91.9%). Non-experts have
moved closer to the level of performance of more advanced people over time. Optical
diagnostics supported by artificial intelligence meets the required PIVI (preservation and
incorporation of valuable endoscopic innovations) thresholds, but the high level of experi-
ence and knowledge of endoscopists still plays an important role [43]. Almost 2500 patients
were screened at six centers in the study and were referred for screening, follow-up, and
diagnostic colonoscopy. Patients were randomized into a study group with AI-assisted
colonoscopy (n = 1240) and a control group with standard colonoscopy (n = 1248). To
compare the outcomes of the two groups, data were gathered and assessed in real-time. The
final analysis was performed after exclusion of patients with suspected severe bowel dis-
ease and unqualified colonoscopy (research cohort 1177, comparison group 1175). Within
the study cohort, there was a noteworthy increase in the detection of non-first polyps per
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colonoscopy (PPC-plus). However, there was no statistically significant rise in the PDR
observed. Similar to findings in previously described research, the AI system exhibited a
higher capacity for detecting flat polyps (5.9% vs. 3.3%). In the study cohort, in comparison
to the control group, the detected polyps were more inclined to be diminutive polyps
(76.0% vs. 68.8%) and less inclined to be small polyps (15.1% vs. 21.4%) [76].

In the Misawa, Masashi et al. study, the performance of the developed computer-aided
detection (CADe) system was assessed. For this purpose, they retrospectively collected
73 colonoscopy films from 73 patients with a total of 155 colorectal polyps. The gold
standard for the presence of polyps was the annotation of two expert endoscopists who
viewed these recordings. CADe detected 94% of the polyps tested, while false positives
were 60%. The AI accounted for 64.5% of flat polyps, which are generally considered
difficult to pick out. In this study, the CADe sensitivity was 90%, the specificity was 63.3%,
and the accuracy for the frame-based analysis was 76.5% [77]. In a different investigation,
the AI system demonstrated a notable enhancement in PDR (p < 0.001), while AI-aided
colonoscopy led to an elevated detection rate of polyps smaller than 6 mm (p < 0.001).
However, no distinction was observed for larger lesions. It has been proven that, mainly in
the case of smaller polyps, a real-time automatic polyp detection system can increase the
PDR [48].

3.4. Adenoma Miss Rate (AMR)

The AMR was assessed in a study by Wang et al. The study group consisted of patients
randomly assigned to one of the following paths: first, routine colonoscopy followed
by a CADe examination, or second, primarily assessed with CADe and then evaluated
with a routine colonoscopy. The authors report that the AMR was significantly lower
with CADe colonoscopy (13.89%) than with routine colonoscopy (40.00%), especially in
nonpedunculated types [16]. In one study, 280 patients were screened or followed up
with CRC and randomized to undergo two one-day colonoscopies whether or not AI
and vice versa. AMR (adenoma miss rate) was 15.5% and 32.4% in the AI and non-AI
groups, respectively. In detail, the AMR was lower for AI first for lesions ≤ 5 mm and
non-polypoid lesions and was lower in both the proximal and distal colons. In the group
with the first colonoscopy, the mean number of adenomas at the second colonoscopy was
lower compared to the first colonoscopy without AI. There were 6.8% false-negatives in the
AI arm and 29.6% in the non-AI arm. Artificial intelligence led to an approximately 2-fold
reduction in the error rate for colorectal cancer [64]. Glissen Brown JR et al. conducted
a prospective, multicenter, tandem, randomized, single-blind study to evaluate the deep
learning-based CADe system. A CADe or high-definition white light (HDWL) colonoscopy
followed immediately by another tandem procedure by the same endoscopist was randomly
assigned to colorectal cancer screening or follow-up patients. AMR was the primary
endpoint, while SSL miss rate and APC were the secondary endpoints. AMR was lower
in the CADe-first group compared to the HDWL-first group (20.12% vs. 31.25%). The
SSL miss rate was lower in the first CADe group (7.14%) compared to the first HDWL
group (42.11%). First-pass APC was higher in the CADe-first group. The ADR after the
first pass was 50.44% in the CADe-first group and 43.64% in the HDWL-first group. A
decrease in AMR and SSL miss rates and an increase in first-pass APC using the CADe
system compared to HDWL colonoscopy alone have been demonstrated [51]. Another
multicenter, randomized trial compared the AMS among two groups referred for screening
and surveillance colonoscopy. A total of 179 patients were assigned either to receive
a standard colonoscopy or a colonoscopy with computer-aided detection (CADe). The
adenoma miss rate of the CADe was found to be significantly lower than that of the
standard colonoscopy group (13.8% vs. 36.7%) [62].

A multicenter, randomized clinical trial included 894 screened patients and 465 CRC-
supervised patients. The aim of the study was to determine whether CADe is an effective
and safe method to support a standard colonoscopy. The patients were divided into a
study group (438 screening tests, 244 observations) for examination performed with the
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CADe colonoscopy arm, and a control group—standard colonoscopy (456 screening tests,
221 observations). Comparing the study group with the control group, the number of APC
examinations increased by 27%. No statistically significant decrease in true histology rate
(THR) was obtained. Both screening and follow-up showed an increase in APC (28%) and
21%, respectively. The study group had an ADR increase of 3.9% that was not statistically
significant [78]. In some cases, not all parts of the intestinal tract can be reached and
examined, and such colonoscopy remains incomplete. The following procedure in those
situations is a computer tomography colonography (CTC). It allows detecting structures
occurring in the colon, but does not provide the possibility of harvesting tissue samples or
seeing the morphology of the lesions. An alternative to computer tomography colonoscopy
is a capsule endoscopy (CCE) [79–81]. Although harvesting tissue samples is also im-
possible, it allows a better analysis of the morphology of changes in the gastrointestinal
tract. Capsule colonoscopy may be reinforced by the AI. This technique can be enhanced
by incorporating artificial intelligence (AI) technology. AI can assist in determining the
location of the camera during the examination, particularly in common scenarios where
double recorded polyps occur due to the capsule’s backward movement [61].

3.5. Limitations and Controversies

One of the limitations of AI-aided endoscopy systems is false-positive detection,
resulting in unnecessary polyp removals and longer examination times [13]. The others are
the level of bowel preparation and the limitations of AI devices, the developed algorithms,
sample size, and technical aspects (processors, etc.) [60,82].

Many reports show the value of AI in detecting suspicious lesions of the colon or
reducing the rate of missed ones. Although this makes screening more efficient, it might
impair the capability of young trainee endoscopists to rely on their skills. This issue was
brought up by Sinagra et al. in a commentary [82]. According to the authors, future
studies on AI in endoscopy should include endoscopists of various experiences, and AI-
aided systems should be carefully implemented in training programs. There is a need
for evidence-based guidelines for AI implementation, which would substantially increase
physicians’ trust in these novel solutions.

4. Conclusions

AI’s role in the medical field grows, and new possibilities for the application of
algorithms and real-time solutions arise. Most of them regarding the endoscopy exam are
real-time support systems for marking suspicious lesions. For the correct use of the AI, it
is required that the procedure meets quality standards with a correct exposure of all the
mucosa. The majority of studies concerned patients randomized either to groups receiving
CADe colonoscopy or standard colonoscopy as the first performed exam, which was
followed by the other, or patients being examined by endoscopists with large or moderate
experience. Future studies should check the PDR, AMR, and ADR among endoscopists
with various experiences and exams with and without CADe support over a longer period
of time.

A longer period of observation and multiple exams performed by the same personnel
in comparison to exams performed with the support of AI would enable us to assess
the average PDR, AMR, ADR of a human investigator and AI’s capabilities in detecting
cancerous lesions. Such observations would finally give the answer, whether the AI is the
“third eye” in cancer screening of the gastrointestinal tract.

The current challenge of AI is to integrate in the same team AI systems for upper en-
doscopy and low endoscopy with support systems in early lesion detection and endoscopic
quality control at an affordable price for a greater number of endoscopic units.
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