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Abstract: Glaucoma is a chronic neurodegenerative disorder affecting the visual system which can
result in vision loss and blindness. The pathogenetic mechanisms underlying glaucomatous optic
neuropathy are ultimately enigmatic, prompting ongoing investigations into its potential shared
pathogenesis with other neurodegenerative neurological disorders. Tauopathies represent a subclass
of neurodegenerative diseases characterized by the abnormal deposition of tau protein within the
brain and consequent microtubule destabilization. The extended spectrum of tauopathies includes
conditions such as frontotemporal dementias, progressive supranuclear palsy, chronic traumatic
encephalopathy, and Alzheimer’s disease. Notably, recent decades have witnessed emerging doc-
umentation of tau inclusion among glaucoma patients, providing substantiation that this ocular
disease may similarly manifest features of tauopathies. These studies found that: (i) aggregated tau
inclusions are present in the somatodendritic compartment of RGCs in glaucoma patients; (ii) the
etiology of the disease may affect tau splicing, phosphorylation, oligomerization, and subcellular
localization; and (iii) short interfering RNA against tau, administered intraocularly, significantly
decreased retinal tau accumulation and enhanced RGC somas and axon survival, demonstrating a
crucial role for tau modifications in ocular hypertension-induced neuronal injury. Here, we examine
the most recent evidence surrounding the interplay between tau protein dysregulation and glaucoma-
tous neurodegeneration. We explore the novel perspective of glaucoma as a tau-associated disorder
and open avenues for cross-disciplinary collaboration and new treatment strategies.
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1. Introduction

The term ‘glaucoma’ encompasses a group of ocular conditions characterized by
progressive optic nerve damage associated with a gradual visual field loss due to a slowly
progressive degeneration of retinal ganglion cells (RGCs) [1]. Although intraocular pressure
(IOP) reduction represents the only proven treatable risk factor, in some glaucomatous
patients, RGC loss may continue despite the reduction in IOP. Thus, independently or in
addition to IOP, other factors can individually or collectively contribute to the death of
retinal ganglion cells and optic nerve fibers in glaucoma [1].

In recent years, significant efforts have been made to fully understand the mecha-
nisms underlying the pathophysiology of glaucoma. Even if it is unquestionable that much
progress has been made, and that glaucoma is now recognized as a full-fledged neurodegen-
erative disease, several mechanisms underlying glaucomatous damage remain unknown.
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Recently, the hypothesis of a correlation between glaucoma and protein tau (commonly
associated with neurodegenerative disorders) has gained significant attention, suggesting
that tau may also play a role in glaucomatous neurodegeneration [2–5].

Tau is a microtubule-stabilizing protein, and its function is intricately regulated
through phosphorylation at numerous sites, thereby influencing its function and turnover
based on its phosphorylation status. It is mainly expressed in neurons, playing a crucial
role in the assembly of tubulin monomers into microtubules and constituting the neuronal
microtubule network [6].

Hyperphosphorylation of tau depresses its biological activity, causing both microtubule
instability and the formation of aberrant fibrillar polymers. Moreover, changes in microtubule
organization can result in a disorganization of mitochondria or lysosomes [7–10].

A dysregulation in the phosphorylation of tau protein is responsible for a group of
neurodegenerative disorders referred to as tauopathies [11].

This review endeavors to investigate the potential role of the tau protein in the patho-
genesis of glaucoma and its effects on retinal ganglion cells (RGCs), and the mechanisms of
the optic nerve response to glaucomatous damage.

A deep understanding of these processes may result in the development of novel
targeted therapeutic strategies to halt or retard glaucoma progression and to improve the vi-
sual outcome of patients. Among the potential avenues for exploring new treatments, there
are strategies targeting various disease mechanisms, such as MAPT expression suppression,
alternative splicing and post-translational modifications regulation, microtubule stabiliza-
tion, aggregation inhibition, passive or active immunization, and innovative approaches
related to genome integrity preservation.

In this review, we conducted an extensive literature search using the PubMed, Scopus,
and Cochrane databases. The search strategy involved a combination of keywords to
capture relevant studies, including “glaucoma AND tau”, “glaucoma AND neurodegenera-
tion”, “glaucoma AND tauopathies”, “tau AND retinal ganglion cells”, and “tau AND optic
nerve”. The identified articles were reviewed and analyzed to provide a comprehensive
overview of the current state of knowledge in this field.

2. Ocular Structures and Glaucoma Pathophysiology

Although the pathophysiology of glaucoma is not entirely known, the loss of RGCs
is known to be correlated with IOP. The IOP is balanced by the ciliary body’s production
of aqueous humor (AH) and its drainage. Historically, aqueous humor outflow pathways
have been classified into two main categories, the conventional (trabecular meshwork
(TM)) and unconventional (uveoscleral) pathways [12]. In the conventional route, AH
departs from the anterior chamber through the TM. Subsequently, it passes through the
juxtacanalicular tissue (JCT), a loose connective tissue with an irregular network in which
TM cells are surrounded by fibrillar elements of the extracellular matrix (ECM). Then, it is
conveyed into the Schlemm canal, an endothelium-lined vessel that encircles the cornea,
presenting features similar to both blood and lymphatic vasculature [13,14]. Then, through
the network of collector channels continuous with the venous system, AH leaves the eye.
To a lesser extent compared to this route discussed above, a portion of aqueous humor is
drained through the unconventional pathway. In this pathway, AH is drained through
the interstices of the ciliary muscle and ultimately through the choroid and sclera [14].
However, recent studies have shed light on the existence of previously unrecognized
additional outflow routes. Notably, these newly identified pathways include the transcleral
outflow pathway and uveolymphatic pathway, suggesting a more intricate and multifaceted
network of aqueous humor drainage than was previously understood [15]. While in open-
angle glaucoma there is an increased resistance to AH outflow, the drainage is typically
obstructed in angle-closure glaucoma. In patients with elevated IOP, mechanical stress
and tension on the posterior eye structures, particularly the lamina cribrosa, can lead to
damage to retinal ganglion cells and axonal transport disruption [16,17]. Such changes
can occur early in the development of glaucoma, leading to the accumulation of vesicles,
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and microtubule and neurofilament disorganization, in the prelaminar and postlaminar
regions [12]. Glaucomatous optic neuropathy may also occur when IOP levels are within
the normal range. This form is known as normal tension glaucoma, and the probable
pathogenesis is vascular [18]. Other factors which may contribute to glaucoma pathogenesis
include impaired microcirculation, altered immunity, and excitotoxicity [12].

3. The Role of Tau in Neurodegenerative Disorders

‘Tauopathies’ is an umbrella term referring to a group of neurodegenerative diseases
characterized by the deposition of tau protein within the brain in the form of neurofibrillary
tangles and paired helical filaments [19]. The deposition occurs primarily in neurons, but
also in glial cells and in the extracellular space [19].

Under physiological conditions, the tau protein is primarily localized in axons [20]
and plays a crucial role in microtubule assembly, stability, and dynamics [21,22]. However,
several other functions of tau protein have been proposed [23,24].

It is encoded by the microtubule-associated protein tau (MAPT) gene [20]. Through
alternative splicing of the exons 2, 3, and 10, the pre-mRNA can generate six distinct iso-
forms. Exon 10 encodes for the second microtubule-binding repeat domain (MTBD) in the
C-terminal region [25]. The inclusion or exclusion of exon 10 determines the classification of
these isoforms, based on the presence of three or four repeats of MTBDs [25]. Consequently,
tau isoforms are categorized as either 3R or 4R isoforms. Both 3R and 4R isoforms are
equally represented under physiological conditions in the adult human brain [26].

Tau binds to microtubules via repeat MTBDs in the C-terminus, and its phospho-
rylation plays a critical role in regulating its affinity to microtubules [27]. Hyperphos-
phorylation of tau, along with other tau alterations such as methylation, overexpression,
and post-translational modifications other than phosphorylation, can lead to a decrease in
binding affinity [28]. This reduction in binding affinity ultimately results in tau deposition
and destabilization of microtubules [28].

Despite extensive research, the exact mechanism by which tau contributes to neu-
rodegeneration remains to be fully elucidated. Various mechanisms have been proposed,
including gain of function, loss of function, and mislocalization of tau [29]. These different
hypotheses suggest that tau may exert its pathological effects through diverse mechanisms,
further highlighting the complexity of its involvement in neurodegenerative processes.

Furthermore, it is important to note that alterations in other protein pathways could
also play a role in the pathogenesis of tauopathies. The brain changes associated with
Alzheimer’s disease can arise from an intricate interplay involving the abnormal accumu-
lation of tau and beta-amyloid proteins, alongside various other factors. More precisely,
abnormal tau tends to accumulate in particular regions of the brain associated with memory
function. On the other hand, beta-amyloid tends to aggregate into clumps or plaques that
develop in the spaces between neurons [30].

Based on the predominant tau isoform found in the aggregates, tauopathies are patho-
logically classified into three main categories: 3R tauopathies (frontotemporal dementia
(FTD)), 4R tauopathies (progressive supranuclear palsy (PSP), corticobasal degeneration
(CBD), argyrophilic grain disease (AGD), and globular glial tauopathy (GGT)), and 3R/4R
tauopathies (Alzheimer’s disease (AD), chronic traumatic encephalopathy (CTE)) and
primary age-related tauopathy (PART) [19].

Clinical manifestations of tauopathies vary depending on the specific type and stage
of the disease. Common symptoms observed across various tauopathies include memory
impairment, behavioral changes, executive dysfunction, and motor impairment [19]. Motor
symptoms, such as parkinsonism with rigidity and bradykinesia, are frequently seen in 4R
tauopathies like PSP, corticobasal syndrome (CBS), AGD, and GGT [19,31].

The behavioral variant of frontotemporal dementia (bvFTD) is distinguished by iso-
lated behavioral changes as its characteristic early manifestation, while the non-fuent
variant primary progressive aphasia (nfvPPA) and semantic-variant primary progressive
aphasia (svPPA) are typified by isolated speech disturbances [32–34]. Conversely, single
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or multidomain amnesia is identified as the predominant symptom marking the onset of
Alzheimer’s disease (AD) [33]. However, as the disease progresses, these manifestations
progressively overlap [19]. According to a cross-sectional study involving 310 patients
diagnosed with frontotemporal lobar degeneration (FTLD), it was found that 62% of the
participants fulfilled the diagnostic criteria for multiple syndromes [32]. In advanced stages,
individuals with tauopathies may experience difficulties with daily activities, impaired
mobility, and significant functional impairment.

Concerning the clinicopathological correlation, a previous study [35] has delineated a
stepwise progression of tau pathology through four defined phases in FTD. Beginning with
Phase I, tau deposits initially emerge in the frontotemporal limbic/neocortex and angular
gyrus. By Phase IV, even the primary visual cortex begins to exhibit a mild tau accumulation.
Clinically, these tau depositions manifest in distinct ways. The majority of patients, right
from the early tau accumulation stages, displayed hallmark features of bvFTD, especially
social comportment disorders. This suggests that the initial tau accumulations in limbic and
paralimbic regions, crucial for social behavior and emotion regulation, could be directly
associated with these behavioral manifestations. Intriguingly, despite significant early tau
presence in the hippocampus, a memory center, episodic memory difficulties often emerged
as a later clinical symptom. This brings forth the possibility that other factors, possibly the
involvement of prefrontal regions, might modulate the relationship between tau pathology
and memory impairment. Adding another layer of complexity, one study’s neuroimaging
findings [35] pinpointed early degeneration in the anterior insula and cingulate cortex,
areas critical for emotion processing, further emphasizing the early behavioral changes
seen in bvFTD. As tau pathology extended, the range of clinical symptoms widened,
mirroring the affected regions. However, it is essential to underscore that tau pathology’s
relationship with clinical manifestations is not always linear. Factors like specific brain
regions’ resilience, compensatory neural mechanisms, and other concurrent pathological
processes can modulate this relationship. In essence, while tau pathology’s progression in
PiD is clear, translating this to clinical symptoms presents a nuanced picture, revealing the
intricate interplay of neurodegenerative mechanisms in PiD.

Looking at the 4R tauopathies, PSP’s [36] neuronal tau pathology is evident in sub-
cortical areas, whereas astroglial tau emerges prominently in the neocortex and striatum.
This specific pathology manifests as atrophy, especially in the subthalamic nucleus and
brainstem, which greatly affects motor functions. CBD [37], while sharing similarities with
PSP, primarily impacts the frontal regions of the brain with a strong asymmetry, causing
distinct motor and cognitive issues. The disease pathology is evident in regions like the
frontoparietal cortices, striatum, and the amygdaloid body. AGD [38] is recognized by
its 4R tau composition, with the presence of argyrophilic grains that significantly relate
to cognitive decline. GGT [39], on the other hand, offers a complex profile marked by a
predominance of 4R tau, especially in the glial cells.

Finally, moving to 3R and 4R tauopathies, AD [40] is characterized by an equal
distribution of 3R and 4R tau, with neurofibrillary tangles (NFTs) and amyloid plaques
forming the hallmarks of the disease. These pathological features result in cognitive decline
and are intricately tied to the interactions between tau and Aβ. CTE [41], on the other hand,
presents a mixed expression of 3R and 4R tau that undergoes a transition as the disease
progresses. The tau deposits, mainly found in regions like the neocortex and hippocampus,
relate closely to the severity of the disease and its differentiation from AD. Lastly, PART [42],
bearing AD-like NFTs and minimal Aβ plaques, triggers cognitive decline mainly localized
to regions such as the temporal lobes and basal forebrain.

Advancements in the in vivo detection of tau have been made through neuroimaging,
cerebrospinal fluid, and blood markers, offering biomarkers for early diagnosis, disease
progression prediction, therapy monitoring, and clinical trial participant selection [12,43,44].
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4. Tau Protein’s Role in Glaucoma: A Closer Look at the Evidence

Glaucoma is a neurodegenerative disease of the central nervous system characterized
by the progressive degeneration of RGCs, damaging the optic nerve, and resulting in
irreversible visual loss [12,16,45–47].

Despite high IOP being amply demonstrated to be the most significant known risk
factor for glaucoma development [48,49], the mechanism by which elevated pressure
damages RGCs is still a matter under investigation [5].

At present, the hypothesis that retinal and brain degeneration share pathogenic mech-
anisms is gaining more traction, and the role of tau protein in the pathogenesis of glaucoma
is a subject of ongoing debate [50–54].

Tau intraretinal accumulation. Several studies have been conducted in animal models
transgenic for P301S tau demonstrating the presence of phosphorylated tau protein in the
retina. In 2011, Gasparini et al. [50] evaluated the retina of the mouse line transgenic for
P301S tau, reporting a hyperphosphorylated transgenic tau accumulation in the nerve fiber
layer (NFL). Further, from 2 months of age, the authors observed aggregation into filamen-
tous inclusions in RGCs, with axonopathy and accumulation of hyperphosphorylated tau
in the NFL preceding inclusion formation [50]. Then, Schon et al. monitored the develop-
ment of retinal tau pathology on a single-cell level in vivo, demonstrating an increase in
the number of RGCs containing fibrillar FSB-positive tau aggregates [55]. Moreover, they
showed hyperphosphorylated tau in the retinas of different human tauopathies [56].

Symptoms and eye structural changes linking neurodegenerative diseases and glaucoma. Ev-
idence from recent years shows how patients with AD often develop visual impairments,
frequently associated with abnormalities in the eye [56]. Visual changes reported in the
early stages of AD include difficulties in reading and finding objects, visual field loss,
altered depth perception, abnormal color discrimination, and contrast sensitivity [57–59].
Although all of these issues were originally believed to originate exclusively from patholog-
ical cortex changes related to the underlying neurological disease, modern ocular imaging
techniques have made it possible to prove a correlation between visual symptoms and struc-
tural ocular changes [60]. Ocular abnormalities found include a reduction in the number of
optic nerve head axons, a reduced number of RGCs, and a decrease in the thickness of the
retinal nerve fiber layer (RNFL) [61–66] and thinning of the RGC layer [67]. These findings
overlap with the actual tool for glaucoma diagnosis, as the same parameters are currently
used for the early analysis of glaucomatous damage [68]. In preperimetric glaucoma, which
represents the early stage of the disease before significant visual field damage occurs,
ganglion cell complex (GCC) parameters emerge as the first indicators of glaucomatous pro-
gression, demonstrating their exceptional utility in detecting preperimetric glaucomatous
damage and effectively distinguishing preperimetric subjects from controls [69]. In cases of
established glaucoma, RNFL thickness consistently exhibits reductions when compared
to controls, while GCC parameters are also reduced in this established stage of glaucoma.
Spectral-domain OCT parameters have displayed a similar capacity for diagnosing moder-
ate and severe glaucoma, with their diagnostic accuracy increasing proportionally with the
advancement of the disease [69–72].

An increased occurrence rate of glaucoma in patients with AD has been demonstrated
in various studies [73,74]. In 2017, den Haan et al. conducted a meta-analysis comparing
retinal thickness in AD, mild cognitive impairment, and healthy controls in 25 studies,
finding that AD patients had a lower peripapillary RNFL and decreased total macular
thickness compared to healthy controls [75].

Glaucoma and cognitive impairment. Recent advancements in our understanding of cog-
nitive impairment in individuals with glaucoma have shed new light on the intricate
relationship between ocular health and cognitive function. Patients affected by glaucoma
showed lower cognitive scores and were associated with an increased risk of demen-
tia [76–78]. Maurano et al. reported that glaucoma patients had a reduction in cognition
similar to the values reported in the literature for patients with AD [79]. These findings are
highly intriguing, once again providing valuable avenues for framing the neurodegenera-
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tive aspect of glaucoma. However, it is important to note that these studies are all based
on aggregate patient data, and there is a lack of data explaining the differences between
patients with glaucoma and cognitive disorders and those with glaucoma who perform
within normal ranges on cognitive tests.

Lee et al. investigated the relationship between the lamina cribrosa thickness (LCT) and
cognitive function in glaucoma patients, finding that a more pronounced impairment of cog-
nitive function was observed in glaucoma patients who had a thinner lamina cribrosa [80].
As a thinner lamina cribrosa was independently linked to cognitive impairment in addition
to the lower RNFL thickness, the authors suggest that the thinning of the lamina cribrosa
may be a common mechanism driving both glaucoma and cognitive dysfunction.

On the other hand, it is crucial to recognize that the preservation of visual functionality
plays a fundamental role in maintaining social integration and, consequently, the cognitive
abilities of patients. Extensive evidence supports a direct link between sensory function
and cognitive aging, emphasizing the role of sensory integrity in maintaining cognitive
skills [81]. Furthermore, studies have shown that social disengagement represents a risk
factor for cognitive impairment among elderly individuals [82], while active participation in
cognitively stimulating activities is associated with a reduced risk of cognitive decline [83].
This holistic consideration of these patients cannot be overlooked in the study of glaucoma,
making the research more complicated and highlighting the need for future investigations.

Tau accumulation in glaucoma and glaucoma models. These findings, together with the
common features between neurodegenerative diseases and glaucoma, have led researchers
to look for variations in the levels of certain specific characteristic proteins in the eyes of
glaucoma patients. Among them, a few studies included the investigation of phosphory-
lated tau protein levels [51,52,84], suggesting that they may play a role in the degeneration
of these cells. In 2005, Yoneda et al. measured tau protein concentrations in the vitreous
fluid from patients with different ocular diseases, finding a significant increase in the tau
level in patients with glaucoma compared with the control macular-hole patients [51]. In
2006, Oka et al. demonstrated a loss of tau proteins in the retina of mouse models with glau-
coma [85]. The authors proposed that tau proteolysis may participate in the pathogenesis
of neuronal cell death, correlating with an increase in calcium and calpain activation [85].
As the phosphorylation of tau is another factor causing neuronal cell death, the phospho-
rylated form of tau was investigated too, but it could not be directly detected due to its
complete proteolysis. However, the authors suggest that it is indirectly evident from the
upregulation of cyclin-dependent kinase 5 (cdk5) and p35/p25 [85]. Further, Tseng et al.
hypothesized that the glaucomatous optic neuropathy originated from an accumulation
of neurotoxic proteins, similarly to those found in Alzheimer’s disease [52]. The authors
performed immunostaining for ß-amyloid, phosphorylated-tau, and α-synuclein in eyes
with glaucoma and in a control group, finding similar levels of expression of ß-amyloid
and α-synuclein in both groups, and higher levels of phosphorylated tau protein in glau-
comatous eyes. Later, Gupta et al. demonstrated a decrease in normal tau protein in both
the optic nerve and retina in glaucomatous patients with ocular uncontrolled hypertension
compared with age-matched controls, and a significant increase in abnormal hyperphos-
phorylated tau protein, predominantly at the outer border of the inner nuclear layer [84].
They also analyzed eyes with incidental open-angle glaucoma (OAG), and did not find
the abnormal tau protein. These results suggest that abnormal tau levels could be related
to advanced glaucomatous damage [84]. Recently, Chiasseu et al. investigated the role of
tau in the neurodegeneration of RCGs in an in vivo rat glaucoma model [4]. The study
revealed a rapid increase in endogenous retinal tau with epitope-dependent changes in
phosphorylation and tau oligomer formation as a result of increased intraocular pressure.
Moreover, the authors also defended the crucial role of tau alterations in glaucoma-induced
neurodegeneration, demonstrating that tau knockdown promotes robust RGC survival [4].

Tau protein, axonal transport, and RGCs. Furthermore, evidence suggests that tau pro-
tein may have a role in the regulation of axonal transport, which is essential for the
preservation of RGCs and their axons [86,87]. Reduced axonal transport results in a state
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of cellular strain, contributing to neurodegeneration and limiting neurons’ ability to re-
sist damage [54]. RGCs have been proven to be particularly sensitive to the impairment
of axonal transport, as the functioning of these neuronal cells considerably depends on
retrograde trophic support [88,89]. Thus, dysregulation of tau protein may impair axonal
transport and consequent RGC degeneration in glaucoma. Bull et al. investigated the
effects of tau hyperphosphorylation and aggregation on axonal transport in the optic nerve
of mice transgenic for human mutant P301S tau, finding a significative reduction in both
anterograde and retrograde axonal transport [54]. Moreover, the authors showed that the
aggregation of mutant tau in RGCs was associated with an increased mild excitotoxic injury
effect, resulting in greater nerve cell loss in the retina [54].

Stamer et al. studied the effect of microtubule-associated tau protein on the traffick-
ing of vesicles and organelles in RGCs, finding that abnormally aggregated tau inhibits
the kinesin-dependent transportation of mitochondria and peroxisomes toward the cell
periphery, leading to a loss of energy production and the accumulation of reactive oxygen
species [60,90].

Tau protein, Aβ protein, and glaucoma. Furthermore, tau protein has been shown to in-
teract with amyloid beta (Aβ) protein, which is also implicated in the pathogenesis of
glaucoma [85,91]. Pathological deposits of Aβ have been shown to be a cause of RGC
death and thinning of the RNFL associated with glaucomatous degeneration [91]. De-
posits of Aβ have been proven to be present in all retinal layers, including the ganglion
cell, nerve fiber, and photoreceptor layers [60,92]. Recent evidence has reported that the
Aβ protein plays a crucial role in controlling the post-translational modification of tau
protein, promoting phosphorylation, and increasing the formation of tau species capable
of aggregating in amorphous deposits and NFTs [91,93–95]. Chiasseu et al. investigated
alterations in tau protein and gene expression, phosphorylation, and localization in mice
models overexpressing mutant tau, finding a direct correlation between p-tau, Aβ deposits,
and RGC death [96]. It is nonetheless intriguing to note that these findings do not align
with the observations made by Tseng et al., who reported similar levels of expression
for β-amyloid in both the non-glaucoma control group and the experimental group with
glaucoma [52]. This discrepancy highlights the need for further investigation of the subject
through additional studies.

Genetic factors linking glaucoma and tauopathies. In recent years, the potential for a ge-
netic correlation between glaucoma and tauopathies has become a subject of investigation.
Notably, in 2021, Gharahkhani et al. pinpointed three risk loci linked to AD and glaucoma
(MAPT, CADM2, and APP) [97]. More recently, a systematic literature review uncovered
49 single nucleotide polymorphisms distributed across 11 risk loci associated with AD
and glaucoma (AGBL2, CELF1, FAM180B, MTCH2, MYBPC3, NDUFS3, PSMC3, PTPMT1,
RAPSN, SLC39A13, and SPI1) [98]. While this area of study remains ongoing, it provides
further support for the notion of a connection between these pathologies.

5. Oxidative Damage Is a Common Feature in Both Glaucoma and Tauopathies

The data discussed above, together with similar clinical history features and concur-
rent disease onset, show that glaucoma exhibits pathological traits typical of tauopathies,
including tau accumulation, impaired phosphorylation, dysregulation of axonal transport,
and the interaction of Aβ deposits. However, glaucoma and other tauopathies also ex-
hibit persistent DNA damage [99]. DNA damage response (DDR) kinases, such as ataxia
telangiectasia mutated (ATM), which may phosphorylate various substrates, are activated
in conjunction with the beginning of the lesions. Reactive oxygen species (ROS) and tau
oligomers are likely responsible for the lesions [100].

In glaucoma, oxidative DNA damage is a pathogenic factor [101]. In fact, high levels of
8-hydroxy-2′-deoxyguanosine (8-OHdG) have been found in glaucoma patients’ aqueous
humor and serum [101]. The DNA base 8-OHdG, which has undergone oxidative modifi-
cation, is a sign of oxidative DNA damage [102]. The amount of 8-OHdG is significantly
more prevalent in the trabecular meshwork in patients with open-angle glaucoma and
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positively correlates with rising IOP and deteriorating visual field [103]. Additionally,
patients with glaucoma exhibit decreased base excision repair (BER) enzymes, such as poly
(ADP-ribose) polymerase (PARP1), 8-oxoguanine DNA glycosylase (hOGG1), and X-ray
repair cross-complementing group 1 (XRCC1), suggesting that a disturbance of DNA repair
may be involved in the pathogenesis of POAG [104].

Additionally, POAG is linked to a rise in the amount of DNA breaks in the local
trabecular meshwork and the regular circulating leukocyte [105]. Inflammation, apoptosis,
senescence, and neural dysfunction can all result from the persistent activation of the DNA
damage response, which can also lead to dysregulation of the cell cycle and re-entry into
G1 [106,107].

In neurons of the lateral geniculate nucleus (LGN), primary visual cortex (V1), and
secondary visual cortex (V2), laser-induced chronic glaucoma models in rhesus monkeys
exhibited increased expressions of 8-hydroxyguanosine (8-OHG), indicating oxidative
stress, and phosphorylated histone variant H2AX (γH2AX), indicating DNA double-strand
breaks [108]. Interestingly, oral antioxidant supplementation and attenuation of DNA dam-
age response following an optic nerve injury can reduce 8-OHdG, which is neuroprotective
to retinal ganglion cells and encourages neurite regeneration [107].

In the hippocampus and frontal cortex, people with mild cognitive impairment or
Alzheimer’s disease have more histone H2AX-positive neurons than age-matched con-
trols [109]; people with neurodegenerative diseases also have more oxidative DNA lesions
in their nuclear and mitochondrial DNA [110]. This increase could be explained by the
ability of amyloid oligomers to reduce DNA-PK activity and BRCA1 protein levels [111].

These findings imply that DNA damage response, while supporting DNA stabil-
ity and mutation prevention, may also contribute to the development of glaucoma and
tauopathies [112]. Last, but not least, a vicious cycle between tau hyperphosphoryla-
tion and oxidative stress has been documented [113]. While oxidative stress can cause
tau hyperphosphorylation, multiple investigations on various cellular or animal models
of tauopathies have proven that the overexpression of mutant versions of human tau
underpins certain types of tauopathies with dominant hereditary increases in oxidative
damage. This gradual rise in ROS that correlates with illness development shows that ROS
generation is only a byproduct of the pathophysiological process. Furthermore, hyperphos-
phorylation causes tau to aggregate [114] and spread in a way similar to that observed for
prion proteins [115,116], further boosting ROS generation via NADPH oxidase [117,118].

This vicious cycle between tau hyperphosphorylation and oxidative stress [113], as
well as tau aggregate formation, can induce glial inflammation (astrogliosis) and neu-
ropathology in Alzheimer’s disease-related mouse models via innate immune sensors
(receptors) such as Tool-like receptors (TLRs) [119]. In fact, tau-containing astrocytes have
been discovered in numerous tauopathies, including glaucoma [120,121].

Of note, the resulting astrogliosis is a process associated with abnormalities of
Aquaporin-4, also known as AQP-4, which is an encoded water channel protein, lead-
ing to disturbances of the glymphatic flow [122,123] which plays a crucial role in the
removal of debris (including amyloid β (Aβ) and tau aggregates) across the neuronal inter-
stitial space [124]. Interestingly, AQP4 abnormalities have been observed in tau-induced
neurodegeneration [124], including glaucoma [125].

6. Oxidative DNA Damage and Tau

Tau is primarily considered a cytosolic protein, but it has been found to localize to
the nucleus of both neuronal and non-neuronal cells and interact with nucleic acids [126].
Tau is hypophosphorylated in the nucleus of neurons [127], and in vitro research has
demonstrated that tau binds to the minor grooves of DNA to shield it from ROS [128].
When hyperphosphorylated, it becomes less able to bind DNA [129].

Tau’s biochemical characteristics may be impacted by its interaction with DNA, pro-
moting tau’s abnormal aggregation [130].
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In physiological circumstances, tau binds chromatin in cultured murine primary
neurons. Under stressful circumstances, this interaction can be altered due to its dynamic
nature [131]. Tau most likely directly participates in DDR in cells in response to DNA
lesions. In cells lacking tau, histone H2AX is more frequently phosphorylated on serine 139
(H2AX) [132], indicating either more DNA lesions or a slower rate of DNA repair.

When expressed in the nucleus, human tau can reduce DNA breaks caused by cellular
stress compared to wild-type neurons [127]. In the hippocampus of animals, tau deletion
also results in a slower rate of DNA DSB repair [132], pointing to a dual role for tau in the
brain regarding DNA protection and direct or indirect DNA repair. To reiterate, chromo-
somal aberrations are present in the peripheral cells of patients with mutated tau [133].
Additional evidence for this comes from (i) the increased chromosomal aberrations in tau
knockout mice and (ii) the higher risk of cancers, aside from tauopathies, in families with
tau mutations [133].

Given what has been mentioned thus far, we suggest a model in which tau favors
relocating damaged sites to perinuclear areas through enhanced microtubule polymeriza-
tion, hence promoting proper DNA repair. High levels of oxidative stress (persistent DNA
damage) cause the accumulation of p-tau, which impairs microtubule polymerization and
the proper repair of DNA, resulting in cell death by starting a destructive feedback loop
(Figure 1) [106,134].

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 1. General model of tau and DNA damage-induced neuronal death. Following DNA dam-
age, unphosphorylated tau (blue) physically binds to microtubules, causing microtubule (MT) 
polymerization and aggregation close to the perinuclear membrane and contributing to DNA dam-
age repair (upper and green schema). Persistent DNA damage induces Tau phosphorylation and 
microtubules depolymerization. By inhibiting nuclear-cytoplasmic transport, accumulated p-tau 
(lower and pink schema) near the perinuclear membrane inhibits DNA damage repair, blocking the 
migration of damaged chromosomes or the recruitment of DNA damage repair proteins to the nu-
cleus and leading to neuronal death. 

7. Outlook for the Future 
Intraocular pressure (IOP) is the only known major modifiable risk factor for glau-

coma. Other non-IOP factors contributing to vision loss include neuroinflammation, oxi-
dative stress, the dysregulation of calcium-dependent processes, defective autophagy, re-
active gliosis, cribrosa translaminar pressure differences, and, possibly, the dissemination 
of misfolded proteins [135]. 

However, the reported accumulation of tau in the retina in glaucoma could be an-
other factor contributing to vision loss, although the function of tau in glaucoma is still 
unclear. 

There are currently no disease-modifying therapies for tauopathies available in Eu-
rope. However, potential therapeutic methods targeting various pathogenic pathways in 
tauopathies include the suppression of MAPT expression, regulation of alternative splic-
ing, stabilization of microtubules, regulation of post-translational modifications, inhibi-
tion of aggregation, activation of tau clearance, and the use of passive or active immun-
ization. These approaches aim to mitigate the harmful effects of tau and provide potential 
therapeutic strategies for tauopathies, and possibly glaucoma. Moreover, numerous la-
boratories have discussed the relationship between tau and the preservation of genome 
integrity [136]. Neuronal death and an accumulation of genomic lesions have been found 
in brain samples from various tauopathy patients. According to reports, aggregated and 
hyperphosphorylated tau may bind to and interact with cytoplasmic DNA repair proteins 
like BRCA1 to prevent DNA repair. However, evidence of a direct connection between 
tau, DNA damage, and neurodegeneration is still lacking. 

Figure 1. General model of tau and DNA damage-induced neuronal death. Following DNA
damage, unphosphorylated tau (blue) physically binds to microtubules, causing microtubule (MT)
polymerization and aggregation close to the perinuclear membrane and contributing to DNA dam-
age repair (upper and green schema). Persistent DNA damage induces Tau phosphorylation and
microtubules depolymerization. By inhibiting nuclear-cytoplasmic transport, accumulated p-tau
(lower and pink schema) near the perinuclear membrane inhibits DNA damage repair, blocking
the migration of damaged chromosomes or the recruitment of DNA damage repair proteins to the
nucleus and leading to neuronal death.
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7. Outlook for the Future

Intraocular pressure (IOP) is the only known major modifiable risk factor for glaucoma.
Other non-IOP factors contributing to vision loss include neuroinflammation, oxidative
stress, the dysregulation of calcium-dependent processes, defective autophagy, reactive
gliosis, cribrosa translaminar pressure differences, and, possibly, the dissemination of
misfolded proteins [135].

However, the reported accumulation of tau in the retina in glaucoma could be another
factor contributing to vision loss, although the function of tau in glaucoma is still unclear.

There are currently no disease-modifying therapies for tauopathies available in Eu-
rope. However, potential therapeutic methods targeting various pathogenic pathways in
tauopathies include the suppression of MAPT expression, regulation of alternative splicing,
stabilization of microtubules, regulation of post-translational modifications, inhibition of
aggregation, activation of tau clearance, and the use of passive or active immunization.
These approaches aim to mitigate the harmful effects of tau and provide potential thera-
peutic strategies for tauopathies, and possibly glaucoma. Moreover, numerous laboratories
have discussed the relationship between tau and the preservation of genome integrity [136].
Neuronal death and an accumulation of genomic lesions have been found in brain samples
from various tauopathy patients. According to reports, aggregated and hyperphosphory-
lated tau may bind to and interact with cytoplasmic DNA repair proteins like BRCA1 to
prevent DNA repair. However, evidence of a direct connection between tau, DNA damage,
and neurodegeneration is still lacking.

Future research should examine how DNA lesions associated with glaucoma are
created and repaired, including the effects of tau hyperphosphorylation, tau aggregation,
and tau mutations. A better comprehension of the function of DNA lesions in glaucoma
may also result in more effective and creative treatment plans.

Lastly, several other tauopathies may exhibit a common pattern of genomic integrity
loss and persistent DNA damage caused by certain proteins that tend to aggregate abnor-
mally, leading to neuronal death and impairing DNA repair mechanisms [137,138].

At this point, additional research is required to confirm and categorize tau pathologies
and to better comprehend the mechanisms tying tau protein to the pathogenesis of tauopathies.
However, the current results appear promising in substantiating this new theory.
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