Pharmacoepidemiology: An Overview
Abstract
:1. Introduction
2. Pharmacoepidemiology Definition and Objectives
3. Studies in Pharmacoepidemiology
4. Sources of Data Collection
- Electronic health records (EHRs): This refers to electronic versions of a patient’s medical history and health-related information They can provide a wealth of information on medication prescribed, diagnoses, allergies, lab results, radiology images, and health outcomes [6].
- Prescription databases: These databases typically contain detailed information on medications prescribed to patients such as the drug name, dosage, duration of the prescription, and the prescribing healthcare professional, and can be used to identify patterns of medication use and potential drug interactions [33]. However, in patients with poor adherence to treatment, such information would not be equivalent to the medications taken by the patient. Therapeutic regimens and diary doses usually taken cannot be extracted, limiting the analysis of these data.
- Pharmacy dispensing databases: These provide confirmation that the patient has acquired the medication and give information about medication adherence, without guaranteeing that the medications have been taken. Therefore, it is a vague indicator of an ambulatory patient’s exposure to a drug [32].
- Disease registries: These databases collect information on patients with specific medical conditions and can be used to study the effects of drugs on these populations [34].
- Pharmacovigilance databases: These contain information on suspected ADRs, suspected drugs, and patient outcomes, which are collected from a variety of sources, including healthcare providers, national authorities, pharmaceutical companies, medical literature, and directly from patients [35].
- Insurance claims databases: These contain information on medical claims and can be used to identify patterns of medication use and adverse events [36].
- Economic assessment: This calculates the costs of medical care, which includes costs of preparation, administration, monitoring drugs and treating ADRs (including length of stay and monitoring tests performed), and the economic consequences of the benefits of a drug [14].
- Patient-generated health data: This source has emerged in recent years and is becoming more common due to the digitization of the population with wearable devices and mobile apps. Data can be obtained at short intervals or continuously and can be transmitted to clinicians and researchers. Some examples of these data are glucose blood levels, heart rate, stress level, time and type of physical activity, and hours and quality of sleep per day [38].
- Social media: Recent evidence has shown that data from social networks such as Facebook or Twitter provide useful information for drug safety analysis [39].
- There are other specific registries, such as death certificates from national registry databases [40].
5. Measures to Avoid Biases and Confounding Factors
6. Using Observational Data for Regulatory Decisions
7. Conducting and Reporting Pharmacoepidemiologic Research
8. Recommendations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawson, D.H. Pharmacoepidemiology: A new discipline. Br. Med. J. 1984, 289, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Montastruc, J.L.; Benevent, J.; Montastruc, F.; Bagheri, H.; Despas, F.; Lapeyre-Mestre, M.; Sommet, A. What is pharmacoepidemiology? Definition, methods, interest and clinical applications. Thérapie 2019, 74, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Bothwell, L.E.; Greene, J.A.; Podolsky, S.H.; Jones, D.S. Assessing the Gold Standard—Lessons from the History of RCTs. N. Engl. J. Med. 2016, 374, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Makaday, A.; de Boer, A.; Hillege, H.; Klungel, O.; Goettsch, W. What is Real-World data? A review of definitions based on literatura and stakeholder interviews. Value Health 2017, 20, 858–865. [Google Scholar] [CrossRef]
- Bérard, A. Pharmacoepidemiology Research-Real-World Evidence for decision making. Front. Pharmacol. 2021, 12, 723427. [Google Scholar] [CrossRef]
- Silverman, S.L. From randomized controlled trials to observational studies. Am. J. Med. 2009, 122, 114–120. [Google Scholar] [CrossRef]
- Evans, S.J. Pharmacoepidemiology. Br. J. Clin. Pharmacol. 2012, 73, 973–978. [Google Scholar] [CrossRef]
- Etminan, M.; Gill, S.M.; Fitzgerald, M.; Samii, A. Challenges and opportunities for pharmacoepidemiology in drug-therapy decision making. J. Clin. Pharmacol. 2006, 46, 6–9. [Google Scholar] [CrossRef]
- Crescioli, G.; Bonaiuti, R.; Corradetti, R.; Mannaioni, G.; Vannacci, A.; Lombardi, N. Pharmacovigilance and Pharmacoepidemiology as a Guarantee of Patient Safety: The Role of the Clinical Pharmacologist. J. Clin. Med. 2022, 11, 3552. [Google Scholar] [CrossRef]
- Faillie, J.L.; Montastruc, F.; Montastruc, J.L.; Pariente, A. Pharmacoepidemiology and its input to pharmacovigilance. Thérapie 2016, 71, 211–216. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Heneghan, C.J.; Aronson, J.K. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature. BMC Med. 2016, 14, 10, Erratum in BMC Med. 2019, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Wertheimer, A.L.; Andrews, K.B. An overview of pharmacoepidemiology. Pharm. World Sci. 1995, 17, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Bowrin, K.; Briere, J.B.; Levy, P.; Millier, A.; Clay, E.; Toumi, M. Cost-effectiveness analyses using real-world data: An overview of the literature. J. Med. Econ. 2019, 22, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Strom, B.L.; Kimmel, S.E. Textbook of Pharmacoepidemiology. In Strom, 5th ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2012. [Google Scholar]
- Pottegård, A. Core concepts in pharmacoepidemiology: Fundamentals of the cohort and case-control study designs. Pharmacoepidemiol. Drug Saf. 2022, 31, 817–826. [Google Scholar] [CrossRef] [PubMed]
- The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) Guide on Methodological Standards in Pharmacoepidemiology (Revision 11). Available online: https://www.encepp.eu/standards_and_guidances/documents/01.ENCePPMethodsGuideRev.11.pdf (accessed on 23 October 2023).
- DiPietro, N.A. Methods in epidemiology: Observational study designs. Pharmacotherapy 2010, 30, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.A.; Suissa, S. The case-crossover study design in pharmacoepidemiology. Stat. Methods Med. Res. 2009, 18, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, H. Ecologic studies in epidemiology: Concepts, principles, and methods. Annu. Rev. Public Health 1995, 16, 61–81. [Google Scholar] [CrossRef]
- Théophile, H.; Laporte, J.R.; Moore, N.; Martin, K.L.; Bégaud, B. The case-population study design: An analysis of its application in pharmacovigilance. Drug Saf. 2011, 34, 861–868. [Google Scholar] [CrossRef]
- Metelli, S.; Chaimani, A. Challenges in meta-analyses with observational studies. Evid. Based Ment. Health 2020, 23, 83–87. [Google Scholar] [CrossRef]
- Swanson, S.A. Instrumental Variable Analyses in Pharmacoepidemiology: What Target Trials Do We Emulate? Curr. Epidemiol. Rep. 2017, 4, 281–287. [Google Scholar] [CrossRef]
- Hernán, M.A.; Wang, W.; Leaf, D.E. Target emulation: A framework for casual inference from observational data. JAMA 2022, 328, 2446–2447. [Google Scholar] [CrossRef]
- Elseviers, M.; Vrijens, B. Assessment of medication adherence in field research. In Drug Utilization Research: Methods and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands; Wiley Blackwell: West Sussex, UK, 2016; Chapters 35; pp. 361–368. [Google Scholar]
- Vrijens, B.; De Geest, S.; Hughes, D.A.; Przemyslaw, K.; Demonceau, J.; Ruppar, T.; Dobbels, F.; Fargher, E.; Morrison, V.; Lewek, P.; et al. A new taxonomy for describing and defining adherence to medications. Br. J. Clin. Pharmacol. 2012, 73, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Alvarez-Madrazo, S.; Robertson, C.; Bennie, M. Use of direct oral anticoagulants in patients with atrial fibrillation in Scotland: Applying a coherent framework to drug utilisation studies. Pharmacoepidemiol. Drug Saf. 2017, 26, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Linden, A. Using group-based trajectory modelling to enhance causal inference in interrupted time series analysis. J. Eval. Clin. Pract. 2018, 24, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.M.; Shrank, W.H.; Pakes, J.; Sanfélix-Gimeno, G.; Matlin, O.S.; Brennan, T.A.; Choudhry, N.K. Group-based trajectory models: A new approach to classifying and predicting long-term medication adherence. Medical Care 2013, 51, 789–796. [Google Scholar] [CrossRef]
- WHO. Collaborating Centre for Drug Statistics Methodology, Guidelines for ATC Classification and DDD Assignment 2019. Oslo, Norway, 2018. Available online: http://www.whocc.no (accessed on 23 October 2023).
- World Health Organization. International Classification of Diseases and Related Health Problems (11th Revision). 2019. Available online: https://icd.who.int/ (accessed on 23 October 2023).
- MedDRA Maintenance and Support Services Organization. Introductory Guide MedDRA Version 26.0. March 2023. Available online: https://admin.meddra.org/sites/default/files/guidance/file/intguide_26_0_English.pdf (accessed on 23 October 2023).
- Eriksson, I.; Ibáñez, L. Secondary data sources for drug utilization. In Drug Utilization Research: Methods and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands; Wiley Blackwell: West Sussex, UK, 2016; Chapters 4; pp. 39–48. [Google Scholar]
- Barnett, M.J.; Khosraviani, V.; Doroudgar, S.; Ip, E.J. A narrative review of using prescription drug databases for comorbidity adjustment: A less effective remedy or a prescription for improved model fit? Res. Soc. Adm. Pharm. 2022, 18, 2283–2300. [Google Scholar] [CrossRef]
- Herrett, E.; Gallagher, A.M.; Bhaskaran, K.; Forbes, H.; Mathur, R.; van Staa, T.; Smeeth, L. Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int. J. Epidemiol. 2015, 44, 827–836. [Google Scholar] [CrossRef]
- Ghosh, R.E.; Crellin, E.; Beatty, S.; Donegan, K.; Myles, P.; Williams, R. How Clinical Practice Research Datalink data are used to support pharmacovigilance. Ther. Adv. Drug Saf. 2019, 10, 2042098619854010. [Google Scholar] [CrossRef]
- Fujinaga, J.; Fukuoka, T. A Review of Research Studies Using Data from the Administrative Claims Databases in Japan. Drugs Real. World Outcomes 2022, 9, 543–550. [Google Scholar] [CrossRef]
- Winston, S. Health Information National Trends Survey (HINTS.gov). Med. Ref. Serv. Q 2021, 40, 215–223. [Google Scholar] [CrossRef]
- Liu, F.; Panagiotakos, D. Real-world data: A brief review of the methods, applications, challenges and opportunities. BMC Med. Res. Methodol. 2022, 22, 287, Erratum in BMC Med. Res. Methodol. 2023, 23, 109. [Google Scholar] [CrossRef] [PubMed]
- Montané, E.; Santesmases, J. Adverse drug reactions. Med. Clin. 2020, 154, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Gliklich, R.E.; Dreyer, N.A.; Leavy, M.B. (Eds.) Registries for Evaluating Patient Outcomes: A User’s Guide [Internet], 3rd ed.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2014; Report No.: 13(14)-EHC111. Available online: https://www.ncbi.nlm.nih.gov/books/NBK208611/ (accessed on 23 October 2023).
- Szklo, M.; Nieto, F.J. Epidemiology Beyond the Basics, 4th ed.; Jones & Bartelett Learning: Burlington, MA, USA, 2019; pp. 127–171. [Google Scholar]
- Acton, E.K.; Willis, A.W.; Hennessy, S. Core concepts in pharmacoepidemiology: Key biases in pharmacoepidemiologic studies. Pharmacoepidemiol. Drug Saf. 2023, 32, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Austin, P.C.; Tu, J.V.; Ko, D.T.; Mazer, C.D.; Kiss, A.; Fremes, S.E. A review of propensity-score methods and their use in cardiovascular research. Can. J. Cardiol. 2016, 32, 259–265. [Google Scholar] [CrossRef]
- Tazare, J.; Smeeth, L.; Evans, S.; Douglas, I.J.; Williamson, E.J. Hdps: A suite of commands for applying high-dimensional propensity-score approaches. Stata. J. 2023, 23, 683–708. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Rassen, J.A.; Schneeweiss, S. Instrumental variable methods in comparative safety and effectiveness research. Pharmacoepidemiol. Drug Saf. 2010, 19, 537–554. [Google Scholar] [CrossRef]
- Arfè, A.; Corrao, G. The lag-time approach improved drug–outcome association estimates in presence of protopathic bias. J. Clin. Epidemiol. 2016, 78, 101–107. [Google Scholar] [CrossRef]
- Velentgas, P.; Dreyer, N.A.; Nourjah, P.; Smith, S.R.; Torchia, M.M. Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide; Chapters 11; Sensitivity Analysis; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK126178/ (accessed on 23 October 2023).
- Lipsitch, M.; Tchetgen Tchetgen, E.; Cohen, T. Negative Controls: A tool for detecting confounding and bias in observational studies. Epidemiology 2010, 21, 383–388. [Google Scholar] [CrossRef]
- HMA/EMA. Biga Data Steering Group. Available online: https://www.ema.europa.eu/en/about-us/how-we-work/big-data#hma/ema-big-data-steering-group-section (accessed on 23 October 2023).
- Plueschke, K.; Jonker, C.; Strassmann, V.; Kurz, X. Collection of data on adverse events related to medicinal products: A survey among registries in the ENCePP reources data base. Drug Saf. 2022, 45, 747–754. [Google Scholar] [CrossRef]
- Kurz, X.; Perez-Gutthann, S.; The ENCePP Steering Group. Strengthening standards, transparency, and collaboration to suport medicine evaluation: Ten years of the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Pharmacoepidemiol. Drug Saf. 2018, 3, 245–252. [Google Scholar] [CrossRef]
- Data Analysis and Real-World Interrogation Network (DARWIN EU). Available online: https://www.ema.europa.eu/en/about-us/how-we-work/big-data/data-analysis-real-world-interrogation-network-darwin-eu (accessed on 23 October 2023).
- Gini, R.; Sturkenboom, M.C.; Sultana, J.; Cave, A.; Landi, A.; Pacurariu, A. Different Strategies to Execute Multi-Database Studies for Medicines Surveillance in Real-World Setting: A Reflection on the European Model. Clin. Pharmacol. Ther. 2020, 108, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ding, Y.J.; Luo, Y. Future of ChatGPT in Pharmacovigilance. Drug Saf. 2023, 46, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Benrimoh, D.; Israel, S.; Fratila, R.; Armstrong, C.; Perlman, K.; Rosenfeld, A. Editorial: ML and AI safety, effectiveness and explainability in healthcare. Front. Big Data 2021, 4, 727856. [Google Scholar] [CrossRef] [PubMed]
- Wasylewicz, A.; van de Burgt, B.; Weterings, A.; Jessurun, N.; Korsten, E.; Egberts, T.; Bouwman, A.; Kerskes, M.; Grouls, R.; van der Linden, C. Identifying adverse drug reactions from free-text electronic hospital health record notes. Br. J. Clin. Pharmacol. 2022, 88, 1235–1245. [Google Scholar] [CrossRef]
- Rawat, A.; Wani, M.A.; Elaffendi, M.; Imran, A.S.; Kastrati, Z.; Daupota, M. Drug Adverse Event Detection Using Text-Based Convolutional Neural Networks (TextCNN) Technique. Electronics 2022, 11, 3336. [Google Scholar] [CrossRef]
- Bates, D.; Scott Evans, R.; Murff, H.; Stetson, P.D.; Pizziferri, L.; Hripcsak, G. Detecting Adverse Events Using Information Technology. J. Am. Med. Inf. Assoc. 2003, 10, 115–128. [Google Scholar] [CrossRef]
- Andre, E.B.; Reynolds, R.; Caubel, P.; Azoulay, L.; Dreyer, N.A. Trial designs using real-world data: The changing landscape of the regulatory approval process. Pharmacoepidemiol. Drug Saf. 2020, 29, 1201–1212. [Google Scholar] [CrossRef]
- Bakker, E.; Plueschke, K.; Jonker, C.J.; Kurz, X.; Starokozhko, V.; Mol, P. Contribution of real-world evidence in European Medicines Agency’s regulatory decision making. Clin. Pharmacol. Ther. 2023, 113, 135–151. [Google Scholar] [CrossRef]
- Spitzer, E.; Cannon, C.P.; Serruys, P.W. Should real-world evidence be incorporated into regulatory approvals? Expert Opin. Drug Saf. 2018, 17, 1155–1159. [Google Scholar] [CrossRef]
- Real-World Evidence. FDA. Available online: https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence (accessed on 23 October 2023).
- FDA’s Sentinel Initiative. Available online: https://www.fda.gov/safety/fdas-sentinel-initiative (accessed on 5 September 2023).
- Use of Real-World Evidence in Regulatory Decision Making—EMA Publishes Review of Its Studies. Available online: https://www.ema.europa.eu/en/news/use-real-world-evidence-regulatory-decision-making-ema-publishes-review-its-studies (accessed on 23 October 2023).
- Epstein, M. International Society of Pharmacoepidemiology. Guidelines for good pharmacoepidemiology practices (GPP). Pharmacoepidemiol. Drug Saf. 2005, 14, 589–595. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Smeeth, L.; Guttmann, A.; Harron, K.; Moher, D.; Petersen, I.; Sorensen, H.T.; von Elm, E.; Langan, S.M.; RECORD Working Group. The Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statemeny. PLoS Med. 2015, 12, e1001885. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pottegård, A.; Crown, W.; Arlett, P.; Ashcroft, D.M.; Benchimol, D.I.; Berge, D.L.; Crane, G.; Goettsch, W.; Hua, W.; et al. HARmonized Protocol Template to Enhance Reproducibility of Hypothesis Evaluating Real-World Evidence Studies on Treatment Effects: A Good Practices Report of a Joint ISPE/ISPOR Task Force. Value Health 2022, 25, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- National Heart Lung and Blood Institute. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies—NHLBI, NIH. National Institutes of Health. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 23 October 2023).
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality if Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 23 October 2023).
- Gatto, N.M.; Wang, S.V.; Murk, W.; Mattox, P.; Brookhart, M.A.; Bate, A.; Schneeweiss, S.; Rassen, J.A. Visualization throughout pharmacoepidemiology study Planning, implementation, and reporting. Pharmacoepidemiol. Drug Saf. 2022, 31, 1140–1152. [Google Scholar] [CrossRef]
Type of Study | Main Utilities | Main Limitations | Main Sources of Data | |
---|---|---|---|---|
Descriptive studies | Cross-sectional studies | To provide a snapshot of drug use and its effects on a population | Not good for rare or short-duration diseases. | Any kind of data sources (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) |
Drug-utilization studies | To describe patterns of use of drugs regarding rational use and guidelines | No information on drugs. | (1), (2), (3), (4), (8), (9) | |
Ecological studies | To identify patterns of drug use and disease occurrence | Data are inaccurate. | Any kind of population data sources: (2), (3), (4), (5), (6), (8), (9). | |
Analytical studies | Cohort studies | To study long-term drug effects. Can assess multiple exposures and outcomes. | Need for a large sample size and an extended study period. Not useful for studying rare outcomes or diseases. | Any kind of data sources: (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) |
Case-control studies | To assess rare outcomes or diseases, and those with long latency periods | Accurate selection of control subjects is a challenge. Difficult to find cases. | (1), (2), (3), (4), (5), (6), (9), (10), (11) | |
Target trial emulation | Emulates a hypothetical randomized trial Eliminates common sources of bias. | Cannot eliminate the bias that arises from a lack of randomization. Requires detailed data on treatment, outcome, and confounders. Not useful for new drugs. | (1), (2), (3), (4), (8), (9), (11) |
Measures | Description |
---|---|
Propensity score (PS) | Classifies subjects, the covariates of interest |
HDPS | Extension of the PS, but using hundreds of covariates |
Marginal structural models | Control to time-varying confounders |
G-estimation | Control for time-varying confounders |
Instrumental variables | To address uncontrolled confounding |
Rule-out approach | To deal with unmeasured confounders |
Lag-time | To deal with protopathic bias |
Negative controls | Identify and resolve confounding and recall bias |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabaté, M.; Montané, E. Pharmacoepidemiology: An Overview. J. Clin. Med. 2023, 12, 7033. https://doi.org/10.3390/jcm12227033
Sabaté M, Montané E. Pharmacoepidemiology: An Overview. Journal of Clinical Medicine. 2023; 12(22):7033. https://doi.org/10.3390/jcm12227033
Chicago/Turabian StyleSabaté, Mònica, and Eva Montané. 2023. "Pharmacoepidemiology: An Overview" Journal of Clinical Medicine 12, no. 22: 7033. https://doi.org/10.3390/jcm12227033
APA StyleSabaté, M., & Montané, E. (2023). Pharmacoepidemiology: An Overview. Journal of Clinical Medicine, 12(22), 7033. https://doi.org/10.3390/jcm12227033