De Novo Donor-Specific Antibodies after Heart Transplantation: A Comprehensive Guide for Clinicians
Abstract
:1. Introduction
2. Mechanisms of dnDSA Development and Pathogenicity
3. DnDSA Detection Methods
4. DnDSA Incidence and Monitoring in Heart Transplantation
5. Clinical Implications of dnDSA Development in HT Recipients
5.1. DnDSA and Survival
5.2. DnDSA and Cardiac Allograft Vasculopathy
5.3. DnDSA, Antibody-Mediated Rejection, and Graft Failure
6. Evaluation of Patients with dnDSA
7. Current Management of dnDSA
8. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATG | Antithymocyte globulin |
AMR | Antibody-mediated rejection |
CAV | Cardiac allograft vasculopathy |
DSA | Donor-specific antibody |
dd-cfDNA | Donor-derived cell-free DNA |
dnDSA | De novo DSA |
HLA | Human Leukocyte Antigen |
HT | Heart transplant |
ISHLT | International Society for Heart and Lung Transplantation |
IVIG | Intravenous immunoglobulin |
MFI | Mean fluorescence intensity |
mTOR | Mammalian/mechanistic target of rapamycin |
MICA/B | MHC class I polypeptide-related sequence A/B |
SAB | Single-antigen bead |
References
- Mosaad, Y.M. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand. J. Immunol. 2015, 82, 283–306. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Tatapudi, V.S.; Leffell, M.S.; Zachary, A.A. HLA in transplantation. Nat. Rev. Nephrol. 2018, 14, 558–570. [Google Scholar] [CrossRef]
- Terasaki, P.I. A personal perspective: 100-Year history of the humoral theory of transplantation. Transplantation 2012, 93, 751–756. [Google Scholar] [CrossRef]
- Loupy, A.; Lefaucheur, C. Antibody-Mediated Rejection of Solid-Organ Allografts. N. Engl. J. Med. 2018, 379, 1150–1160. [Google Scholar] [CrossRef]
- Webber, S.; Zeevi, A.; Mason, K.; Addonizio, L.; Blume, E.; Dipchand, A.; Shaddy, R.; Feingold, B.; Canter, C.; Hsu, D. Pediatric heart transplantation across a positive crossmatch: First year results from the CTOTC-04 multi-institutional study. Am. J. Transplant. 2018, 18, 2148–2162. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Farr, M.A.; Restaino, S.W.; Zorn, E.; Farhana, L.; Vasilescu, E.R.; Marboe, C.C.; Colombo, P.C.; Mancini, D.M. Donor-specific anti-HLA antibodies with antibody-mediated rejection and long-term outcomes following heart transplantation. J. Heart Lung Transplant. 2017, 36, 540–545. [Google Scholar] [CrossRef]
- Ho, E.K.; Vlad, G.; Vasilescu, E.R.; de la Torre, L.; Colovai, A.I.; Burke, E.; Deng, M.; Schwartz, J.; Marboe, C.; Mancini, D.; et al. Pre- and posttransplantation allosensitization in heart allograft recipients: Major impact of de novo alloantibody production on allograft survival. Hum. Immunol. 2011, 72, 5–10. [Google Scholar] [CrossRef]
- Zhang, Q.; Hickey, M.; Drogalis-Kim, D.; Zheng, Y.; Gjertson, D.; Cadeiras, M.; Khuu, T.; Baas, A.S.; Depasquale, E.C.; Halnon, N.J.; et al. Understanding the Correlation between DSA, Complement Activation, and Antibody-Mediated Rejection in Heart Transplant Recipients. Transplantation 2018, 102, e431–e438. [Google Scholar] [CrossRef]
- Kaczmarek, I.; Deutsch, M.A.; Kauke, T.; Beiras-Fernandez, A.; Schmoeckel, M.; Vicol, C.; Sodian, R.; Reichart, B.; Spannagl, M.; Ueberfuhr, P. Donor-specific HLA alloantibodies: Long-term impact on cardiac allograft vasculopathy and mortality after heart transplant. Exp. Clin. Transplant. 2008, 6, 229–235. [Google Scholar]
- Baudry, G.; Pozzi, M.; Aubry, M.; Hugon-Vallet, E.; Mocan, R.; Chalabreysse, L.; Portran, P.; Obadia, J.F.; Thaunat, O.; Girerd, N. De Novo Complement-Binding Anti-HLA Antibodies in Heart Transplanted Patients Is Associated with Severe Cardiac Allograft Vasculopathy and Poor Long-Term Survival. J. Clin. Med. 2022, 11, 3731. [Google Scholar] [CrossRef]
- Cole, R.T.; Gandhi, J.; Bray, R.A.; Gebel, H.M.; Morris, A.; McCue, A.; Yin, M.; Laskar, S.R.; Book, W.; Jokhadar, M.; et al. De novo DQ donor-specific antibodies are associated with worse outcomes compared to non-DQ de novo donor-specific antibodies following heart transplantation. Clin. Transplant. 2017, 31, e12924. [Google Scholar] [CrossRef]
- Smith, J.D.; Banner, N.R.; Hamour, I.M.; Ozawa, M.; Goh, A.; Robinson, D.; Terasaki, P.I.; Rose, M.L. De novo donor HLA-specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am. J. Transplant. 2011, 11, 312–319. [Google Scholar] [CrossRef]
- Moayedi, Y.; Fan, C.P.S.; Tinckam, K.J.; Ross, H.J.; McCaughan, J.A. De novo donor-specific HLA antibodies in heart transplantation: Do transient de novo DSA confer the same risk as persistent de novo DSA? Clin. Transplant. 2018, 32, 2–5. [Google Scholar] [CrossRef]
- Akhtar, W.; Peterzan, M.A.; Banya, W.; Olwell, B.; Aghouee, F.V.; Brookes, P.; Dunning, J.; Dar, O. Donor specific antibodies association with survival and adverse events after heart transplantation: A single center retrospective study between 2006 and 2021. Clin Transplant. 2023, 37, e14914. [Google Scholar] [CrossRef]
- Chambers, D.C.; Cherikh, W.S.; Harhay, M.O.; Michael, O.; Hayes, D.; Hsich, E.; Khush, K.K.; Meiser, B.; Potena, L.; Rossano, J.W.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-Sixth Adult Lung and Heart-Lung Transplantation Report-2019; Focus theme: Donor and recipient size match; National Library of Medicine: Bethesda, MD, USA, 2019. [Google Scholar]
- Kobashigawa, J.; Colvin, M.; Potena, L.; Dragun, D.; Crespo-Leiro, M.G.; Delgado, J.F.; Olymbios, M.; Parameshwar, J.; Patel, J.; Reed, E.; et al. The management of antibodies in heart transplantation: An ISHLT consensus document. J. Hear. Lung Transplant. 2018, 37, 537–547. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Louis, K.; Morris, A.B.; Taupin, J.L.; Nicherson, P.; Tambur, A.R.; Gebel, H.M.; Reed, E.F. Clinical recommendations for posttransplant assessment of anti–HLA (Human Leukocyte Antigen) donor-specific antibodies: A Sensitization in Transplantation: Assessment of Risk consensus document. Am. J. Transplant. 2023, 23, 115–132. [Google Scholar] [CrossRef]
- Gilbert, O.N.; Chang, P.P. The Approach to Antibodies After Heart Transplantation. Curr. Transpl. Rep. 2017, 4, 243–251. [Google Scholar] [CrossRef]
- Alberú, J.; Morales-Buenrostro, L.E.; de Leo, C.; Vargas-Rojas, M.I.; Marino-Vázquez, L.A.; Crispín, J.C. A non-allogeneic stimulus triggers the production of de novo HLA antibodies in healthy adults. Transpl. Immunol. 2007, 18, 166–171. [Google Scholar] [CrossRef]
- Mccaughan, J.A.; Tinckam, K.J. Donor specific HLA antibodies & allograft injury: Mechanisms, methods of detection, manifestations and management. Transplant. Int. 2018, 31, 1059–1070. [Google Scholar]
- Clatworthy, M.R.; Espeli, M.; Torpey, N.; Smith, K.G.C. The generation and maintenance of serum alloantibody. Curr. Opin. Immunol. 2010, 22, 669. [Google Scholar] [CrossRef]
- Tambur, A.R.; Wiebe, C. HLA diagnostics: Evaluating DSA strength by titration. Transplantation 2018, 102, S23–S30. [Google Scholar] [CrossRef]
- Jin, Y.-P.; Valenzuela, N.M.; Zhang, X.; Rozengurt, E.; Reed, E.F. HLA Class II–Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection. J. Immunol. 2018, 200, 2372–2390. [Google Scholar] [CrossRef]
- Hirohashi, T.; Chase, C.M.; Della Pelle, P.; Sebastian, D.; Alessandrini, A.; Madsen, J.C.; Russell, P.S.; Colvin, R.B. A Novel Pathway of Chronic Allograft Rejection Mediated by NK Cells and Alloantibody. Am. J. Transplant. 2012, 12, 313–321. [Google Scholar] [CrossRef]
- Resch, T.; Fabritius, C.; Ebner, S.; Ritschl, P.; Kotsch, K. The Role of Natural Killer Cells in Humoral Rejection. Transplantation 2015, 99, 1335–1340. [Google Scholar] [CrossRef]
- Tuzlak, S.; Ginhoux, F.; Korn, T.; Becher, B. Repositioning TH cell polarization from single cytokines to complex help. Nat. Immunol. 2021, 22, 1210–1217. [Google Scholar] [CrossRef]
- Shestakova, V.; Shestakova, V.A.; Klabukov, I.D.; Baranovskii, D.S.; Shegay, P.V.; Kaprin, A.D. Assessment of Immunological Responses—A Novel Challenge in Tissue Engineering and Regenerative Medicine. Biomed. Res. Ther. 2022, 9, 5384–5386. [Google Scholar] [CrossRef]
- Zhang, X.; Kransdorf, E.; Levine, R.; Patel, J.K.; Kobashigawa, J.A. HLA-DQ mismatches stimulate de novo donor specific antibodies in heart transplant recipients. Hum. Immunol. 2020, 81, 330–336. [Google Scholar] [CrossRef]
- Tait, B.D.; Süsal, C.; Gebel, H.M.; Susal, C.; Gebel, H.M.; Nickerson, P.W.; Zachary, A.A.; Claas, F.H.J.; Reed, E.F.; Bray, R.A.; et al. Consensus guidelines on the testing and clinical management issues associated with HLA and Non-HLA antibodies in transplantation. Transplantation 2013, 95, 19–47. [Google Scholar] [CrossRef]
- Tambur, A.R.; Campbell, P.; Claas, F.H.; Frans, H.; Feng, S.; Gebel, H.M.; Jackson, A.M.; Mannon, R.B.; Reed, E.F.; Tinckam, K.; et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2017 Working Group Meeting Report. Am. J. Transplant. 2018, 18, 1604–1614. [Google Scholar] [CrossRef]
- Tinckam, K. Histocompatibility methods. Transplant. Rev. 2009, 23, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Bouquegneau, A.; Loheac, C.; Aubert, O.; Bouatou, Y.; Viglietti, D.; Empana, J.; Loupy, A. Complement-activating donor-specific anti-HLA antibodies and solid organ transplant survival: A systematic review and meta-analysis. PLoS Med. 2018, 15, e1002572. [Google Scholar]
- Lefaucheur, C.; Viglietti, D.; Bentlejewski, C.; van Huyen, J.P.D.; Vernerey, D.; Aubert, O.; Zeevi, A. IgG Donor-Specific Anti-Human HLA Antibody Subclasses and Kidney Allograft Antibody-Mediated Injury. J. Am. Soc. Nephrol. 2016, 27, 293–304. [Google Scholar] [CrossRef]
- Loupy, A.; Lefaucheur, C.; Vernerey, D.; Prugger, C.; van Huyen, J.P.D.; Mooney, N.; Jouven, X. Complement-Binding Anti-HLA Antibodies and Kidney-Allograft Survival. N. Engl. J. Med. 2013, 369, 1215–1226. [Google Scholar] [CrossRef]
- Wehmeier, C.; Hönger, G.; Schaub, S. Caveats of HLA antibody detection by solid-phase assays. Transpl. Int. 2020, 33, 18–29. [Google Scholar] [CrossRef]
- Maguire, C.H.; Schinstock, C.A.; Tambur, A.R. Measuring human leukocyte antigen alloantibodies: Beyond a binary decision. Curr. Opin. Organ. Transpl. 2020, 25, 529–535. [Google Scholar] [CrossRef]
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; Garcia-Guereta, L.; Jamero, G.; Khush, K.; et al. The International Society for Heart and Lung Transplantation (ISHLT) Guidelines for the Care of Heart Transplant Recipients. J. Heart Lung Transpl. 2023, 42, e1–e141. [Google Scholar] [CrossRef]
- Reinsmoen, N.L.; Lai, C.H.; Mirocha, J.; Cao, K.; Ong, G.; Naim, M.; Wang, Q.; Haas, M.; Rafiei, M.; Czer, L.; et al. Increased negative impact of donor HLA-specific together with non-HLA-specific antibodies on graft outcome. Transplantation 2014, 97, 595–601. [Google Scholar] [CrossRef]
- Farrero Torres, M.; Pando, M.J.; Luo, C.; Luikart, H.; Valantine, H.; Khush, K. The role of complement-fixing donor-specific antibodies identified by a C1q assay after heart transplantation. Clin. Transplant. 2017, 31, e13121. [Google Scholar] [CrossRef]
- McCaughan, J.; Battle, R.; Singh, S.; Tikkanen, J.M.; Moayedi, Y.; Ross, H.J.; Singer, L.G.; Keshavjee, S.; Kinckam, K.J. Identification of risk epitope mismatches associated with de novo donor-specific HLA antibody development in cardiothoracic transplantation. Am. J. Transplant. 2018, 18, 2924–2933. [Google Scholar] [CrossRef]
- Everly, M.J.; Rebellato, L.M.; Haisch, C.E.; Ozawa, M.; Parker, K.; Briley, K.P.; Catrou, P.G.; Bolin, P.; Kendrick, W.T.; Kendrick, S.A.; et al. Incidence and impact of de Novo donor-specific alloantibody in primary renal allografts. Transplantation 2013, 95, 410–417. [Google Scholar] [CrossRef]
- Godown, J.; Slaughter, J.C.; Fossey, S.C.; McKane, M.; Dodd, D.A. Risk factors for the development of donor-specific antibodies after pediatric heart transplantation. Pediatr. Transplant. 2015, 19, 906–910. [Google Scholar] [CrossRef]
- Morath, C.; Opelz, G.; Zeier, M.; Süsal, C. Clinical Relevance of HLA Antibody Monitoring after Kidney Transplantation. J. Immunol. Res. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Wan, S.S.; Chadban, S.J.; Watson, N.; Wyburn, K. Development and outcomes of de novo donor-specific antibodies in low, moderate, and high immunological risk kidney transplant recipients. Am. J. Transplant. 2020, 20, 1351–1364. [Google Scholar] [CrossRef]
- Delgado, J.C.; Fuller, A.; Ozawa, M.; Smith, L.; Teresaki, P.I.; Shihab, F.S.; Eckels, D.D. No occurrence of de novo HLA antibodies in patients with early corticosteroid withdrawal in a 5-year prospective randomized study. Transplantation 2009, 87, 546–548. [Google Scholar] [CrossRef]
- Patel, J.; Kittleson, M.; Kransdorf, E.; Shen, A.; Nishihara, K.; Jamero, G.; Azarbal, B.; Hage, A.; Czer, L.; Megna, D.; et al. Does the Development of Donor Specific Antibody after Heart Transplantation Depend on the Presence or Absence of Corticosteroids as Maintenance Therapy? J. Hear. Lung Transplant. 2020, 39, S273. [Google Scholar] [CrossRef]
- O’Leary, J.G.; Samaniego, M.; Barrio, M.C.; Potena, L.; Zeevi, A.; Djamali, A.; Cozzi, E. The Influence of Immunosuppressive Agents on the Risk of de Novo Donor-Specific HLA Antibody Production in Solid Organ Transplant Recipients. Transplantation 2016, 100, 39–53. [Google Scholar] [CrossRef]
- Katerinis, I.; Hadaya, K.; Duquesnoy, R.; Ferrari-Lacraz, S.; Meier, S.; Van Delden, C.; Martin, P.Y.; Siegrist, C.A.; Villard, J. De Novo Anti-HLA Antibody After Pandemic H1N1 and Seasonal Influenza Immunization in Kidney Transplant Recipients. Am. J. Transplant. 2011, 11, 1727–1733. [Google Scholar] [CrossRef]
- Locke, J.E.; Zachary, A.A.; Warren, D.S.; Segev, D.L.; Houp, J.A.; Montgomery, R.A.; Leffell, M.S.; Locke, J.E. Proinflammatory Events Are Associated with Significant Increases in Breadth and Strength of HLA-Specific Antibody. Am. J. Transplant. 2009, 9, 2136–2139. [Google Scholar] [CrossRef]
- Ko, B.S.; Drakos, S.; Kfoury, A.G.; Hurst, D.; Stoddard, G.J.; Willis, C.A.; Delgado, J.C.; Hammond, E.H.; Gilbert, E.M.; Alharethi, R.; et al. Immunologic Effects of Continuous-Flow Left Ventricular Assist Devices before and after Heart Transplant. J. Hear. Lung Transplant. 2016, 35, 1024–1030. [Google Scholar] [CrossRef]
- Wiebe, C.; Gibson, I.W.; Blydt-Hansen, T.D.; Karpinski, M.; Ho, J.; Storsley, L.J.; Goldberg, A.; Birk, P.E.; Rush, D.N.; Nickerson, P.W. Evolution and Clinical Pathologic Correlations of De Novo Donor-Specific HLA Antibody Post Kidney Transplant. Am. J. Transplant. 2012, 12, 1157–1167. [Google Scholar] [CrossRef]
- Osorio-Jaramillo, E.; Haasnoot, G.W.; Kaider, A.; Schaefer, A.-K.; Haberl, T.; Goekler, J.; Angleitner, P.; Moayedifar, R.; Zuckermann, A.; Fischer, G.F.; et al. Molecular-Level HLA Mismatch Is Associated with Rejection and Worsened Graft Survival in Heart Transplant Recipients-a Retrospective Study. Transpl Int. 2020, 33, 1078–1088. [Google Scholar] [CrossRef]
- Sellarés, J.; De Freitas, D.G.; Mengel, M.; Reeve, J.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Famulski, K.; Matas, A.; Halloran, P.F. Understanding the Causes of Kidney Transplant Failure: The Dominant Role of Antibody-Mediated Rejection and Nonadherence. Am. J. Transplant. 2012, 12, 388–399. [Google Scholar] [CrossRef]
- Frank, R.; Molina, M.R.; Goldberg, L.R.; Wald, J.W.; Kamoun, M.; Lal, P. Circulating Donor-Specific Anti-Human Leukocyte Antigen Antibodies and Complement C4d Deposition Are Associated With the Development of Cardiac Allograft Vasculopathy. AJCP/Orig. Artic. Am. J. Clin. Pathol. 2014, 142, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Irving, C.A.; Carter, V.; Gennery, A.R.; Parry, G.; Griselli, M.; Hasan, A.; Kirk, C.R. Effect of Persistent versus Transient Donor-Specific HLA Antibodies on Graft Outcomes in Pediatric Cardiac Transplantation. J. Hear. Lung Transplant. 2015, 34, 1310–1317. [Google Scholar] [CrossRef]
- Barten, M.J.; Schulz, U.; Beiras-Fernandez, A.; Berchtold-Herz, M.; Boeken, U.; Garbade, J.; Hirt, S.; Richter, M.; Ruhpawar, A.; Sandhaus, T.; et al. The Clinical Impact of Donor-Specific Antibodies in Heart Transplantation. Transplant. Rev. 2018, 32, 207–217. [Google Scholar] [CrossRef]
- Davis, J.; Dimbil, S.; Levine, R.; Patel, J.; Esmailian, F.; Czer, L.; Kobashigawa, J. The clinical impact of early versus late hla donor-specific antibody development after heart transplantation. J. Am. Coll. Cardiol. 2018, 71, A669. [Google Scholar] [CrossRef]
- Das, B.B.; Lacelle, C.; Zhang, S.; Gao, A.; Fixler, D. Complement (C1q) Binding De Novo Donor Specific Antibodies and Cardiac-Allograft Vasculopathy in Pediatric Heart Transplant Recipients. Transplantation 2018, 102, 502. [Google Scholar] [CrossRef]
- Wang, M.; Patel, N.; Kransdorf, E.; Azarbal, B.; Zhang, X.; Kobashigawa, J.A.; Patel, J. The Effects of Donor-Specific Antibody Characteristics on Cardiac Allograft Vasculopathy. J. Hear. Lung Transplant. 2021, 40, S41. [Google Scholar] [CrossRef]
- Berry, G.J.; Burke, M.M.; Andersen, C.; Bruneval, P.; Fedrigo, M.; Fishbein, M.C.; Goddard, M.; Hammond, E.H.; Leone, O.; Marboe, C.; et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the Standardization of Nomenclature in the Pathologic Diagnosis of Antibody-Mediated Rejection in Heart Transplantation. J. Hear. Lung Transplant. 2013, 32, 1147–1162. [Google Scholar] [CrossRef]
- Bruneval, P.; Angelini, A.; Miller, D.; Potena, L.; Loupy, A.; Zeevi, A.; Reed, E.F.; Dragun, D.; Reinsmoen, N.; Smith, R.N.; et al. The XIIIth Banff Conference on Allograft Pathology: The Banff 2015 Heart Meeting Report: Improving Antibody-Mediated Rejection Diagnostics: Strengths, Unmet Needs, and Future Directions. Am. J. Transplant 2017, 17, 42–53. [Google Scholar] [CrossRef]
- Koch, C.A.; Khalpey, Z.I.; Platt, J.L. Accommodation: Preventing Injury in Transplantation and Disease. J. Immunol. 2004, 172, 5143–5148. [Google Scholar] [CrossRef]
- Zeevi, A.; Lunz, J.; Feingold, B.; Shullo, M.; Bermudez, C.; Teuteberg, J.; Webber, S. Persistent Strong Anti-HLA Antibody at High Titer Is Complement Binding and Associated with Increased Risk of Antibody-Mediated Rejection in Heart Transplant Recipients. J. Hear. Lung Transplant. 2013, 32, 98–105. [Google Scholar] [CrossRef]
- Ware, A.L.; Malmberg, E.; Delgado, J.C.; Hammond, M.E.; Miller, D.V.; Stehlik, J.; Kfoury, A.; Revelo, M.P.; Eckhauser, A.; Everitt, M.D. The Use of Circulating Donor Specific Antibody to Predict Biopsy Diagnosis of Antibody-Mediated Rejection and to Provide Prognostic Value after Heart Transplantation in Children. J. Hear. Lung Transplant. 2016, 35, 179–185. [Google Scholar] [CrossRef]
- Gandhi, M.J.; DeGoey, S.R.; Bundy, K.; Kremers, W.K.; Knauer, R.; Pereira, N.; Edwards, B.; Kushwaha, S.; Daly, R.C. Effect of pretransplant human leukocyte antigen antibodies detected by solid-phase assay on heart transplant outcomes. Transpl. Proc. 2011, 43, 3840–3846. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Zuckermann, A.; Bara, C.; Mohacsi, P.; Schulz, U.; Boyle, A.; Ross, H.J.; Parameshwar, J.; Zakliczyński, M.; Fiocchi, R.; et al. Concordance among Pathologists in the Second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II). Transplantation 2012, 94, 1172–1177. [Google Scholar] [CrossRef]
- López-Sainz, Á.; Barge-Caballero, E.; Barge-Caballero, G.; Couto-Mallón, D.; Paniagua-Martin, M.J.; Seoane-Quiroga, L.; Iglesias-Gil, C.; Herrera-Noreña, J.M.; Cuenca-Castillo, J.J.; Vázquez-Rodríguez, J.M.; et al. Late Graft Failure in Heart Transplant Recipients: Incidence, Risk Factors and Clinical Outcomes Aim Methods and Results. Eur. J. Heart Fail. 2018, 20, 385–394. [Google Scholar] [CrossRef]
- Khan, U.A.; Williams, S.G.; Fildes, J.E.; Shaw, S.M. The Pathophysiology of Chronic Graft Failure in the Cardiac Transplant Patient. Am. J. Transplant. 2009, 9, 2211–2216. [Google Scholar] [CrossRef]
- Shahzad, K.; Aziz, Q.A.; Leva, J.P.; Cadeiras, M.; Ho, E.K.; Vlad, G.; Vasilescu, E.R.; Latif, F.; Sinha, A.; Burke, E.; et al. New-Onset Graft Dysfunction after Heart Transplantation—Incidence and Mechanism-Related Outcomes. J. Hear. Lung Transplant. 2011, 30, 194–203. [Google Scholar] [CrossRef]
- Kobashigawa, J.A.; Itagaki, B.K.; Razi, R.R.; Patel, J.K.; Chai, W.; Kawano, M.A.; Goldstein, Z.; Kittleson, M.M.; Fishbein, M.C. Correlation between Myocardial Fibrosis and Restrictive Cardiac Physiology in Patients Undergoing Retransplantation. Clin. Transplant. 2013, 27, E679–E684. [Google Scholar] [CrossRef] [PubMed]
- Hodges, A.M.; Lyster, H.; McDermott, A.; Rice, A.J.; Smith, J.D.; Rose, M.L.; Banner, N.R. Late Antibody-Mediated Rejection after Heart Transplantation Following the Development of de Novo Donor-Specific Human Leukocyte Antigen Antibody. Transplantation 2012, 93, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Coutance, G.; Ouldamar, S.; Rouvier, P.; Saheb, S.; Suberbielle, C.; Bréchot, N.; Hariri, S.; Lebreton, G.; Leprince, P.; Varnous, S. Late Antibody-Mediated Rejection after Heart Transplantation: Mortality, Graft Function, and Fulminant Cardiac Allograft Vasculopathy. J. Hear. Lung Transplant. 2015, 34, 1050–1057. [Google Scholar] [CrossRef]
- Loupy, A.; Cazes, A.; Guillemain, R.; Amrein, C.; Hedjoudje, A.; Tible, M.; Pezzella, V.; Fabiani, J.N.; Suberbielle, C.; Nochy, D.; et al. Very Late Heart Transplant Rejection Is Associated with Microvascular Injury, Complement Deposition and Progression to Cardiac Allograft Vasculopathy. Am. J. Transplant. 2011, 11, 1478–1487. [Google Scholar] [CrossRef]
- Goldberg, J.F.; Truby, L.K.; Agbor-Enoh, S.; Jackson, A.M.; Defilippi, C.R.; Khush, K.K.; Shah, P. Selection and Interpretation of Molecular Diagnostics in Heart Transplantation. Circulation 2023, 148, 679–694. [Google Scholar] [CrossRef]
- Kobashigawa, J.; Hall, S.; Shah, P.; Fine, B.; Halloran, P.; Jackson, A.M.; Khush, K.K.; Margulies, K.B.; Sani, M.M.; Patel, J.K.; et al. The Evolving Use of Biomarkers in Heart Transplantation: Consensus of an Expert Panel. Am. J. Transplant. 2023, 23, 727–735. [Google Scholar] [CrossRef]
- Yoshida, S.; Takeuchi, K.; del Nido, P.D.; Ho, C. Diastolic dysfunction coincides with early mild transplant rejection: In situ measurements in a heterotopic rat heart transplant model. J. Heart Lung Transpl. 1998, 17, 1049–1056. [Google Scholar]
- Sachdeva, R.; Malik, S.; Seib, P.M.; Frazier, E.A.; Cleves, M.A. Doppler tissue imaging and catheter-derived measures are not independent predictors of rejection in pediatric heart transplant recipients. Int. J. Cardiovasc. Imaging. 2011, 27, 947–954. [Google Scholar] [CrossRef]
- Colvin, M.M.; Cook, J.L.; Chang, P.; Francis, G.; Hsu, D.T.; Kiernan, M.S.; Kobashigawa, J.A.; Lindenfeld, J.A.; Masri, S.C.; Miller, D.; et al. Antibody-Mediated Rejection in Cardiac Transplantation: Emerging Knowledge in Diagnosis and Management. Circulation 2015, 131, 1608–1639. [Google Scholar] [CrossRef]
- Keller, M.; Agbor-Enoh, S. Donor-Derived Cell-Free DNA for Acute Rejection Monitoring in Heart and Lung Transplantation. Curr. Transpl. Rep. 2021, 1, 3. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Viglietti, D.; Hidalgo, L.G.; Ratner, L.E.; Bagnasco, S.M.; Batal, I.; Aubert, O.; Orandi, B.J.; Oppenheimer, F.; Loupy, A.; et al. Complement-Activating Anti-HLA Antibodies in Kidney Transplantation: Allograft Gene Expression Profiling and Response to Treatment. J. Am. Soc. Nephrol. 2018, 29, 620–635. [Google Scholar] [CrossRef] [PubMed]
- Mingo-Santos, S.; Moñivas-Palomero, V.; Garcia-Lunar, I.; Mitroi, C.D.; Goirigolzarri-Artaza, J.; Rivero, B.; Oteo, J.F.; Castedo, E.; González-Mirelis, J.; Cavero, M.A.; et al. Usefulness of Two-Dimensional Strain Parameters to Diagnose Acute Rejection after Heart Transplantation. J. Am. Soc. Echocardiogr. 2015, 28, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Vermes, E.; Pantaléon, C.; Auvet, A.; Cazeneuve, N.; Machet, M.C.; Delhommais, A.; Bourguignon, T.; Aupart, M.; Brunereau, L. Cardiovascular Magnetic Resonance in Heart Transplant Patients: Diagnostic Value of Quantitative Tissue Markers: T2 Mapping and Extracellular Volume Fraction, for Acute Rejection Diagnosis. J. Cardiovasc. Magn. Reson. 2018, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and Clarification of Criteria for T Cell– and Antibody-Mediated Rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Kobashigawa, J.A.; Tobis, J.M.; Starling, R.C.; Murat Tuzcu, E.; Smith, A.L.; Valantine, H.A.; Yeung, A.C.; Mehra, M.R.; Anzai, H.; Oeser, B.T.; et al. Multicenter Intravascular Ultrasound Validation Study Among Heart Transplant Recipients Outcomes After Five Years. J Am Coll Cardiol. 2005, 45, 1532–1537. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M.; Khush, K.; Luikart, H.; Okada, K.; Lim, H.S.; Kobayashi, Y.; Honda, Y.; Yeung, A.C.; Valantine, H.; Fearon, W.F. Invasive Assessment of Coronary Physiology Predicts Late Mortality after Heart Transplantation. Circulation 2016, 133, 1945–1950. [Google Scholar] [CrossRef] [PubMed]
- Sautenet, B.; Blancho, G.; Büchler, M.; Morelon, E.; Toupance, O.; Barrou, B.; Ducloux, D.; Chatelet, V.; Moulin, B.; Freguin, C.; et al. One-Year Results of the Effects of Rituximab on Acute Antibody-Mediated Rejection in Renal Transplantation: RITUX ERAH, a Multicenter Double-Blind Randomized Placebo-Controlled Trial. Transplantation 2016, 100, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Marks, W.H.; Mamode, N.; Montgomery, R.A.; Stegall, M.D.; Ratner, L.E.; Ratner, E.; Cornell, L.D.; Rowshani, A.T.; Colvin, R.B.; Dain, B.; et al. Safety and Efficacy of Eculizumab in the Prevention of Antibody-Mediated Rejection in Living-Donor Kidney Transplant Recipients Requiring Desensitization Therapy: A Randomized Trial. Am. J. Transplant. 2019, 19, 2876–2888. [Google Scholar] [CrossRef]
- Coutance, G.; Kobashigawa, J.A.; Kransdorf, E.; Loupy, A.; Desiré, E.; Kittleson, M.; Patel, J.K. Intermediate-Term Outcomes of Complement Inhibition for Prevention of Antibody-Mediated Rejection in Immunologically High-Risk Heart Allograft Recipients. J. Hear. Lung Transplant. 2023, 42, 1464–1468. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Orandi, B.J.; Racusen, L.; Jackson, A.M.; Garonzik-Wang, J.M.; Shah, T.; Woodle, E.S.; Sommerer, C.; Fitts, D.; Rockich, K.; et al. Plasma-Derived C1 Esterase Inhibitor for Acute Antibody-Mediated Rejection Following Kidney Transplantation: Results of a Randomized Double-Blind Placebo-Controlled Pilot Study. Am. J. Transplant. 2016, 16, 3468–3478. [Google Scholar] [CrossRef]
- January, S.; Pottebaum, A.; Raymer, D.; Lavine, K. Tocilizumab for Antibody-Mediated Rejection in the Setting of Cardiac Allograft Vasculopathy. J. Heart Lung Transplant. 2019, 38, S38–S39. [Google Scholar] [CrossRef]
- Shin, B.H.; Everly, M.J.; Zhang, H.; Choi, J.; Vo, A.; Zhang, X.; Huang, E.; Jordan, S.C.; Toyoda, M. Impact of Tocilizumab (Anti-IL-6R) Treatment on Immunoglobulins and Anti-HLA Antibodies in Kidney Transplant Patients with Chronic Antibody-Mediated Rejection. Transplantation 2020, 104, 856–863. [Google Scholar] [CrossRef]
- Woodside, K.J.; Lick, S.D. Alemtuzumab (Campath 1H) as Successful Salvage Therapy for Recurrent Steroid-resistant Heart Transplant Rejection. J. Heart Lung Transpl. 2007, 26, 750–752. [Google Scholar] [CrossRef] [PubMed]
- Spica, D.; Junker, T.; Dickenmann, M.; Schaub, S.; Steiger, J.; Rüfli, T.; Halter, J.; Hopfer, H.; Holbro, A.; Hirt-Minkowski, P. Daratumumab for Treatment of Antibody-Mediated Rejection after ABO-Incompatible Kidney Transplantation. Case Rep. Nephrol. Dial. 2019, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Di Cocco, P.; Fratti, A.; Kaylan, K.B.; Tzvetanov, I.G.; Benedetti, E. Treatment Strategies for Antibody-mediated Rejection in Kidney Transplantation and Its Prevention. OBM Transpl. 2020, 4, 1–16. [Google Scholar] [CrossRef]
- Russwurm, M.; Maier-Giebing, T.; Kortus-Goetze, B.; Russ, P.; Groene, H.-J.; Hoyer, J.D. Efficacy of Double Membrane Filtration Immunoadsorption in Severe C1q-Binding Donor-Specific Antibody-Positive Acute Humoral Kidney Allograft Rejection: A Case Series. Res. Artic. Blood Purif. 2023, 52, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, M.; Del Fante, C.; Pattonieri, E.F.; Avanzini, M.A.; Grignano, M.A.; Cassaniti, I.; Baldanti, F.; Comolli, G.; Nocco, A.; Ramondetta, M.; et al. Photopheresis Abates the Anti-Hla Antibody Titer and Renal Failure Progression in Chronic Antibody-Mediated Rejection. Biology 2021, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Brown, R.N.; Huang, S.T.; Naftel, D.C.; Hubbard, S.M.; Rayburn, B.K.; McGiffin, D.C.; Bourge, R.B.; Benza, R.L.; Tallaj, J.A.; et al. Rejection with Hemodynamic Compromise: Objective Evidence for Efficacy of Photopheresis. J. Heart Lung Transplant. 2006, 25, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Shock, A.; Humphreys, D.; Nimmerjahn, F. Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmune disease: Lessons from therapeutic modalities targeting Fcg receptors. J. Allergy Clin. Immunol. 2020, 146, 492–500. [Google Scholar] [CrossRef]
- Jordan, S.C.; Toyoda, M.; Vo, A.A. Intravenous immunoglobulin a natural regulator of immunity and inflammation. Transplantation 2009, 88, 1–6. [Google Scholar] [CrossRef]
- Schinstock, C.A.; Mannon, R.B.; Budde, K.; Chong, A.S.; Haas, M.; Knechtle, S.; Lefaucheur, C.; Montgomery, R.A.; Nickerson, P.; Tullius, S.G.; et al. Recommended Treatment for Antibody-Mediated Rejection after Kidney Transplantation: The 2019 Expert Consensus from the Transplantion Society Working Group. Transplantation 2020, 104, 911–922. [Google Scholar] [CrossRef]
- Rocha, P.N.; Butterly, D.W.; Greenberg, A.; Reddan, D.N.; Tuttle-Newhall, J.; Collins, B.H.; Kuo, P.C.; Reinsmoen, N.; Fields, T.; Howell, D.N.; et al. Beneficial Effect of Plasmapheresis and Intravenous Immunoglobulin on Renal Allograft Survival of Patients with Acute Humoral Rejection. Transplantation 2003, 75, 1490–1495. [Google Scholar] [CrossRef]
- Böhmig, G.A.; Wahrmann, M.; Regele, H.; Exner, M.; Robl, B.; Derfler, K.; Soliman, T.; Bauer, P.; Müllner, M.; Druml, W. Immunoadsorption in Severe C4d-Positive Acute Kidney Allograft Rejection: A Randomized Controlled Trial. Am. J. Transplant. 2007, 7, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M.; Kobashigawa, J.A. Antibody-mediated rejection. Curr. Opin. Organ. Transpl. 2012, 17, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Garrett, H.E.; Duvall-Seaman, D.; Helsley, B.; Groshart, K. Treatment of vascular rejection with rituximab in cardiac transplantation. J. Heart Lung Transpl. 2005, 24, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Eskandary, F.; Regele, H.; Baumann, L.; Bond, G.; Kozakowski, N.; Wahrmann, M.; Hidalgo, L.G.; Haslacher, H.; Kaltenecker, C.C.; Aretin, M.B. A Randomized Trial of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2018, 29, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Ade, M.; Billaud, P.; Epailly, E. Belimumab Efficacy for the Treatment of Antibody Mediated Rejection after Heart Transplantation: Case Report. Trends Transplant. 2019, 12, 1–2. [Google Scholar] [CrossRef]
- Bailly, E.; Anglicheau, D.; Blancho, G.; Gatault, P.; Vuiblet, V.; Chatelet, V.; Morelon, E.; Malvezzi, P.; Parissiadis, A.; Tourret, J.; et al. Prognostic value of the persistence of C1q- binding anti-HLA antibodies in acute antibody-mediated rejection in kidney transplantation. Transplantation 2018, 102, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Viglietti, D.; Bouatou, Y.; Kheav, V.D.; Aubert, O.; Suberbielle-Boissel, C.; Glitz, D.; Legendre, C.; Taupin, J.L.; Zeevi, A.; Loupy, A.; et al. Complement-binding anti-HLA antibodies are independent predictors of response to treatment in kidney recipients with antibody-mediated rejection. Kidney Int. 2018, 94, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Nuche, J.; de la Cruz Bertolo, J.; Marco Clement, I.; Sánchez, V.S.; Sarnago Cebada, F.; Mancebo, E.; Enguita, A.B.; Alonso-Riaño, M.; Ruiz-Hurtado, G.; López-Azor, J.C.; et al. Rationale and Protocol of the Multimodality Evaluation of Antibody-Mediated Injury in Heart Transplantation (LEONE-HT) Observational Cross-Sectional Study. Methods Protoc. 2022, 5, 75. [Google Scholar] [CrossRef]
- Kamburova, E.G.; Kardol-Hoefnagel, T.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; van der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; Hack, C.E.; et al. Development and Validation of a Multiplex Non-HLA Antibody Assay for the Screening of Kidney Transplant Recipients. Front. Immunol. 2018, 9, 419672. [Google Scholar] [CrossRef]
- Nickerson, P.W.; Böhmig, G.A.; Chadban, S.; Kumar, D.; Mannon, R.B.; van Gelder, T.; Lee, J.C.; Adler, S.; Chong, E.; Djamali, A. Clazakizumab for the Treatment of Chronic Active Antibody-Mediated Rejection (AMR) in Kidney Transplant Recipients: Phase 3 IMAGINE Study Rationale and Design. Trials 2022, 23, 1–12. [Google Scholar] [CrossRef]
- Teuteberg, J.; Kobashigawa, J.; Shah, P.; Ghosh, S.; Ross, D.; DePasquale, E.; Khush, K. Donor-Derived Cell-Free DNA Predicts De Novo DSA after Heart Transplantation. J. Hear. Lung Transplant. 2021, 40, S30. [Google Scholar] [CrossRef]
- Kamath, M.; Shah, P.; Fu, Y.; Qu, K.; Kobashigawa, J. Trends in HeartCare Values Following the Development of De Novo Donor Specific Antibodies. J. Heart Lung Transpl. 2023, 42, S76. [Google Scholar] [CrossRef]
- Depasquale, E.; Kobashigawa, J.; Pinney, S.; Teuteberg, J.; Khush, K. Dd-cfDNA as a risk factor for initiating de-novo donor specific antibodies in heart transplantation. Transplantation 2020, 104, s131–s132. [Google Scholar] [CrossRef]
Limitation | Effect | Potential Solutions |
---|---|---|
Denatured antigens: distortion of HLA molecules bound to the solid matrix exposes antigens not present in vivo | False positives | Use of cell-based assays to test clinical relevance |
Saturation: the finite amount of HLA molecule on a bead is saturated by antibody binding, with the overload being undetected | Underestimation | Serum dilutions |
Complement interference: activation of the complement cascade prevents binding of the detection antibody | Underestimation | Serum dilutions, use of EDTA or DTT pretreated or plasma samples |
Cross-reactive epitopes: the same antibody binds to HLA molecules on different beads | Underestimation | Identifying specific reactive patterns belonging to epitopes shared by several HLA molecules |
Inter- and intra-laboratory variability | Under/overestimation, low reproducibility | Standardized protocols, quality control procedures, high expertise |
Treatment with polyclonal ATG: rabbit antibodies are detected as human antibodies or compete with them for binding to HLA molecules | False positives/underestimation | |
Treatment with IVIG: high doses can increase background fluorescence | Problematic test interpretation |
Study (First Author, Year) | N | DnDSA Determinations Post-HT | Laboratory Tests | DnDSA Incidence and Characteristics |
---|---|---|---|---|
Smith, 2011 [12] | 243 | Annually when possible Maximum FU 13 years | SAB, C4d SAB Threshold MFI > 1000 | DnDSA: 25.4% (57/224) Against class I: 8; class II: 37; both classes: 12 Anti-HLA-DQ most frequent DSA Persistent dnDSA: 48/57 (C4d+: 26) All dnDSA within 8 years post-HT |
Reinsmoen, 2014 [38] | 200 | 5 during 1st year when possible | SAB, Threshold not stated | DnDSA: 9.5% (19/200) Against class I: 2; class II: 12; both classes: 5 Anti HLA-DQ more frequent |
Clerkin, 2017 [6] | 221 | Frequently during 1st year, yearly thereafter Median FU 3.5 years | SAB, any MFI | DnDSA: 24% (53/221) |
Cole, 2017 [11] | 122 | 2 weeks, 1, 3, 6, 12 months, yearly thereafter Mean FU 3.3 years | SAB, Threshold MFI > 1000 | DnDSA: 28% (31/122) Anti-HLA-DQ: 19 (later post HT, more frequently persistent and with higher MFI) Mean time to dnDSA detection: 539 days |
Farrero Torres, 2017 [39] | 125 | Quarterly during 1st year, at clinical request thereafter | SAB, C1q SAB Threshold MFI > 999 | Preformed DSA: 20.1% (29/144), 4 without DSA post-HT were excluded DnDSA: 39.7% (48/121) Median time to dnDSA detection: 232 days for C1q-, 396 days for C1q+ |
Zhang, 2018 [8] | 176 (A/P) | Frequently during 1st year, quarterly thereafter Median FU 16–18 months | SAB, C3d SAB Threshold MFI > 1000 for HLAA, B, DR, DQ, > 2000 for HLA C, DP | Preformed DSA: 12.5% (22/176) DnDSA: 29.7% (43/154) Against class I: 6; class II: 24; both classes 13 Anti-HLA-DQ most frequent dnDSA C3d+ DSA: 21.5% (14/65) of all DSA 3-year cumulative incidence 28% |
McCaughan, 2018 [40] | 240 | Several determinations during 1st year, yearly thereafter Median FU 1496 days | SAB, Threshold MFI >1200 | DnDSA: 27% (24/240) Anti HLA-DQ: 36 Persistent dnDSA: 38 (27 anti-HLA-DQ) Median time to dnDSA detection: 308 days |
Moayedi, 2018 [13] | 179 (A/P) | 1, 3, 6, 12 months, yearly thereafter; quarterly if DSA Median FU 4.1 years | SAB, Threshold MFI > 1200 | DnDSA: 23% (42/179) Persistent dnDSA: 27 (21 anti HLA-DQ) Median time to dnDSA detection: 329 days |
Zhang, 2020 [28] | 548 | 1, 3, 6, 12 months, yearly thereafter Median FU 805 days | SAB Threshold MFI > 2500 | Preformed DSA: 6.2% (34/548) DnDSA: 12% (63/514) Anti-HLA-DQ most frequent dnDSA, detected later than HLA-A/B Time to dnDSA generally <2000 days |
Baudry, 2022 [10] | 282 | 4 during 1st year; 1 at the time of the study; if +, previous annual samples were analyzed Median FU 14.3–16.4 years | Luminex screening assay, if positive SAB and C3d SAB Threshold MFI > 500 | Sensitized patients excluded DnDSA: 18.1% (51/282) C3d+ dnDSA: 29 Median time to dnDSA detection: 7.7 years for C3d−, 10.1 years for C3d+ |
Akhtar, 2023 [14] | 232 | 1, 3, 6, 12 months, yearly thereafter Median FU 4.7 years | SAB Threshold MFI > 1000 | DnDSA 23.7% (55/232) Against class II: 54 Anti HLA-DQ most frequent dnDSA All dnDSA within 9.5 years post-HT |
Risk Factors for dnDSA Development |
---|
Pre-sensitization [34,39,43] |
Younger age in adult recipients [9,39,41,51] |
Older age in pediatric recipients [42] |
HLA mismatches (particularly HLA-DQ mismatches) [20,28,52] |
Episodes of acute cellular rejection during the first year post-HT [12,51] |
Non-adherence, suboptimal immunosuppression [51,53] |
Mechanism of Action | Therapies |
---|---|
Removal of circulating antibodies | Plasmapheresis, immunoadsortion |
Inhibition of auto-antibody effects | IVIG |
Depletion of B cells | Corticosteroids, rituximab, belimumab, alemtuzumab |
Depletion of plasma cells | Bortezomib, carfilzomib, daratumumab |
Suppression of T-cell response | Corticosteroids, ATG, photopheresis, alemtuzumab |
Inhibition of complement | IVIG, eculizumab, C1 esterase inhibitors |
Inhibition of IL-6 | Tocilizumab, clazakizumab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marco, I.; López-Azor García, J.C.; González Martín, J.; Severo Sánchez, A.; García-Cosío Carmena, M.D.; Mancebo Sierra, E.; de Juan Bagudá, J.; Castrodeza Calvo, J.; Hernández Pérez, F.J.; Delgado, J.F. De Novo Donor-Specific Antibodies after Heart Transplantation: A Comprehensive Guide for Clinicians. J. Clin. Med. 2023, 12, 7474. https://doi.org/10.3390/jcm12237474
Marco I, López-Azor García JC, González Martín J, Severo Sánchez A, García-Cosío Carmena MD, Mancebo Sierra E, de Juan Bagudá J, Castrodeza Calvo J, Hernández Pérez FJ, Delgado JF. De Novo Donor-Specific Antibodies after Heart Transplantation: A Comprehensive Guide for Clinicians. Journal of Clinical Medicine. 2023; 12(23):7474. https://doi.org/10.3390/jcm12237474
Chicago/Turabian StyleMarco, Irene, Juan Carlos López-Azor García, Javier González Martín, Andrea Severo Sánchez, María Dolores García-Cosío Carmena, Esther Mancebo Sierra, Javier de Juan Bagudá, Javier Castrodeza Calvo, Francisco José Hernández Pérez, and Juan Francisco Delgado. 2023. "De Novo Donor-Specific Antibodies after Heart Transplantation: A Comprehensive Guide for Clinicians" Journal of Clinical Medicine 12, no. 23: 7474. https://doi.org/10.3390/jcm12237474
APA StyleMarco, I., López-Azor García, J. C., González Martín, J., Severo Sánchez, A., García-Cosío Carmena, M. D., Mancebo Sierra, E., de Juan Bagudá, J., Castrodeza Calvo, J., Hernández Pérez, F. J., & Delgado, J. F. (2023). De Novo Donor-Specific Antibodies after Heart Transplantation: A Comprehensive Guide for Clinicians. Journal of Clinical Medicine, 12(23), 7474. https://doi.org/10.3390/jcm12237474