The Related Factors and Effect of Electrode Displacement on Motor Outcome of Subthalamic Nuclei Deep Brain Stimulation in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. STN-DBS Implantation and Image Acquisition
2.3. Clinical Evaluation and Postoperative Programming
2.4. Electrode Localization and Estimation of the Stimulation Volume
2.5. Individual Brain Atrophy and Pneumocephalus Volume Measurement
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Electrode Displacement and Related Factors
3.3. The Effect of Electrode Displacement on Clinical Outcomes
3.4. Modification of the Dural Opening Technique
4. Discussion
4.1. Postoperative Electrode Displacement and Related Factors
4.2. Impact of Electrode Displacement on STN-DBS Efficacy
4.3. Methods to Reduce the Impact of Electrode Displacement
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hariz, M.; Blomstedt, P. Deep brain stimulation for Parkinson’s disease. J. Intern. Med. 2022, 292, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, T.; DeLong, M.R. Deep brain stimulation for movement disorders of basal ganglia origin: Restoring function or functionality? Neurotherapeutics 2016, 13, 264–283. [Google Scholar] [CrossRef] [PubMed]
- Spindler, P.; Alzoobi, Y.; Kühn, A.A.; Faust, K.; Schneider, G.H.; Vajkoczy, P. Deep brain stimulation for Parkinson’s disease-related postural abnormalities: A systematic review and meta-analysis. Neurosurg. Rev. 2022, 45, 3083–3092. [Google Scholar] [CrossRef]
- Yuan, T.S.; Chen, Y.C.; Liu, D.F.; Ma, R.Y.; Zhang, X.; Du, T.T.; Zhu, G.Y.; Zhang, J.G. Sex modulates the outcome of subthalamic nucleus deep brain stimulation in patients with Parkinson’s disease. Neural Regen. Res. 2023, 18, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Askari, A.; Lam, J.L.W.; Zhu, B.J.; Lu, C.W.; Chou, K.L.; Wyant, K.J.; Patil, P.G. Dorsal subthalamic deep brain stimulation improves pain in Parkinson’s disease. Front. Pain Res. 2023, 4, 1240379. [Google Scholar] [CrossRef]
- Saint-Cyr, J.A.; Hoque, T.; Pereira, L.C.; Dostrovsky, J.O.; Hutchison, W.D.; Mikulis, D.J.; Abosch, A.; Sime, E.; Lang, A.E.; Lozano, A.M. Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J. Neurosurg. 2002, 97, 1152–1166. [Google Scholar] [CrossRef]
- Chao-Chia Lu, D.; Boulay, C.; Chan, A.D.C.; Sachs, A.J. A Systematic Review of Neurophysiology-Based Localization Techniques Used in Deep Brain Stimulation Surgery of the Subthalamic Nucleus. Neuromodulation 2023. [Google Scholar] [CrossRef]
- Shindhelm, A.C.; Thio, B.J.; Sinha, S.R. Modeling the Impact of Electrode/Tissue Geometry on Electrical Stimulation in Stereo-EEG. J. Clin. Neurophysiol. 2023, 40, 339–349. [Google Scholar] [CrossRef]
- Kokkonen, A.; Honkanen, E.A.; Corp, D.T.; Joutsa, J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. NeuroImage 2022, 260, 119473. [Google Scholar] [CrossRef]
- van den Munckhof, P.; Contarino, M.F.; Bour, L.J.; Speelman, J.D.; de Bie, R.M.; Schuurman, P.R. Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift. Neurosurgery 2010, 67, 49–54. [Google Scholar] [CrossRef]
- van den Munckhof, P.; Bot, M.; Schuurman, P.R. Targeting of the subthalamic nucleus in patients with Parkinson’s disease undergoing deep brain stimulation surgery. Neurol. Ther. 2021, 10, 61–73. [Google Scholar] [CrossRef]
- Matias, C.M.; Frizon, L.A.; Asfahan, F.; Uribe, J.D.; Machado, A.G. Brain Shift and Pneumocephalus Assessment during Frame-Based Deep Brain Stimulation Implantation with Intraoperative Magnetic Resonance Imaging. Oper. Neurosurg. 2018, 14, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Piacentino, M.; Beggio, G.; Rustemi, O.; Zambon, G.; Pilleri, M.; Raneri, F. Pneumocephalus in subthalamic deep brain stimulation for Parkinson’s disease: A comparison of two different surgical techniques considering factors conditioning brain shift and target precision. Acta Neurochir. 2021, 163, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, H.J.; Kim, C.; Kim, D.G.; Jeon, B.S.; Paek, S.H. Comparison of electrode location between immediate postoperative day and 6 months after bilateral subthalamic nucleus deep brain stimulation. Acta Neurochir. 2010, 152, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.A.; Holl, E.M.; Martinez-Torres, I.; Foltynie, T.; Limousin, P.; Hariz, M.I.; Zrinzo, L. Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 2010, 67 (Suppl. S3), ons213–ons221, discussion ons221. [Google Scholar] [CrossRef]
- Horn, A.; Li, N.; Dembek, T.A.; Kappel, A.; Boulay, C.; Ewert, S.; Tietze, A.; Husch, A.; Perera, T.; Neumann, W.-J. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage 2019, 184, 293–316. [Google Scholar] [CrossRef]
- Contarino, M.F.; Bot, M.; Speelman, J.D.; De Bie, R.M.; Tijssen, M.A.; Denys, D.; Bour, L.J.; Schuurman, P.R.; Van Den Munckhof, P. Postoperative displacement of deep brain stimulation electrodes related to lead-anchoring technique. Neurosurgery 2013, 73, 681–688. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Schade, S.; Mollenhauer, B.; Trenkwalder, C. Levodopa equivalent dose conversion factors: An updated proposal including opicapone and safinamide. Mov. Disord. Clin. Prac. 2020, 7, 343. [Google Scholar] [CrossRef]
- Husch, A.; Petersen, M.V.; Gemmar, P.; Goncalves, J.; Hertel, F. PaCER-A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. Neuroimage Clin. 2018, 17, 80–89. [Google Scholar] [CrossRef]
- Horn, A.; Reich, M.; Vorwerk, J.; Li, N.; Wenzel, G.; Fang, Q.; Schmitz-Hübsch, T.; Nickl, R.; Kupsch, A.; Volkmann, J. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017, 82, 67–78. [Google Scholar] [CrossRef]
- Ewert, S.; Plettig, P.; Li, N.; Chakravarty, M.M.; Collins, D.L.; Herrington, T.M.; Kühn, A.A.; Horn, A. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. NeuroImage 2018, 170, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B. FreeSurfer. NeuroImage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support. In Intraoperative Imaging and Image-Guided Therapy; Springer: New York, NY, USA, 2013; pp. 277–289. [Google Scholar]
- Filoteo, J.V.; Reed, J.D.; Litvan, I.; Harrington, D.L. Volumetric correlates of cognitive functioning in nondemented patients with Parkinson’s disease. Mov. Disord. 2014, 29, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable (s) in regression analysis. Open J. Stat. 2015, 5, 754. [Google Scholar] [CrossRef]
- Göransson, N.; Johansson, J.D.; Wårdell, K.; Zsigmond, P. Postoperative lead movement after deep brain stimulation surgery and the change of stimulation volume. Ster. Funct. Neurosurg. 2021, 99, 221–229. [Google Scholar] [CrossRef]
- Khan, M.F.; Mewes, K.; Gross, R.E.; Skrinjar, O. Assessment of brain shift related to deep brain stimulation surgery. Ster. Funct. Neurosurg. 2008, 86, 44–53. [Google Scholar] [CrossRef]
- Elias, W.J.; Fu, K.-M.; Frysinger, R.C. Cortical and subcortical brain shift during stereotactic procedures. J. Neurosurg. 2007, 107, 983–988. [Google Scholar] [CrossRef]
- Mofatteh, M. Neurosurgery and artificial intelligence. AIMS Neurosci. 2021, 8, 477–495. [Google Scholar] [CrossRef]
- Avants, B.B.; Tustison, N.; Song, G. Advanced normalization tools (ANTS). Insight. J. 2009, 2, 1–35. [Google Scholar]
- Schönecker, T.; Kupsch, A.; Kühn, A.; Schneider, G.-H.; Hoffmann, K.-T. Automated optimization of subcortical cerebral MR imaging− atlas coregistration for improved postoperative electrode localization in deep brain stimulation. Am. J. Neuroradiol. 2009, 30, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Younce, J.R.; Campbell, M.C.; Perlmutter, J.S.; Norris, S.A. Thalamic and ventricular volumes predict motor response to deep brain stimulation for Parkinson’s disease. Park. Relat. Disord. 2019, 61, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lai, Y.; Pan, Y.; Li, H.; Liu, Q.; Sun, B. A systematic review of brain morphometry related to deep brain stimulation outcome in Parkinson’s disease. NPJ Park. Dis. 2022, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Noecker, A.M.; Riva-Posse, P.; Rajendra, J.K.; Gross, R.E.; Mayberg, H.S.; McIntyre, C.C. Impact of brain shift on subcallosal cingulate deep brain stimulation. Brain Stimul. 2018, 11, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Tödt, I.; Al-Fatly, B.; Granert, O.; Kühn, A.A.; Krack, P.; Rau, J.; Timmermann, L.; Schnitzler, A.; Paschen, S.; Helmers, A.k. The contribution of subthalamic nucleus deep brain stimulation to the improvement in motor functions and quality of life. Mov. Disord. 2022, 37, 291–301. [Google Scholar] [CrossRef]
- Chen, S.; Xu, S.J.; Li, W.G.; Chen, T.; Li, C.; Xu, S.; Yang, N.; Liu, Y.M. Remote programming for subthalamic deep brain stimulation in Parkinson’s disease. Front. Neurol. 2022, 13, 1061274. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, W.; Chen, H.; Meng, F.; Li, L.; Okun, M.S. Implementation of a Novel Bluetooth Technology for Remote Deep Brain Stimulation Programming: The Pre- and Post-COVID-19 Beijing Experience. Mov. Disord. 2020, 35, 909–910. [Google Scholar] [CrossRef]
- Segura-Amil, A.; Nowacki, A.; Debove, I.; Petermann, K.; Tinkhauser, G.; Krack, P.; Pollo, C.; Nguyen, T.A.K. Programming of subthalamic nucleus deep brain stimulation with hyperdirect pathway and corticospinal tract-guided parameter suggestions. Hum. Brain Mapp. 2023, 44, 4439–4451. [Google Scholar] [CrossRef]
- Krämer, S.D.; Schuhmann, M.K.; Volkmann, J.; Fluri, F. Deep Brain Stimulation in the Subthalamic Nucleus Can Improve Skilled Forelimb Movements and Retune Dynamics of Striatal Networks in a Rat Stroke Model. Int. J. Mol. Sci. 2022, 23, 15862. [Google Scholar] [CrossRef]
- Abdulbaki, A.; Doll, T.; Helgers, S.; Heissler, H.E.; Voges, J.; Krauss, J.K.; Schwabe, K.; Alam, M. Subthalamic Nucleus Deep Brain Stimulation Restores Motor and Sensorimotor Cortical Neuronal Oscillatory Activity in the Free-Moving 6-Hydroxydopamine Lesion Rat Parkinson Model. Neuromodulation 2023. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Kühn, A.A.; Merkl, A.; Shih, L.; Alterman, R.; Fox, M. Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space. Neuroimage 2017, 150, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Åström, M.; Diczfalusy, E.; Martens, H.; Wårdell, K. Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans. Biomed. Eng. 2014, 62, 664–672. [Google Scholar] [CrossRef] [PubMed]
Cross-Incision | Cannula Puncture | p-Value | |
---|---|---|---|
Age (year) | 63.04 ± 6.22 | 62.26 ± 6.50 | 0.5775 |
Duration of disease (year) a | 8.00 (5.00, 12.00) | 9.00 (7.00, 12.00) | 0.3506 |
Sex (female, %) b | 21 (39.6%) | 12 (34.3%) | 0.6128 |
Hoehn–Yahr stage a | 3.00 (3.00, 3.00) | 3.00 (3.00, 3.00) | 0.2703 |
LEDD (mg/d) a | 718.25 (600.00, 837.75) | 750.00 (600.00, 1127.38) | 0.2455 |
Intracranial volume (mm3) | 1,545,267.86 ± 185,510.70 | 1,559,875.98 ± 144,876.11 | 0.6984 |
Brain volume percent (%) a | 72.35% (70.35%, 73.80%) | 73.53% (71.66%, 75.79%) | 0.1034 |
uPVP (%) a | 0.50% (0.17%, 1.09%) | 0.15% (0.01%, 0.55%) | <0.0001 |
MDS-UPDRS III ON a | 7.00 (4.00, 9.00) | 5.00 (4.00, 7.75) | 0.0747 |
MDS-UPDRS III OFF | 15.74 ± 6.25 | 15.21 ± 6.45 | 0.5956 |
Levodopa response (%) | 56.65% ± 20.97% | 60.72% ± 16.49% | 0.1749 |
Motor improvement ON | 2.30 ± 4.66 | 2.67 ± 4.41 | 0.6015 |
Motor improvement OFF (%) | 40.26% ± 41.92% | 39.84% ± 42.43% | 0.9486 |
Beta (β) | Standardized Beta (β) | VIF | Corrected p-Value | |
---|---|---|---|---|
ED of active contact displacement | ||||
Sex | −0.1419 | 0.0630 | 1.048 | 0.0384 |
uPVP | 15.1220 | 4.7305 | 1.021 | 0.0050 |
Brain volume percent | 0.8099 | 0.5875 | 1.046 | 0.1698 |
Beta (β) | Standardized Beta (β) | VIF | Corrected p-Value | |
---|---|---|---|---|
Motor improvement ON | ||||
Sex | −1.9999 | 0.6215 | 1.067 | 0.0031 |
Levodopa response | −11.5784 | 1.5193 | 1.026 | <0.0001 |
Brain volume percent | 12.6052 | 5.7884 | 1.064 | 0.0313 |
ED of active contact displacement | −1.5757 | 0.7256 | 1.035 | 0.0313 |
Motor improvement OFF (%) | ||||
Sex | −0.1048 | 0.0665 | 1.067 | 0.1759 |
Levodopa response | −0.2461 | 0.1626 | 1.026 | 0.1759 |
Brain volume percent | 0.7364 | 0.6194 | 1.064 | 0.2361 |
ED of active contact displacement | −0.2196 | 0.0776 | 1.035 | 0.0209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, T.; Chen, Y.; Zhu, G.; Zhang, J. The Related Factors and Effect of Electrode Displacement on Motor Outcome of Subthalamic Nuclei Deep Brain Stimulation in Parkinson’s Disease. J. Clin. Med. 2023, 12, 7561. https://doi.org/10.3390/jcm12247561
Yuan T, Chen Y, Zhu G, Zhang J. The Related Factors and Effect of Electrode Displacement on Motor Outcome of Subthalamic Nuclei Deep Brain Stimulation in Parkinson’s Disease. Journal of Clinical Medicine. 2023; 12(24):7561. https://doi.org/10.3390/jcm12247561
Chicago/Turabian StyleYuan, Tianshuo, Yingchuan Chen, Guanyu Zhu, and Jianguo Zhang. 2023. "The Related Factors and Effect of Electrode Displacement on Motor Outcome of Subthalamic Nuclei Deep Brain Stimulation in Parkinson’s Disease" Journal of Clinical Medicine 12, no. 24: 7561. https://doi.org/10.3390/jcm12247561
APA StyleYuan, T., Chen, Y., Zhu, G., & Zhang, J. (2023). The Related Factors and Effect of Electrode Displacement on Motor Outcome of Subthalamic Nuclei Deep Brain Stimulation in Parkinson’s Disease. Journal of Clinical Medicine, 12(24), 7561. https://doi.org/10.3390/jcm12247561