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Abstract: Here, we report on the added value of principal component analysis applied to a dataset
of texture features derived from 39 solitary pulmonary lung nodule (SPN) lesions for the purpose
of differentiating benign from malignant lesions, as compared to the use of SUVmax alone. Texture
features were derived using the LIFEx software. The eight best-performing first-, second-, and
higher-order features for separating benign from malignant nodules, in addition to SUVmax (Maxi-
mumGreyLevelSUVbwIBSI184IY), were included for PCA. Two principal components (PCs) were
retained, of which the contributions to the total variance were, respectively, 87.6% and 10.8%. When
included in a logistic binomial regression analysis, including age and gender as covariates, both PCs
proved to be significant predictors for the underlying benign or malignant character of the lesions
under study (p = 0.009 for the first PC and 0.020 for the second PC). As opposed to SUVmax alone,
which allowed for the accurate classification of 69% of the lesions, the regression model including
both PCs allowed for the accurate classification of 77% of the lesions. PCs derived from PCA applied
on selected texture features may allow for more accurate characterization of SPN when compared to
SUVmax alone.

Keywords: solitary pulmonary nodules; texture features; principal component analysis

1. Introduction

A solitary pulmonary nodule (SPN) is defined as a well-marginated parenchymal
lesion less than 3 cm in diameter that is completely surrounded by pulmonary parenchyma
in the absence of any other lung abnormality [1]. Reported estimates of the prevalence
of SPN identified on chest computed tomography vary from 2% to 69% [2]. Differential
diagnosis of SPNs includes both benign etiologies, e.g., hamartoma, tuberculosis, and
infection, as well as primary lung cancer and distant metastasis [3,4]. Reported malignancy
prevalence rates in SPNs have varied from 7% to 40% [2]. Given that the early detection of
lung malignancy is of paramount importance, non-invasive techniques allowing for the
accurate differentiation of benign from malignant solitary lung nodules are of major clinical
interest. 18F-FDG (fluoro-deoxyglucose) PET (positron emission tomography)/CT imaging
is currently widely used to characterize SPN, with a standardized uptake value greater
than 2.5 g/mL being indicative of malignancy [5]. However, its diagnostic efficacy does not

J. Clin. Med. 2023, 12, 7731. https://doi.org/10.3390/jcm12247731 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12247731
https://doi.org/10.3390/jcm12247731
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-2806-0625
https://orcid.org/0000-0003-3784-4090
https://doi.org/10.3390/jcm12247731
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12247731?type=check_update&version=1


J. Clin. Med. 2023, 12, 7731 2 of 9

fully meet clinical needs, and its specificity in granuloma-endemic regions is much lower
than that in nonendemic regions [6].

In recent years, radiomics, the process of extracting and analyzing textural features
from medical images, including 18F-fluorodeoxyglucose (FDG)/PET CT imaging, has
gained wide clinical interest, and some of the features studied aside from SUVmax have
been shown to hold promise for the characterization of SPNs [7–10]. The introduction of
radiomics in nuclear medicine imaging has been made possible via several developments
in image processing and analysis, such as denoising and correction of partial volume effects
and (semi)automated lesion delineation methods. Importantly, many of the extracted
features have proven to be highly correlated, especially when studying low-volume lesions,
as is the case for SPNs [11,12]. The inclusion of highly correlated texture features in a
regression model may lead to instability of the regression coefficients weights with small
changes in the data leading to very different regression coefficients, a phenomenon known
as “the bouncing betas” [13]. Thus, the generated model results will be unstable, vary a lot
with small changes introduced in the dataset, and may drop significantly in accuracy when
applied to another sample of data.

Principal component analysis (PCA) is a technique for reducing the dimensionality of
large datasets containing highly correlated variables. It does so by creating new uncorre-
lated variables that successively maximize variance, minimize information loss, and avoid
the bouncing beta phenomenon [14]. Here, we report on the added value of PCA applied
to a dataset of texture features derived from SPN lesions for the purpose of differentiating
benign from malignant SPN when compared to the use of SUVmax alone.

2. Patients and Methods
2.1. Patients

This retrospective study was approved by the Ethics Committee of our Hospital
(AZGS2022052), and informed consent was obtained prior to inclusion. Thirty-nine patients
presenting with a solitary pulmonary nodule referred for 18F-FDG PET/CT imaging
between January and December 2020 were included in the study. There were 20 men and
19 women (mean age 39 years, range: 25–92 years). The final diagnosis was established
using biopsy and surgical removal and long-term follow-up of at least 24 months (range
24–37 months).

2.2. Data Acquisition, Reconstruction, and Tumor Segmentation

A whole-body FDG PET/CT scan using a GE 64 mCT scanner was performed in all
patients following a fasting period of at least 8 h prior to imaging, thus ensuring a serum
glucose level of less than 200 mmol/L. The injected dose was 7 MBq/kg body weight, and
the time interval between injection and acquisition was 60 ± 7 min. PET raw data were
acquired for 1 min per bed position from the top of the skull to the proximal third of the
femora. For CT imaging, a tube voltage of 120 kV and a tube current ranging from 80
to 180 mAs were applied (automatic setting). PET image reconstruction was performed
using time of flight (TOF) and ordered subset expectation maximization (OSEM). Point
spread function (PSF) correction was performed using the QCLEAR software. The image
matrix used was a 128 × 128 matrix. 18F-FDG uptake was estimated using decay correction
normalized to injected dose and patient body weight, yielding customary standardized
uptake values (SUVs)

Region growing and a fixed threshold set to 30% of the SUVmax in the lung lesions
were applied on the OSEM + PSF + TOF generated images in order to obtain volumes of
interest. The latter images were chosen given that they produce better image quality in
terms of the signal-to-noise ratio, contrast, and lesion detectability. The minimal lesion
volume included for subsequent analysis was 4 cm3. Some texture parameters are based
on a series of neighboring voxel values in the x, y, or z directions. Accordingly, a series of
less than 4 voxels (minimal volume of at least 4 × 4 × 4 or 64 voxels) corresponding to
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a minimal volume required of at least 4 cm3 with the matrix chosen would not make the
calculations meaningful.

2.3. Texture Analysis

First-, second- -and higher-order features were obtained using the readily accessible
and easy-to-use LIFEx software (www.lifexsoft.org (accessed on 2 October 2022)) [15].
Second- and higher-order features were calculated using the gray level co-occurrence
matrix (GLCM), the gray-level run length matrix (GLRLM), the gray-level size zone matrix
(GLSZM), and the neighboring gray-tone difference matrix (NGTDM). Original PET values
were resampled to 64 gray levels or bins in order to reduce image noise. A quantization of
64 gray levels was previously shown to provide the best compromise between the sufficient
sampling of voxel SUVs, preservation of original intensity information, and potential
complementary information with respect to the metabolic active lesion volume. In total,
118 features were obtained from the images.

2.4. Statistical Analysis
Statistical Analysis Was Performed Using SPSS Version 28

Prior to analysis, all texture features were normalized (texture feature result—texture
feature mean/texture feature standard deviation). Thus, normalized texture feature data
were used for principal component analysis (PCA). Given the high number of features
obtained using the LIFEx software when compared to the number of patients included,
ROC curve analysis was performed to define the normalized features that allowed for more
optimal separation of benign from malignant lesions for first-, second-, and higher-order
features. For the purpose of conducting a principal component analysis, various recom-
mendations regarding the appropriate sample size to use have been forwarded, with the
minimum number of subjects per variable advocated ranging from 2 to 5 subjects per vari-
able [16,17]. Thus, taking into consideration the sample size studied, out of the 118 features
generated by the LIFEx software, we selected the 8 best-performing first-, second-, and
higher-order features, also taking into consideration the various matrices, based on the
AUC values derived from ROC analysis for separating benign from malignant nodules
for inclusion in the PCA, in addition to SUVmax (MaximumGreyLevelSUVbwIBSI184IY).
These features were subsequently used for PCA analysis (see Table 1).

Table 1. Rotated component matrix (correlations between the principal components (PC) and the
included features; only p-values > 0.5 and <−0.5 are reported).

PC1 PC2

Morphological integrated intensity - 0.976

Intensity-based maximum gray level
(SUVmax) 0.838 0.513

GCLM joint average 0.845 0.513

GCLM autocorrelation 0.830 0.552

GLRLM High Gray Level Run Emphasis 0.826 0.559

GLRLM Short Run High Gray Level Emphasis 0.830 0.553

NGTDM Contrast 0.981 -

NGTDM Complexity 0.927 -

GLSZM High Gray Level Zone Emphasis 0.816 0.575

To assess the suitability of the dataset for factor analysis (a value > 0.6 was deemed sig-
nificant), the Kaiser–Meyer–Olkin (KMO) test was used. To assess whether the correlation
matrix of the normalized texture features proved significantly different from an identity
matrix in which correlations between variables were all zero (a p-value < 0.05 was deemed
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significant), we applied Bartlett’s test. Varimax rotation was used to maximize the sum of
square loadings.

The squared multiple correlations between the newly generated principal components
and all other texture features, also termed commonalities, were considered significant when
higher than or equal to 0.5 or lower than or equal to −0.5. Based on the commonalities, orig-
inal texture features that were highly correlated with derived PCAs were then identified.

Binomial logistic regression was subsequently performed, including gender and age
as covariates, to assess whether the principal components identified were independent
predictors of the underlying character of the lesions and, if so, whether the regression model
was better performing than SUVmax alone in separating benign from malignant lesions.

3. Results

In total, 20 lesions were benign (3 granulomas, 2 non-specific inflammations, 1 fibrosis,
10 reduced nodules, and 4 stable nodules), and 19 proved malignant (10 adenocarcinomas,
1 large cell carcinoma, 6 non-small cell lung carcinomas, and 2 squamous cell carcinomas).

The following texture features (IBSI) were selected based on their AUC values, taking
into consideration the various matrices studied: integrated intensity (IBSI99NO, 0.787),
intensity-based maximum gray level or SUVmax (IBSI84IY, 0.808), GCLM joint average
(IBSI60VM, 0.839), GCLM autocorrelation (IBSIQWB0, 0.839), GLRLM High Gray Level Run
Emphasis (IBSIG3QZ, 0.839), GLRLM Short Run High Gray Level Emphasis (IBSIGD3A,
0.839), NGTDM Contrast (IBSI65HE, 0.837), NGTDM Complexity (IBSIHDEZ, 0.811), and
GLSZM High Gray Level Zone Emphasis (IBSI5GN9, 0.803). Their normalized equivalents
were included in the PCA. All non-normalized features proved significantly higher in
malignant when compared to benign lesions (p-values ranging from 0.001 to 0.002).

The KMO measure of adequacy was 0.756, and Bartlett’s test yielded a p-value < 0.001,
allowing for principal component analysis.

Two principal components (PCs) were retained: one PC with an eigenvalue of 7.887,
which proved highly correlated with eight of the included normalized features but es-
pecially with contrast and complexity from the NGTDM matrix, and one factor with an
eigenvalue of 1, which proved highly correlated with morphological integrated intensity
(IBSI99N0, r = 0.976) (see the rotated component matrix in Table 1).

The contribution to the total variance of these two principal components derived
using Varimax rotation was, respectively, 87.6% and 10.8%. The two principal components
together thus explained 98.4% of the total variance (cumulative variance).

When including both PCs in a logistic binomial regression analysis, including age and
gender as covariates, both PCs were retained as significant (p = 0.009 for the first PC and
0.020 for the second PC) (see Table 2). As opposed to SUVmax alone (MaximumGreyLevel-
SUVbwIBSI184IY), which allowed for the accurate classification of 69% of the lesions, the
regression model including both PCs allowed for the accurate classification of 77% of the
lesions (see Table 3).

Table 2. Results of the regression analysis, including the principal components.

B S.E. Wald Sig.

REGR factor
score 1 2.532 0.964 6.899 0.009

REGR factor
score 2 6.328 2.713 5.442 0.020

Constant 3.022 1.305 5.363 0.021
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Table 3. (a) Classification based on intensity-based maximum gray level (SUVmax) alone. (b) Classifica-
tion based on PC1 and PC2.

(a)

Benign Predicted Malignant Predicted Percentage Correct

Benign observed 16 4 80.0

Malignant observed 8 11 57.9

Overall percentage 69.0

(b)

Benign Predicted Malignant Predicted Percentage Correct

Benign observed 17 3 85.0

Malignant observed 6 13 68.4

Overall percentage 76.9

4. Discussion

Using principal component analysis, the dataset of nine selected texture features
generated by the LIFEx software could be compressed to a dataset of two new uncorrelated
variables or principal components while maintaining 98.4% of the total variance. The
first principal component, accounting for 87.6% of the total variance, proved to be highly
positively correlated with eight of the nine features included for PCA; however, the highest
correlation was found between NGTDMcontrast (IBSI165HE) and NGTDM complexity
(IBISHDEZ). Features derived from the NGTDM, such as contrast and complexity, have
been previously shown to be fundamental parameters of image textures known to correlate
with human perception of texture within an image [18]. NGTDM features aim at quantifying
the sum of differences between the gray level of a pixel of a voxel and the mean gray level
of its neighboring pixels or voxels within a predefined distance. Contrast is a measure
of the spatial intensity change but is also dependent on the overall gray level dynamic
range. Contrast is high when both the dynamic range and the spatial change rate are high,
i.e., an image with a large range of gray levels (SUV levels), with large changes between
voxels and their neighborhood. Related to this, complexity describes how common the non-
uniform and rapid changes in Graylevels are. In our study, both contrast and complexity
derived from the NGTDM proved to be significantly higher in malignant as opposed
to benign lesions. FDG was previously shown to accumulate in activated inflammatory
cells that are dispersed over the site of inflammation/infection, with neutrophils being
the cell responsible for the larger part of the FDG PET signal in both acute and chronic
inflammatory responses in the lung [19]. The more densely clustered aspect of tumor cells
when compared to inflammatory cells may, in part, explain the higher contrast in malignant
lesions as identified in our study. Our findings highlighting the importance of features
derived from the NGTDM matrix for the characterization of solitary lung nodules are in
line with a previous study by Chen et al., who, similar to us, found that adding information
from the NGTDM to SUVmax increased the discriminatory power of FDG PET imaging
to separate benign from malignant solitary lesions [20]. In their study, the authors first
visually scored all lung lesions on the FDG PET/CT examination using a 5-point scale,
including information derived from both FDG PET and CT imaging and subsequently after
information from the NGTDM features was provided. Of interest, textural features derived
from the NGTDM matrix have been previously shown to allow for the differentiation
of primary and nodal tumors from normal tissue in head and neck cancer, to allow for
delineation of radiotherapy plans, and to predict response and outcome to treatment in
colorectal cancer as well as non-small cell lung carcinoma [21–24]. Yu et al. developed a co-
registered multimodality pattern analysis segmentation system to automatically delineate
radiation targets in head and neck cancer. The inclusion of coarseness and busyness derived
from FDG PET images in a decision-tree-based K-nearest-neighbor classifier allowed for
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a more accurate and consistent delineation of both primary tumor tissue and involved
lymph nodes when compared to threshold-based methods [21]. In a study by Oh et al.,
including patients suffering from hypopharyngeal squamous cell carcinoma, responders
to radiochemotherapy showed a lower coarseness and busyness when compared to non-
responders [22]. Lovinfosse et al. performed texture analysis on FDG PET images obtained
prior to neoadjuvant treatment in eighty-six patients suffering from locally advanced rectal
cancer. Whereas the texture feature coarseness was significantly associated with disease-
free survival, the feature’s dissimilarity and contrast proved significantly associated with
overall survival in the multivariate analysis [23]. Finally, in the series by Cook et al.,
including fifty-three patients suffering from non-small cell lung carcinoma who were
treated with radiochemotherapy and had a pretreatment FDG-PET examination performed,
the texture feature coarseness proved an independent predictor of overall survival in
multivariate analysis, whereas contrast and busyness were associated with progression-free
survival [24]. Of interest, the correlation found between the first PC and SUVmax is also not
surprising, given the well-established clinical utility of SUVmax to differentiate benign from
malignant nodules. FDG uptake was previously shown to be proportional to the glucose
utilization rate, with malignant tissue consuming significantly higher levels of glucose
based on the Warburg principle when compared to normal tissue [25]. Furthermore, normal
and inflammatory tissue exhibit faster glucose clearance based on their relatively higher
levels of hexokinase relative to glucose-6-phosphatase, and malignant lesions continue to
accumulate more FDG over time when compared to normal tissues [26].

The second PC proved very highly correlated with morphological Integrated intensity
or metabolic tumor volume. In this series, as in others addressing the added value of
radiomics in FDG PET/CT imaging, volumes smaller than 5 cm3 were not included for
analysis. First, the qClear software used in this study overestimates SUV-max values
for lesions below 22 mm in diameter (or a corresponding volume of 5 cm3). It thus
underestimates the tumor volume when using region growing [27]. Second, some texture
features require a series of at least 4 neighboring voxel values in the x, y, or z directions or a
volume of at least 64 voxels. When using a voxel size of 4 mm and assuming sphere-like
lesions, this corresponds to a volume of 4 cm3 or a lesion with a radius of 1 cm or a diameter
of 2 cm [12,28]. Thus, in this study, as in others using radiomics for analysis of solitary
pulmonary nodules, only lesions between 2 and 3 cm in diameter were included, and the
results obtained only apply to those lesion sizes under study. Given the narrow range of
diameter size, the high correlation found between the second PC and MTV suggests that
the SUV mean is probably also of clinical significance in this specific setting. MTV was
previously shown to bear both predictive and prognostic value in a wide variety of solid
tumors. The limited range of lesion diameters under study may be considered a drawback;
as shown by Khalaf et al., small benign pulmonary lung nodules (<1 cm) tend to have
comparable SUV max values to malignant nodules with an accuracy of and SUVmax value
of 2.5 of only 54% [29].

Importantly, when including both PCs in a logistic regression analysis, both proved
to be significant predictors of the underlying character of the lesions (benign versus ma-
lignant). Given that both PCs are, by definition, orthogonal, they avoid the problem of
collinearity. The possibility of reducing the nine features included to a new dataset of two
new uncorrelated variables while maintaining the bulk of the variance is of major relevance
for regression analysis, requiring a minimum number of 10 to 15 patients per predictor
to produce reasonably stable estimates [30,31], which in our series would have left room
for the inclusion of three variables at best. Importantly, the inclusion of the two PCs in
the regression model led to an improved diagnostic accuracy as compared to the use of
SUVmax values alone, with a gain of 8% in classification accuracy, in line with the findings
by Chen et al. [20].



J. Clin. Med. 2023, 12, 7731 7 of 9

5. Shortcomings

In this study, we used a 30% fixed threshold region growing method for tumor de-
lineation. It cannot be excluded that different results may be obtained when using a
gradient-based method. Unfortunately, software algorithms allowing for gradient-based
tumor delineation are not widely available, and currently, their use is mainly limited to
those research centers where they were developed [32]. As pointed out previously, the
results obtained in this series only apply to lesions with a diameter ranging from 2 to
3 cm, thus omitting a large number of lesions from analysis in whom differentiation based
on SUVmax values is suboptimal. Also, radiomics models require separate training and
test datasets. However, due to the limited sample size in this study, all available data
were utilized for training purposes. Consequently, there is a lack of dedicated test data to
evaluate the model’s performance. This could potentially lead to an overestimation of the
model’s capabilities due to overfitting. Finally, this study is a retrospective one including a
limited number of patients, and confirmation of our findings in larger patient populations
is mandatory.

6. Conclusions

In this study on a series of 39 solitary pulmonary nodules with a range in lesion
size varying from 2 to 3 cm, applying PCA reduced the dataset of nine selected texture
features derived using the LIFEx software to a set of two uncorrelated new variables,
while maintaining 98.4% of the total variance contained within the dataset. These two
new uncorrelated variables were either highly correlated to features derived from the
NGTDM matrix (first PC) or MTV (second PC) and proved to be independent predictors for
characterization of the underlying nature (benign or malignant) of the nodules under study
using logistic regression. The logistic regression model obtained using both PCs allowed
for a more accurate classification of lung nodules as opposed to the use of SUVmax alone.
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