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Abstract: Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments
characterized by an impaired transmission of sound from the cochlea to the brain. This defect can
be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic
release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and
axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are
hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-
implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent
advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a
lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope
to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving
the replacement or corrective editing of mutant sequences or defected genes to repair damaged
cells for the future restoration of hearing in deaf people are showing promise. In this review, we
provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory
synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent
models and in clinical trials.

Keywords: gene therapy; auditory neuropathy; auditory synaptopathy; hidden hearing loss; genetic
deafness; hearing restoration

1. Introduction

Hearing in mammals relies on the ability of the sensory hair cells to convert sound-
evoked mechanical stimuli into electrochemical signals. The hair-bundle deflection induces
rapid opening of sensory transduction channels, leading to the generation of an influx
of cations into the IHC. This results in a depolarization potential, allowing an influx of
calcium through voltage-dependent calcium channels. The coupling of Ca2+ channels at
the presynaptic site of the ribbon synapse triggers high-rate synaptic vesicle fusion and the
release of neurotransmitter glutamate from the synaptic cleft. The release of glutamate in the
synapse activates Ca2+-sensitive AMPA receptors (Figure 1). This initiates the generation
of neural spikes in spiral ganglion neuron (SGN) fibers, which encodes information about
sound stimuli that is sent to the central nervous system. A dysfunction at any level of this
complex transduction machinery may disturb the coding of acoustic features, particularly
of temporal cues. The potential sites of damage are diverse, including the IHCs, IHC ribbon
synapses, or synaptopathy, (e.g., pre-synaptic release of glutamate or postsynaptic terminals
dendrites of the spiral ganglion neurons), or can be due to demyelination and axonal loss of
the auditory nerve fibers and their targets in the cochlear nucleus (i.e., neuropathy, Figure 1).
These auditory pathologies are named auditory neuropathy spectrum disorder (ANSD), in
which the activity of outer hair cells (OHCs) is maintained (Figure 1) [1–4].
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nucleus (i.e., neuropathy, Figure 1). These auditory pathologies are named auditory neu-
ropathy spectrum disorder (ANSD), in which the activity of outer hair cells (OHCs) is 
maintained (Figure 1) [1–4]. 

 
Figure 1. Inner hair cell (IHC)–spiral ganglion synaptic complex. The IHC is connected to all type I 
spiral ganglion neurons (SGNs) forming the radial afferent system (red) going to the cochlear nuclei. 
The OHC synapses with small endings from type II spiral ganglion neurons, forming the spiral 
afferent system (green). Molecular composition of a mature ribbon of the inner hair–cell synaptic 
complex ensuring the temporal precision of peripheral sound encoding. The mature ribbon synapse 
between the sensory inner hair cells (IHCs) and postsynaptic spiral ganglion neurons (SGNs) in-
volves the spatial confinement of several molecular components: presynaptic density merge to one 
single ribbon anchor and, postsynaptically, one continuous elongated postsynaptic density com-
posed by functional synaptic AMPA-preferring glutamate receptors, but also some silent NMDA 
receptors. Font color indicates association with the correspondingly colored pre-/postsynaptic lo-
calization. 

The clinical profiles of ANSD are quite heterogeneous, depending on the variety of 
etiologies. ANSD can result from syndromic and non-syndromic genetic abnormalities, as 
well as environmental causes (e.g.: hypoxia, noise-exposure, cytotoxic oncologic drugs) 
and aging. ANSD is one of the common causes of hearing loss, affecting between 1.2% 
and 10% of those with hearing loss [5]. Audiologically, ANSD is characterized by mild to 
profound sensory neural hearing loss, with impaired or absent compound action poten-
tials (CAP) and auditory brainstem responses (ABRs, Figure 2) and deteriorated speech 
audiometry in quiet [6]; these are associated with normal otoacoustic emissions (OAE, 
Figure 2) or cochlear microphonics (CM), indicating normal OHC function. Additionally, 

Figure 1. Inner hair cell (IHC)–spiral ganglion synaptic complex. The IHC is connected to all type I
spiral ganglion neurons (SGNs) forming the radial afferent system (red) going to the cochlear nuclei.
The OHC synapses with small endings from type II spiral ganglion neurons, forming the spiral
afferent system (green). Molecular composition of a mature ribbon of the inner hair–cell synaptic
complex ensuring the temporal precision of peripheral sound encoding. The mature ribbon synapse
between the sensory inner hair cells (IHCs) and postsynaptic spiral ganglion neurons (SGNs) involves
the spatial confinement of several molecular components: presynaptic density merge to one single
ribbon anchor and, postsynaptically, one continuous elongated postsynaptic density composed by
functional synaptic AMPA-preferring glutamate receptors, but also some silent NMDA receptors.
Font color indicates association with the correspondingly colored pre-/postsynaptic localization.

The clinical profiles of ANSD are quite heterogeneous, depending on the variety of
etiologies. ANSD can result from syndromic and non-syndromic genetic abnormalities, as
well as environmental causes (e.g., hypoxia, noise-exposure, cytotoxic oncologic drugs) and
aging. ANSD is one of the common causes of hearing loss, affecting between 1.2% and 10%
of those with hearing loss [5]. Audiologically, ANSD is characterized by mild to profound
sensory neural hearing loss, with impaired or absent compound action potentials (CAP)
and auditory brainstem responses (ABRs, Figure 2) and deteriorated speech audiometry
in quiet [6]; these are associated with normal otoacoustic emissions (OAE, Figure 2) or
cochlear microphonics (CM), indicating normal OHC function. Additionally, the absence of
the middle-ear stapedial reflex and of the contralateral suppression of otoacoustic emissions
are usually observed [1,5,7,8].
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Figure 2. Auditory brainstem responses (ABRs) and distortion product of otoacoustic emissions 
(DPOAEs) recorded from one normal hearing control (A,B) and one patient with speech under-
standing difficulties (C,D). (A) ABRs were recorded at 80 dB nHL (decibels normal hearing level) 
with normal amplitudes, latencies, and morphology. (B) No abnormalities were detected in the 
DPOAEs. (C) A patient with speech understanding difficulties showed a clear decrease in the am-
plitude of waves I, II, and III. The I-V interval was 4.04 vs. 3.86 for the patient and a normal hearing 
subject, respectively. (D) DPOAEs were still present in this patient. PTAs: mean of pure-tone audi-
ometry thresholds recorded at 250, 500, 1000, 2000, 3000, and 4000 Hz. Note that PTA is within the 
normal range in the patient with speech understanding difficulties. The audiologic results of this 
patient suggest a hidden auditory neuropathy. 

2. Pathogenic Mechanisms of Auditory Neuropathy 
Syndromic auditory neuropathy affects multiple cranial and peripheral nerves, while 

non-syndromic auditory neuropathies are limited to the auditory nerve. Most cases of 
non-syndromic auditory neuropathy result from impaired synaptic transfer [5]. 

2.1. Non-Syndromic Auditory Synaptopathies 
Genetic auditory synaptopathies generally only cause deafness, such as the muta-

tions in the CACNA1D gene encoding the Cav1.3L-type Ca2+ channel, the OTOF gene en-
coding Otoferlin, the SLC17A8 gene encoding Vglut3, or the DIAPH3 gene encoding the 
diaphanous formin 3. 

2.1.1. Otoferlin-DFNB9 
The OTOF gene encodes otoferlin, which is a critical calcium sensor for synaptic ex-

ocytosis in cochlear IHCs [19,20]. Otoferlin is also involved in vesicular reformation, re-
supply, and tethering at the active zone, making otoferlin a multi-tasking protein [20,21]. 
Mutations in the gene encoding otoferlin are responsible for autosomal recessive pro-
found prelingual deafness, DFNB9 [22]. To date, about 220 pathogenic variants in OTOF 
have been identified [23]. The majority of these mutations are assumed to be nonsense or 
truncation mutations that provoke the inactivation of otoferlin [24]. Patients with variants 
in OTOF displayed milder hearing loss, as well as progressive and temperature-sensitive 
hearing loss, while OAEs were preserved [22,25–27]. Children harboring biallelic muta-
tions of the OTOF gene displayed profound hearing loss, absence of ABRs and CAP, but 
preservation of DPOAEs and the amplitude of CM [28]. Otoferlin knock-out mice, which 
are profoundly deaf due to a failure of sound-evoked neurotransmitter release at the IHC 
synapse, are likely to be an appropriate animal model for DFNB9 [29,30]. In these mice, 

Figure 2. Auditory brainstem responses (ABRs) and distortion product of otoacoustic emissions
(DPOAEs) recorded from one normal hearing control (A,B) and one patient with speech understand-
ing difficulties (C,D). (A) ABRs were recorded at 80 dB nHL (decibels normal hearing level) with
normal amplitudes, latencies, and morphology. (B) No abnormalities were detected in the DPOAEs.
(C) A patient with speech understanding difficulties showed a clear decrease in the amplitude of
waves I, II, and III. The I-V interval was 4.04 vs. 3.86 for the patient and a normal hearing subject,
respectively. (D) DPOAEs were still present in this patient. PTAs: mean of pure-tone audiometry
thresholds recorded at 250, 500, 1000, 2000, 3000, and 4000 Hz. Note that PTA is within the normal
range in the patient with speech understanding difficulties. The audiologic results of this patient
suggest a hidden auditory neuropathy.

Electrocochleography (ECochG) and tests of neural adaptation remain a powerful
diagnostic tool to help identify the site of a lesion. For example, the absence of the summat-
ing potential in ECochG indicates the loss of IHC mechanoelectrical transduction or of the
IHCs themselves. Furthermore, ECochG can also be used to distinguish auditory synap-
topathy from auditory neuropathy. Indeed, patients with auditory synaptopathy displayed
enhanced adaptation to frequency specific sounds [9]. By contrast, patients with auditory
neuropathy showed normal adaptation for low-frequency sounds but abnormally enhanced
adaptation to high-frequency sounds [9]. In patients with auditory synaptopathy, abnormal
loudness adaptation is likely related to the disorder affecting IHC-ribbon synapses in
the organ of Corti along the basilar membrane [9]. In the cases of auditory neuropathy,
loss of nerve fibers is equally distributed throughout the cochlea, and thus the observed
neural conduction disorder is probably independent of the origin of the fibers along the
basilar membrane [2]. The normal adaptation observed in the low-frequency region is
therefore unexpected and may reflect the compensation by central auditory structures
involved in loudness perception, reducing the auditory nerve input in a frequency-specific
manner [10,11].

Hidden hearing loss (HHL) or supraliminal hearing disorders are probably a specific
type of ANSD caused by, e.g., noise exposure, aging, or peripheral neuropathy and char-
acterized by normal pure-tone hearing thresholds together with deficits in sound-evoked
auditory nerve activity (Figure 2). Patients with HHL display normal speech audiometry
thresholds in quiet, well-synchronized ABRs, but with impaired speech discrimination in
noisy environments [12].

Currently, clinical options for the hearing rehabilitation of patients suffering from
ANSD are hearing aids that can amplify sound for mild or moderate deafness, or cochlear
implants for severe deafness [12]. The advantage of the latter is that they can bypass
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non-functional sensory hair cells by directly stimulating the remnant auditory neural
structures within the deafened cochlea. Actually, the data published in the literature on
the long-time outcomes of hearing rehabilitation with hearing aids in children with ANSD
are partially contradictory [13–15]. Some report good hearing rehabilitation [13–15], while
others describe a lack of hearing and communication benefits from hearing aids in children
with ANSD [1,16]. Cochlear implants, which electronically stimulate the SGNs, might
provide effective auditory rehabilitation for patients with auditory synaptopathy because
the generation and propagation of spikes is maintained. Generally, patients with lesions
affecting the auditory nerve show poor performance with cochlear implants, probably
due to altered neural transmission of the electrical signal from the cochlear implant [12].
However, in patients with OPA1-related auditory neuropathy one year after implantation,
improvement in speech perception and synchronous activation of auditory pathways was
observed [17], probably by either bypassing the site of lesion (which could be located in the
terminal dendrites) and/or by the electrical stimuli inducing well-defined temporal SGN
activation. However, to date, data on the outcome of auditory neuropathy rehabilitation
are limited [5,18].

The past decade has seen significant advances in the understanding of the molecular
pathogenic mechanisms that contribute to hearing impairments induced by environmental
and genetic factors. This, in turn, has brought renewed hope to concepts of replacing or
correcting the mutant sequences or defected genes in order to prevent auditory neurodegen-
eration or to promote regeneration of auditory synapse and nerve fibers. This review begins
by outlining our current understanding of the molecular pathways that mediate genetic
ANSD. The following sections discuss recent discoveries in gene therapies using newly
designed genetic therapeutic tools for replacing the mutant sequences or defected genes
for restoring hearing by rescuing cochlear function through the regeneration of synapses
and/or auditory nerve fibers. These tools provide promising perspectives for the future
restoration of hearing in deaf people.

2. Pathogenic Mechanisms of Auditory Neuropathy

Syndromic auditory neuropathy affects multiple cranial and peripheral nerves, while
non-syndromic auditory neuropathies are limited to the auditory nerve. Most cases of
non-syndromic auditory neuropathy result from impaired synaptic transfer [5].

2.1. Non-Syndromic Auditory Synaptopathies

Genetic auditory synaptopathies generally only cause deafness, such as the muta-
tions in the CACNA1D gene encoding the Cav1.3L-type Ca2+ channel, the OTOF gene
encoding Otoferlin, the SLC17A8 gene encoding Vglut3, or the DIAPH3 gene encoding the
diaphanous formin 3.

2.1.1. Otoferlin-DFNB9

The OTOF gene encodes otoferlin, which is a critical calcium sensor for synaptic
exocytosis in cochlear IHCs [19,20]. Otoferlin is also involved in vesicular reformation,
re-supply, and tethering at the active zone, making otoferlin a multi-tasking protein [20,21].
Mutations in the gene encoding otoferlin are responsible for autosomal recessive profound
prelingual deafness, DFNB9 [22]. To date, about 220 pathogenic variants in OTOF have been
identified [23]. The majority of these mutations are assumed to be nonsense or truncation
mutations that provoke the inactivation of otoferlin [24]. Patients with variants in OTOF
displayed milder hearing loss, as well as progressive and temperature-sensitive hearing
loss, while OAEs were preserved [22,25–27]. Children harboring biallelic mutations of the
OTOF gene displayed profound hearing loss, absence of ABRs and CAP, but preservation
of DPOAEs and the amplitude of CM [28]. Otoferlin knock-out mice, which are profoundly
deaf due to a failure of sound-evoked neurotransmitter release at the IHC synapse, are
likely to be an appropriate animal model for DFNB9 [29,30]. In these mice, Ca2+-triggered
exocytosis in IHCs is almost abolished [29,30]; synaptic vesicles were found near the



J. Clin. Med. 2023, 12, 738 5 of 19

membrane at the active zone, suggesting that an absence of vesicles did not limit signal
transduction, but that a late step of exocytosis was disrupted [30].

2.1.2. VGLUT3-DFNA25

Vesicular glutamate transporters (VGLUTs) are responsible for glutamate loading
into synaptic vesicles, which is essential in order to achieve synaptic transmission [31].
VGLUT3 is expressed in small subsets of neurons in the central nervous system [31,32]. In
mice, VGLUT3 is expressed in the IHCs [33,34] and the OHCs [35]. The genetic ablation of
Slc17a8 in mice results in the absence of CAP or ABRs to acoustic stimuli, while ABRs could
be elicited by electrical stimuli, and robust otoacoustic emissions were recorded in these
mice [33,34]. This thus reflects a failure in activation of the ascending auditory pathway,
while the activity in OHCs is unaffected [33,34,36,37]. Patients with a 12q22-q24 deletion in
the SLC17A8 gene at the DFNA25 locus display congenital and non-syndromic autosomal
dominant deafness [33,38,39]. The deafness in patients was characterized as high-frequency,
progressive sensorineural hearing loss, with good hearing rescue through cochlear im-
plantation, thus reinforcing the hypothesis of synaptopathy [33,39]. VGLUT3A224V/A224V

mice harboring the p.A221V mutation (p.A221V in humans corresponds to p.A224V in
mice) in the Slc17a8 gene displayed progressive hearing loss with intact OHC function [40].
The summating potential was, however, reduced, indicating the alteration of the IHC
receptor potential. Scanning electron microscopy examinations revealed the collapse of
IHC stereocilia bundles, leaving those from OHCs unaffected. In addition, IHC ribbon
synapses underwent structural and functional modifications at later stages. These results
suggest that DFNA25 stems from a failure in mechano-transduction followed by a change
in synaptic transmission [40].

2.1.3. Cav1.3-SANDD

Calcium influx at the base of the IHCs near the ribbon synapse is mediated via the
L-type calcium (Ca2+) channel Cav1.3, which is the main voltage-gated Ca2+ channel
in IHCs and essential for hearing. Cav1.3 translates sound-induced depolarization into
neurotransmitter glutamate release at the synaptic site, resulting in signal transmission
to the auditory nerve [41]. Cav1.3-encoding by the CACNA1D gene is widely distributed
across different cells such as OHCs, IHCs, cardiomyocytes, neuroendocrine cells, and
neurons. A Cav1.3. mutation in CACNA1D may cause both sinoatrial node dysfunction and
deafness (termed SANDD syndrome) in mice and in humans, in humans closely resembling
that of Cacna1d−/− mice [41,42]. Cav1.3 is required for normal hearing and cardiac pace
making in humans, and loss of function in only a subset of channels is sufficient to cause
SANDD syndrome [42]. Loss-of-function mutations in the CACNA1D gene causes impaired
synaptic neurotransmission at the IHC ribbon synapse in KO mice [41,43]. Cav1.3 protects
the sensory hair cells during cochlear aging through reducing calcium-mediated oxidative
stress in C57BL/6J male mice [44] and plays important roles in inner ear differentiation [45].

2.1.4. CABP2-DFNB93

Calcium-binding protein 2 (CABP2) is a potent modulator of IHC voltage-gated cal-
cium channels CaV1.3. CABP2 regulates Ca2+ influx at the presynaptic site [46,47] and thus
also the vesicular release of glutamate. Pathologic mutations in CABP2 lead to autosomal-
recessive, moderate-to-severe non-syndromic hearing impairment DFNB93 [48–51]. DFNB93
patients displayed an auditory synaptopathy phenotype with normal OAEs [52]. Using
a knock-out mouse model, Picher et al. [52] demonstrated that DFNB93 hearing impair-
ment may result from an enhanced steady-state inactivation of CaV1.3 channels at the
IHC synapse, thus limiting their availability to trigger synaptic transmission, resulting in
elevated auditory thresholds [52]. This, however, does not seem to interfere with cochlear
development and does not cause the early degeneration of hair cells or their synaptic
complex [52,53]. These results suggested an extended window for gene therapy.
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2.1.5. DIAPH3-AUNA1

Auditory neuropathy, non-syndromic, autosomal dominant 1 (AUNA1) is a form
of delayed-onset, progressive human deafness resulting from a point mutation in the 5′

untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. The DIAPH3 mutation
leads to the overexpression of the DIAPH3 protein, a formin family member involved in
cytoskeleton dynamics [54]. Patients with AUNA1 displayed absent or altered ABR, while
OHC functions are still maintained [1,55], thus indicating auditory neuropathy. Transgenic
mice overexpressing Diap3 exhibit a progressive threshold shift but maintained a distortion
product of otoacoustic emissions (DPOAEs) [54,56]. Morphological assessments revealed
a selective and early onset alteration of the IHC cuticular plate and fused stereocilia with
the eventual loss of the capacity of IHC to transmit incoming sensory stimuli [54,56].
Furthermore, a significant reduction in the number of IHC ribbon synapses was observed
over 24 weeks in mutant mice, although this reduction did not correlate temporally with
the onset and progression of hearing loss or of stereocilia bundle anomalies [54]. Together,
these results suggest an important function of Diap3 in regulating the assembly and/or
maintenance of actin filaments in IHC stereocilia, as well as a potential role at the IHC
ribbon synapse.

2.2. Syndromic Auditory Neuropathy

Genetic neuropathies frequently affect other neurons, thus leading to syndromic
phenotypes such as Charcot–Marie–Tooth disease, autosomal dominant optic atrophy,
Leber’s hereditary optic neuropathy, Friedreich’s ataxia, Mohr–Tranebjaerg syndrome,
Refsum disease, or Wolfram syndrome [57–60].

2.2.1. Charcot–Marie–Tooth

Autosomal-dominant Charcot–Marie–Tooth (CMT) is the most common hereditary
peripheral polyneuropathy characterized by the degeneration of peripheral nerves. CMT
can be classified into two major categories: TMC type 1 (demyelinating neuropathies) and
type 2 (axonal form of neuropathies) [61,62]. CMT patients carry mutations in the MPZ
genes for myelin protein zero or PMP22 coding for proteins essential for the formation
and adhesion of myelin [2,63,64]. CMT type 1 A (CMT1A) is the predominant subtype,
which is a demyelinating peripheral neuropathy characterized by distal muscle weakness,
sensory loss, areflexia, and slow motor- and sensory-nerve conduction velocities [1,62,63].
Hearing impairment is also a relatively common symptom of CMT1A. Compared to con-
trols, CMT1A patients had a significantly decreased speech perception capacity in a noisy
environment, as well as decreased temporal and spectral resolution, thus suggesting that
demyelination of auditory-nerve fibers in CMT1A causes defective cochlear neurotransmis-
sion [65]. Patients with CMT type 1 and 2 showed a delayed or reduced amplitude ABR,
as well as an impaired speech intelligibility, which are electrophysiological evidence of
auditory neuropathy [62].

2.2.2. Autosomal-Dominant Optic Atrophy

Autosomal-dominant optic atrophy (DOA) is the most frequent form of hereditary
optic neuropathy [66], with a reported frequency of 1:10,000, and is caused by heterozygous
variants in the OPA1 gene encoding a mitochondrial-dynamin-related large GTPase [67–69].
OPA1 is involved in many mitochondrial functions, notably in the maintenance of the
respiratory chain and cell membrane potential [70–72], cristae organization, control of apop-
tosis [72,73], and mitochondrial DNA maintenance [74–76]. DOA was initially described as
a non-syndromic moderate-to-severe loss of visual acuity, with an insidious onset in early
childhood caused by a progressive loss of retinal ganglion cells [77]. In the last decade,
the clinical spectrum of DOA has been extended to a wide variety of symptoms, including
deafness, ataxia, neuropathy, and myopathy, and is now called dominant optic atrophy plus
(DOAplus) [74,78,79]. Deafness is the second-most prevalent clinical feature in DOAplus,
affecting about 20% of all DOA patients [17,74,78–80].
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The association of DOA and deafness is classically related to the R445H mutation
in exon 14, but other OPA1 mis-sense variants have already been reported in the litera-
ture [79,81]. Here, hearing loss starts in childhood or early adulthood [79,82]. Although
the majority of studies broadly qualify the hearing disorder as ‘sensorineural hearing loss’,
some authors have proposed auditory neuropathy as the pathophysiological mechanism
underlying the hearing impairment in OPA1-DOA [17,70,83,84]. Audiolological examina-
tion of OPA1 hearing impaired patients harboring missense mutations showed impaired
speech perception and absence or profound alteration of ABRs but preservation of OAE
and even enhanced CM potentials reflecting normal OHC function [28].

2.2.3. Leber Hereditary Optic Neuropathy

Leber hereditary optic neuropathy (LHON) is the most common mitochondrial genetic
disease. It is characterized by bilateral, subacute, painless loss of vision, and over 95% of
LHON cases are caused by one of three mitochondrial DNA (mtDNA) point mutations:
3460G>A, 11778G>A, and 14484T>C or mutation in the TMEM126A gene coding a mito-
chondrial protein. Severe axonal degeneration with demyelination of the optic nerve had
been indicated by histological necropsy studies [85]. Patients with Leber hereditary optic
neuropathy also show signs of auditory neuropathy [86,87].

2.2.4. Friedreich’s Ataxia

Friedreich’s ataxia (FRDA) is the most frequent autosomal-recessive inherited ataxia
caused by mutations in the FXN gene coding for the mitochondrial protein Frataxin in-
volved in regulating iron accumulation in the mitochondria. FRDA is due to an abnormal
repetition of the GAA triplet (100 to 2000 GAA triplets) in the FXN gene [88]. In addition to
impaired balance and coordination of voluntary movements, Friedreich’s ataxia is associ-
ated with hearing impairment, including difficulty understanding speech in background
noise; auditory thresholds were, however, unchanged [88–91], nor was OHC function [92].
Most affected individuals show abnormalities in auditory neural and brainstem responses
as a result of auditory neuropathy [92–94]. Of FRDA patients, 8 to 13% show sensorineural
hearing loss, as revealed in a pure-tone audiogram [95].

2.2.5. Mohr–Tranebjaerg Syndrome

Mohr–Tranebjaerg syndrome, in which deafness with progressive dystonia and visual
impairment are associated, can be classified as a non-isolated auditory neuropathy. Indeed,
observation of post-mortem samples shows neuronal loss with preservation of OHCs [96].
Here, again, mutations (DDP1 for deafness-dystonia) of TIMM8A/DDP1, which codes
for a polypeptide of 97 amino acids located in the mitochondria, are at the origin of
this syndrome.

3. Gene Therapies for Genetic Synaptopathies and Neuropathies

Gene therapy is an experimental technique that uses genes to treat or prevent disease
by introducing a desired foreign gene or gene-regulatory element, such as RNA interference,
into the target cells to replace or repair the defective gene [97]. Future gene therapy could
promise the restoration of hearing in some forms of monogenic deafness where cochlear
morphology is preserved for a period of time that allows intervention to restore hearing.
Several viral vectors (e.g., adenovirus (Ad), adeno-associated virus (AAV), lentivirus) have
already been used to transduce the inner ear [98,99]. The most recent studies have focused
on optimizing AAV-based vector systems (Table 1), due to their efficiency in transducing
cells of the sensory epithelium.

3.1. Restoration of Neurotransmission in IHC Synapses
3.1.1. DFNB9

Otoferlin knock-out mice, which are profoundly deaf due to a failure of sound-evoked
neurotransmitter release at the IHC synapse, are likely to be an appropriate animal model
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for DFNB9 [29,30]. AAV-mediated gene transfer of the gene encoding otoferlin is technically
challenging, due to the limited DNA packaging capacity of AAVs (≈4.7 kb). This limit
makes it impossible to package large genes such as Otof (cDNA ~6 kb). To overcome this
problem, Reisinger et al. [100] investigated the possibility of restoring hearing using the
AAV-mediated gene transfer of the synaptotagmin1 gene into mouse hair cells deficient
in otoferlin. Up to the fourth post-natal day in the mouse, calcium-triggered exocytosis
depends on synaptotagmin 1 [101], whereas synaptotagmin1/2 are not expressed in adult
IHCs [102]. Thus, extending synaptotagmin 1 expression over a longer term may rescue
the loss of otoferlin in DFNB9. Unfortunately, the strategy failed to restore the Ca2+ influx-
triggered exocytosis in IHCs of Otof−to mice [100].

Akil et al. [103] adapted a reported dual AAV-vector method for the delivery of large
cDNAs [104]. They used two different recombinant vectors, one containing the 5′ and
the other the 3′ portions. They showed that a single delivery of the two vectors through
the round-window membrane into the cochlea of Otof−/− mutant mice on P10, P17, or
P30 restored production of the full-length protein and partially restored hearing in deaf
Otof−/− mice [103].

More recently, Rankovic et al. [105] used a new gene therapeutic method of overloaded
AAVs for packaging the full-length Otof. Indeed, they packaged the full-length Otof
into several naturally occurring as well as more recently developed and highly potent
synthetic AAV serotypes. Using a p5-7 postnatal AAV injection through the round-window
membrane, they tested the efficiency of these overloaded AAVs to induce the expression of
functional otoferlin in IHCs of the mouse cochlear explants in cultures as well as in vivo
adult mice. They achieved specific expression of otoferlin in ≈30% of all IHCs and partial
restoration of hearing in Otof−/− mutant mice. These results indicate the feasibility of
using the AAV vector to package large genes such as Otof to restore hearing function
(Table 1, Figure 3).

3.1.2. DFNA25

Mutations in the SLC17A8 gene coding VGLUT3 cause autosomal dominant deafness
linked to auditory synaptopathy. Null mice, with a targeted deletion of exon 2 of the
Slc17a8 gene, displayed an absence of acoustic-stimuli-induced ABRs, while ABRs induced
by electrical stimuli were preserved, together with intact OAEs [33,34]. A successful
restoration of hearing was demonstrated in this Slc17a8-null mouse model by reinstating
the expression of Vglut3 via postnatal AAV-mediated delivery, illustrated by the restoration
of synaptic transmission and hearing [36]. A recent study showed that AAV8 expressing
Vglut3 in the cochleae of 5-, 8-, and 20-week-old Vglut3-null mice resulted in exogenous
expression of Vglut3 in all IHCs and successful restoration of hearing for at least 12 weeks
via canalostomic injection of AAV-Vglut3 [106] (Table 1).

DFNA25 patients harboring mutations in the SLC17A8 gene [33,38,39] exhibited pro-
gressive sensorineural hearing loss at high frequencies, and this also was characterized as
synaptopathy [33,39]. Thus far, however, AAV-mediated gene transfer to correct mutated
sequences and to rescue hearing in DFNA25 rodent models has not been attempted.

3.1.3. DFNB93

Human pathological mutations in the CABP2 gene have been shown to cause moderate-
to-severe, non-syndromic autosomal recessive hearing impairment DFNB93 characterized
as auditory synaptopathy [48–50,52]. A recent interesting study showed the efficiency of
round-window membrane injection of AAV2/1- and AAV-PHP.eB-mediated expression
of CABP2 in IHCs of P5-7 postnatal Cabp−/− mice in restoring IHC Cav1.3 function and
improved hearing of Cabp−/− mice [51] (Table 1, Figure 3).
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3.2. Hearing Restoration in Syndromic Auditory Neuropathy
3.2.1. Charcot–Marie–Tooth

Charcot-Marie-Tooth (CMT) type 1A (demyelinating neuropathies) is caused by a
PMP22 gene duplication. The 1.4 Mb tandem intra-chromosomal duplication on chromosome
17p11.2-p12 produces three gene copies, each translated into PMP22 protein [61,107–109].
Gene-therapeutic approaches to treat CMT1A have been designed to reduce PMP22 over-
expression at the DNA or mRNA level. For this purpose, an RNA-interference (RNAi) [110]
AAV2/9 vector expressing murine PMP22-targeting shRNA [111] and miR-318-downregulated
PMP22 mRNA [112] have been tested in mouse and rat CMT1A models. These therapeu-
tic approaches normalized MPZ and PMP22 protein levels and improved myelination,
function, locomotor activity, and electrophysiological parameters [111–114]. Furthermore,
subcutaneous administration of PMP22-targeting antisense in a CMT1A rat also reduced
the mRNA levels of Pmp22 and improved functional and morphological abnormalities of
CMT1A rodent models in a dose-depended manner [115]. However, as for the RNAi tech-
nique, antisense therapy requires repeated dosing. CRISPR/Cas9-mediated deletion of the
TATA-box promoter of the PMP22 gene in mice using non-viral intraneural injections also
downregulated Pmp22 mRNA and improved nerve pathology [116]. However, off-target
effects of gene editing approaches remain a concern, and mRNA editing techniques such as
spliceosome-mediated RNA trans-splicing may be an alternative approach [117].

Finally, supplementation of neurotrophin-3 (NT-3), a neurotrophic factor crucial for
Schwann-cell autocrine survival and regeneration, has been proposed to treat CMT1A [118].
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Subcutaneous administration of the NT-3 peptide in nude mice harboring CMT1A xenografts,
TremblerJ mice with a peripheral myelin protein 22-point mutation, and CMT1A patients
resulted in improved axonal regeneration in animal models for CMT1A and provided
beneficial effects in patients [119]. Subsequently, the same lab showed that injection of
AAV1 packaged NT-3 cDNA into muscle can act as a secretory organ for widespread dis-
tribution of NT-3 in TremblerJ mice with demyelinating CMT. This therapeutic approach
raised measurable NT-3 secretion levels in blood sufficiently to provide an improvement
in motor function, histopathology, and electrophysiology of peripheral nerves of AAV1-
NT-3 cDNA-treated TremblerJ mice [120]. These studies of the intramuscular delivery of
rAAV1 NT-3 may serve as a template for other nerve diseases involving impaired nerve
regeneration. Currently, AAV1 carrying the human NT-3 cDNA scAAV1.tMCK.NTF3 is in a
phase I/IIa clinical trial (NCT03520751) using bilateral intramuscular injections in CMT1A
patients (Table 1, Figure 3).

Despite the promise of gene therapeutic tools designed to treat CMT1A, their effects
on hearing have not yet been assessed.

3.2.2. Autosomal-Dominant Optic Atrophy

It is well known that haploinsufficiency is responsible for isolated DOA, whereas dominant-
negative or deleterious gain-of-function types might be responsible for DOAplus [121]. Thus,
increasing OPA1 expression represents a promising therapeutic approach to treat OPA1-
associated diseases. One of these gene therapy approaches is to increase OPA1 gene expres-
sion at the DNA level. To do so, Sarzi et al. [122] explored the possibility of restoring visual
function by intravitreal injections of an AAV2 carrying the human variant #1 OPA1 cDNA,
which gives rise to both the long and short OPA1 isoforms. Their results showed that
AAV2-mediated WT OPA1 supplementation therapy might be sufficient to prevent retinal
ganglion cell degeneration, although without rescuing visual function [122]. Recently,
Jüschke et al. [123] identified a novel OPA1 mutation, c.1065+5G>A, in patients with DOA.
This mutation leads to the skipping of OPA1 exon 10 and reducing the OPA1 protein expres-
sion by ≈50%. Proper OPA1 function depends, however, on the fine balance of different L-
and S-OPA1 isoforms. These authors proposed a promising strategy to convert misspliced
OPA1 transcripts into correctly spliced OPA1 transcripts and thus increase the fraction of
functional OPA1 transcripts without changing the processing of isoforms. To this end, they
engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10.
They showed that application of U1 designed to bind to intron 10 at position +18 led to
significant silencing of the effect of the mutation (skipping of exon 10) and increased the
expression level of normal transcripts in DOA-patient-derived fibroblasts [123]. This study
provides a proof-of-concept for the feasibility of splice-mutation correction as a treatment
option for DOA.

Another potential genetic therapeutic option for DOA could be CRISPR–Cas9 gene
editing. Using this technique, Sladen et al. [124] successfully achieved correction of an
OPA1 c.1334G>A: p.R445H mutant in 57% of isolated DOA-patient-derived pluripotent
stem cells (iPSCs). Correction of OPA1 led to restoration of mitochondrial homeostasis,
network and basal respiration and ATP production, and reduced susceptibility to apoptotic
stimuli in patients’ iPSCs (Table 1, Figure 3).

Altogether, these promising studies pave the way for exploring gene therapy for
auditory functional changes in mouse models carrying human OPA1 mutations.

3.2.3. Leber Hereditary Optic Neuropathy (LHON)

Gene therapies have been designed to treat LHON, consistent with compensation of
the mitochondrial complex 1 defect. This approach is based on delivering a functional
WT gene ND4 to the nucleus of retinal ganglion cells and then importing it into the
mitochondria by adding a mitochondrial targeting sequence to restore respiratory chain
activity [125,126]. This strategy has been tested in several rodent LHON models via AAV-
mediated intravitreal gene delivery. The different teams showed that intravitreal injection
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was safe and presented no ocular complications related to the treatment itself. They also
showed mitochondrial internalization of AAV, together with the expression of its genetic
content and the complementation of the pathogenic phenotype [127–133] (Table 1, Figure 3).

Table 1. Gene therapies for genetic synaptopathies and neuropathies that have been discussed in
this review.

Diseases Defective
Genes

Therapeutic
Strategies Benefic Effects Clinical

Trials

DFNB9 OTOF

AAV-synaptotagmin 1 [100]
Embryonic inner ear and organotypic culture:

Failed to rescue Ca2+-influx-triggered exocytosis

DB-OTO
phase 1/2 clinical trial in

pediatric patients

Dual AAV-Otof [103]

P10-RWM injection
Total and sustained rescue ABR threshold shifts
Amplitude wave I: 39% of the WT (P10injection),

50% of the WT (P17 injection)
Ribbon number twice higher> non treated, but

<WT

Single overloaded AAV-Otof [105]

P5-7 RWM injection:
Expression of otoferlin in 30% of IHCs

Partial restoration of hearing
Poor preservation of wave I

DFNA25 SLC17A8

AAV1- Slc17a8 [36] P1-P2 RW injection: 100% recovery ABR thresholds
40% sustained ABR recovery

AAV8- Slc17a8 [106]

5 w, 8 w, and 20 w canalostomic injection:
5 w injection: restore Vglut3 expression and hearing

Partially restore the number of synapses
8 w injection: partial rescue of hearing

20 w injection: rescue less than 50% of ABR
threshold

DFNB93 CABP2 AAV2/1 and PHP.eB-CABP2 [51]
P5-7 RW injection:

Improve at least 20dB in all frequencies in 67% of
the injected mice

CMT MPZ
PMP22

RNA-interference (RNAi) [110]
AAV2/9 -Pmp22 shRNA [111]

miR-318 [112]
CRISPR/Cas9 [116]

PMP22 antisense [115]

Intraneural injections:
Normalize MPZ and PMP22 protein levels

Improve myelination, function, locomotor activity,
and electrophysiological parameters

Subcutaneous injection:
Reduce the mRNA levels of Pmp22, improve

functional and morphological abnormalities of
CMT1A

NT-3 supplementation [119] Subcutaneous injection:
Improve axonal regeneration

AAV1-NT-3 cDNA [120]
Intramuscular injection:

Improve motor function, histopathology, and
electrophysiology of peripheral nerves

phase I/IIa clinical trial
(NCT03520751)

DAO OPA

AAV2-OPA1 [122].
Intravitreal gene delivery

Reduce retinal ganglion cell degeneration without
rescuing an efficient visual acuity

U1 splice factors [123]
(bind to intron 10 at position +18 of

OPA1)

In vitro: patient-derived and control fibroblasts
Silence the effect of the mutation, increase the

expression level of normal transcripts

CRISPR/Cas9–iPSCs (c.1334G>A:
p.R445H) [124]

In vitro:
Restore mitochondrial homeostasis, re-establish the
mitochondrial network, basal respiration, and ATP

production levels

LHON Mt DNA
TMEM126A

rAAV5-NDI1 [128]
Stereotaxic injections: infusion into the optical layer

of the SC
Rescue vision loss induced by complex I deficiency

AAV2-NDI1 [131]

Intravitreal gene delivery:
Mitochondrial internalization of AAVV

Reduce RGC death and optic nerve atrophy
Preserve retinal function (manganese, Mn2

þ)-enhanced magnetic resonance imaging (MEMRI)
and optokinetic responses

Phase 1 clinical trial of
scAAV2-P1ND4v2 of

ND4-LHON
(NCT02161380)

AAV2-ND4 [125,127,129,133] Restore the activity of the respiratory chain and
rescuing retinal ganglion cell degeneration

Phase 3 pivotal clinical
study of rAAV2/2-ND4:

REFLECT
(NCT03293524)

Abbreviation used in the table: RWM: round window membrane. w: weeks.
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4. Conclusions

This review of the literature described pathogenic mechanisms mediating genetic
ANSD, as well as genetic therapies that are currently in development. The discovery of
the gene responsible for ANSD ushered in a new and exciting time for drug discovery
and therapeutic genetic modulation. New discoveries are continuing to drive innovation
in the development of innovative treatments for both non-syndromic and syndromic
ANSD. In recent years, substantial progress has been made in developing gene therapeutic
tools to regenerate auditory synapses and neurons, or to replace defective genes through
gene therapies. Nevertheless, regardless of advances in capabilities for gene delivery, the
complex nature of regeneration and repair processes and the wide range of molecular and
cellular targets underscore the need for precisely controlled systems capable of delivering a
wide range of biomaterials such as genes, siRNAs, RNAs, and DNAs.

One exciting approach relies on the use of genome-editing technologies based on
programmable nucleases, including CRISPR–Cas9 [134]. These new technologies allow us
to remove or correct deleterious mutations or insert protective mutations in diseased cells
and tissues. The injection of CRISPR–Cas9 complexes into the ears of neonatal Beethoven
mutant mice improved auditory function [135], thus providing a potential therapeutic
option for deaf patients carrying monogenic mutations. CRISPR/Cas9-mediated deletion
of the TATA-box promoter of the PMP22 gene in a Charcot–Marie–Tooth mouse model
using non-viral intraneural injections also downregulated PMP22mRNA and improved
nerve pathology [116]. However, off-target effects of gene editing approaches remain
a concern.

An alternative approach to correcting gene mutations is using spliceosome-mediated
RNA trans-splicing, or SMaRT. This technique targets the mRNA sequence to correct the
mutations. The proof-of-concept of SMaRT has already been established in several models
of genetic diseases caused by recessive mutations [117]. This innovative technology has
not yet been investigated in the inner ear but offers hope of a single treatment for restoring
hearing in patients carrying recessive gene mutations.

The bench-to-bedside transition for AAV-mediated gene therapy took its first steps
in 2008, when the efficacy of gene therapy was demonstrated to treat Leber congenital
amaurosis. Three successful clinical trials were completed regarding the safety of subretinal
injection of 65 kDa retinal pigment epithelium-specific protein (RPE65) expressed by an
AAV vector for Leber congenital amaurosis [136–139]. Published studies of clinical trials
of genes designed to compensate for the mitochondrial complex 1 defect with the func-
tional wild-type gene with intravitreal injection of AAV2-ND4 in ND4-LHON patients
reported clinically meaningful beneficial effects beyond the expected natural history of the
disease [125]. AAV2-ND4 successfully restored the activity of the respiratory chain and
rescued retinal ganglion cell degeneration [125].

These trials have paved the way for the first FDA-approved gene therapy products
to treat ANSD. DB-OTO, a lead gene therapy product candidate directed by Decibel
Therapeutics company to treat otoferlin mutation-induced DFNB9, has received clearance
from the U.S. FDA to initiate a phase 1/2 clinical trial in pediatric patients [140]. OTOF-GT,
a lead gene therapy candidate developed by Sensorion biotech, has also been granted rare
pediatric disease designation from the U.S. FDA [141] for treating pediatric DFNB9 patients.
To date, there have been multiple clinical trials studying AAV-mediated gene therapy in
optic neuropathies. However, there have been no trials involving auditory neuropathies,
although the gene therapy of monogenic disease using AAV has become feasible. The
discrepancy between the progress of optic and auditory neuropathy gene therapies has
mostly been attributed to the earlier preclinical success and the increased accessibility
for treatments of the eye relative to the cochlea. In addition, heterogeneity is the major
challenge in the treatment of genetic ANSD, as several factors affect treatment efficacy, such
as therapeutic window, targets, targeting molecules, and protein function.

Future therapies to restore synaptic transmission or to regenerate auditory nerve fibers
must consider multiple targets that account for the complexity of disease-causing factors
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and pathogenetic mechanisms. Looking back on the historical, functional, and molecular
achievements made in this field, each were made possible by technological developments
defining a new epoch. In order to overcome the somewhat static current status in terms
of clinical trials, we now need to refine the protocol of these trials and search for more
predictive animal models of deafness on which they are based. Additionally, there is also a
need to develop more reliable clinical diagnostic tools for early identification of ANSD, as
well as to carefully evaluate the degree of degeneration of auditory synapses and nerve
fibers. Clinical trials of biologic agents to treat ANSD need valid clinical outcome measures
and biomarkers.
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