Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host–Microbiota Interaction Research
Abstract
:1. Introduction
2. The Concept and Technique of Colonic TET
3. The Applications of Colonic TET
3.1. Colonic TET for Microbial Therapy
3.2. Colonic TET for Drainage and Decompression from Deep Colon
4. Host-Microbiota Interaction Based on Sampling via Colonic TET
4.1. Discovery in Host–Microbiota Interaction
4.2. Precision Delivery of Potential Microbiota and Its Metabolites
4.3. The Proof-of-Concept on Translational Microbial Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B.S. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 2013, 108, 478–498; quiz 499. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Ding, X.; Li, Q.; Wu, X.; Dai, M.; Long, C.; He, Z.; Cui, B.; Zhang, F. Efficacy of faecal microbiota transplantation in Crohn’s disease: A new target treatment? Microb. Biotechnol. 2020, 13, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, Q.; Li, P.; Zhang, T.; Cui, B.; Ji, G.; Lu, X.; Zhang, F. Long-Term Safety and Efficacy of Fecal Microbiota Transplant in Active Ulcerative Colitis. Drug Saf. 2019, 42, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, H.; Luo, Q.; Xu, H.; He, J.; Li, Y.; Zhou, Y.; Yao, F.; Nie, Y.; Zhou, Y. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota. J. Dig. Dis. 2019, 20, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhong, H.; Huang, D.; Wu, L.; He, X. Beneficial Effects of Repeated Washed Microbiota Transplantation in Children with Autism. Front. Pediatr. 2022, 10, 928785. [Google Scholar] [CrossRef]
- Meijnikman, A.S.; Gerdes, V.E.; Nieuwdorp, M.; Herrema, H. Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocr. Rev. 2018, 39, 133–153. [Google Scholar] [CrossRef]
- Dai, M.; Liu, Y.; Chen, W.; Buch, H.; Shan, Y.; Chang, L.; Bai, Y.; Shen, C.; Zhang, X.; Huo, Y.; et al. Rescue fecal microbiota transplantation for antibiotic-associated diarrhea in critically ill patients. Crit. Care 2019, 23, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Li, Q.; Li, P.; Chen, X.; Xiang, L.; Bi, L.; Zhu, J.; Huang, X.; Cui, B.; Zhang, F. Fecal microbiota transplantation: A promising treatment for radiation enteritis? Radiother. Oncol. 2020, 143, 12–18. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, X.; Cai, J.; Yuan, Y.; Xie, W.; Xu, J.; Xia, H.H.; Zhang, M.; He, X.; Wu, L. Washed microbiota transplantation reduces proton pump inhibitor dependency in nonerosive reflux disease. World J. Gastroenterol. 2021, 27, 513–522. [Google Scholar] [CrossRef]
- Gulati, M.; Singh, S.K.; Corrie, L.; Kaur, I.P.; Chandwani, L. Delivery routes for faecal microbiota transplants: Available, anticipated and aspired. Pharmacol. Res. 2020, 159, 104954. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, B.; He, X.; Nie, Y.; Wu, K.; Fan, D.; FMT-Standardization Study Group. Microbiota transplantation: Concept, methodology and strategy for its modernization. Protein Cell 2018, 9, 462–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Z.; Xiang, J.; He, Z.; Zhang, T.; Xu, L.; Cui, B.; Li, P.; Huang, G.; Ji, G.; Nie, Y.; et al. Colonic transendoscopic enteral tubing: A novel way of transplanting fecal microbiota. Endosc. Int. Open 2016, 4, E610–E613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youngster, I.; Russell, G.H.; Pindar, C.; Ziv-Baran, T.; Sauk, J.; Hohmann, E.L. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 2014, 312, 1772–1778. [Google Scholar] [CrossRef] [Green Version]
- Long, C.; Yu, Y.; Cui, B.; Jagessar, S.A.R.; Zhang, J.; Ji, G.; Huang, G.; Zhang, F. A novel quick transendoscopic enteral tubing in mid-gut: Technique and training with video. BMC Gastroenterol. 2018, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Marcella, C.; Cui, B.; Kelly, C.R.; Ianiro, G.; Cammarota, G.; Zhang, F. Systematic review: The global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment. Pharmacol. Ther. 2020, 53, 33–42. [Google Scholar] [PubMed]
- Allegretti, J.R.; Mullish, B.H.; Kelly, C.; Fischer, M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019, 394, 420–431. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, Q.; Cui, B. Drainage via colonic transendoscopic enteral tubing increases our confidence in rescuing endoscopy-associated perforation. Endoscopy 2021, 54, E201–E202. [Google Scholar] [CrossRef]
- Liu, X.; Dai, M.; Ma, Y.; Zhao, N.; Wang, Z.; Yu, Y.; Xu, Y.; Zhang, H.; Xiang, L.; Tian, H.; et al. Reconstruction and Dynamics of the Human Intestinal Microbiome Observed In Situ. Engineering 2021, 15, 89–101. [Google Scholar] [CrossRef]
- Zhang, T.; Long, C.; Cui, B.; Buch, H.; Wen, Q.; Li, Q.; Ding, X.; Ji, G.; Zhang, F. Colonic transendoscopic tube-delivered enteral therapy (with video): A prospective study. BMC Gastroenterol. 2020, 20, 135. [Google Scholar] [CrossRef]
- Zhong, M.; Buch, H.; Wen, Q.; Long, C.; Cui, B.; Zhang, F. Colonic Transendoscopic Enteral Tubing: Route for a Novel, Safe, and Convenient Delivery of Washed Microbiota Transplantation in Children. Gastroenterol. Res. Pract. 2021, 2021, 6676962. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, K.-J.; Cui, B.-T.; Li, P.; Wu, X.; Zhong, M.; Wei, L.; Tu, H.; Yuan, Y.; Lin, D.; et al. Impact of cap-assisted colonoscopy during transendoscopic enteral tubing: A randomized controlled trial. World J. Gastroenterol. 2020, 26, 6098–6110. [Google Scholar] [CrossRef] [PubMed]
- Oancea, I.; Movva, R.; Das, I.; de Cárcer, D.A.; Schreiber, V.; Yang, Y.; Purdon, A.; Harrington, B.; Proctor, M.; Wang, R.; et al. Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism. Gut 2016, 66, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Lu, G.; Zhao, Z.; Liu, Y.; Shen, Q.; Li, P.; Chen, Y.; Yin, H.; Wang, H.; Marcella, C.; et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: Clinical findings, animal studies and in vitro screening. Protein Cell 2020, 11, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Wang, W.; Li, P.; Wen, Q.; Cui, B.; Zhang, F. Washed preparation of faecal microbiota changes the transplantation related safety, quantitative method and delivery. Microb. Biotechnol. 2022, 15, 2439–2449. [Google Scholar] [CrossRef] [PubMed]
- Fecal Microbiota Transplantation-Standardization Study Group. Nanjing consensus on methodology of washed microbiota transplantation. Chin. Med. J. 2020, 133, 2330–2332. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Mullish, B.H.; Kelly, C.R.; Kassam, Z.; Kuijper, E.J.; Ng, S.C.; Iqbal, T.H.; Allegretti, J.R.; Bibbo, S.; Sokol, H.; et al. Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut 2020, 69, 1555–1563. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, X.; Su, S.; Zhou, H.; Jin, Y.; Shi, Y.; Lin, J.; Wang, J.; Li, X.; Yang, G.; et al. Patients and physicians’ attitudes change on fecal microbiota transplantation for inflammatory bowel disease over the past 3 years. Ann. Transl. Med. 2021, 9, 1619. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, Y.; Wang, H.-G.; Marcella, C.; Cui, B.-T.; Miao, Y.-L.; Zhang, F.-M. Awareness and attitude of fecal microbiota transplantation through transendoscopic enteral tubing among inflammatory bowel disease patients. World J. Clin. Cases 2020, 8, 3786–3796. [Google Scholar] [CrossRef]
- Dai, M.; Zhang, T.; Li, Q.; Cui, B.; Xiang, L.; Ding, X.; Rong, R.; Bai, J.; Zhu, J.; Zhang, F. The bowel preparation for magnetic resonance enterography in patients with Crohn’s disease: Study protocol for a randomized controlled trial. Trials 2019, 20, 1. [Google Scholar] [CrossRef]
- Philip, S.; Tageldin, O.; Mansoor, M.S.; Richter, S. Successful Fecal Microbiota Transplant Delivered by Foley Catheter Through a Loop Ileostomy in a Patient with Severe Complicated Clostridioides difficile Infection. ACG Case Rep. J. 2022, 9, e00801. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Borody, T.J.; Zhang, F.M. Encyclopedia of fecal microbiota transplantation: A review of effectiveness in the treatment of 85 diseases. Chin. Med. J. 2022, 135, 1927–1939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jin, Z.; Yang, Z.; Zhang, J.; Ma, X.; Guan, J.; Sun, B.; Chen, X. Fecal Microbiota Transplantation Ameliorates Active Ulcerative Colitis by Downregulating Pro-inflammatory Cytokines in Mucosa and Serum. Front. Microbiol. 2022, 13, 818111. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, H.; Xu, H.; Luo, Q.; He, J.; Li, Y.; Zhou, Y.; Nie, Y.; Zhou, Y. Fecal microbiota transplantation ameliorates active ulcerative colitis. Exp. Ther. Med. 2020, 19, 2650–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Zhang, T.; Xiao, Y.; Tian, L.; Cui, B.; Ji, G.; Liu, Y.-Y.; Zhang, F. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn’s disease. Appl. Microbiol. Biotechnol. 2018, 103, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ding, X.; Liu, Y.; Marcella, C.; Dai, M.; Zhang, T.; Bai, J.; Xiang, L.; Wen, Q.; Cui, B.; et al. Fecal Microbiota Transplantation is a Promising Switch Therapy for Patients with Prior Failure of Infliximab in Crohn’s Disease. Front. Pharmacol. 2021, 12, 658087. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, X.L.; Zhang, Y.J.; Nie, Y.Z.; Wu, K.C.; Shi, Y.Q. Efficacy and safety of fecal microbiota transplantation by washed preparation in patients with moderate to severely active ulcerative colitis. J. Dig. Dis. 2020, 21, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-Q.; Huang, H.-L.; Peng, W.; Liu, Y.-D.; Zhou, Y.-L.; Xu, H.-M.; Zhang, L.-J.; Zhao, C.; Nie, Y.-Q. Altered Pattern of Immunoglobulin A-Targeted Microbiota in Inflammatory Bowel Disease After Fecal Transplantation. Front. Microbiol. 2022, 13, 873018. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bai, M.; Yang, X.; Wang, Y.; Li, R.; Sun, S. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: The first case reports. Ren. Fail. 2021, 43, 928–933. [Google Scholar] [CrossRef]
- Cai, J.; Chen, X.; He, Y.; Wu, B.; Zhang, M.; Wu, L. Washed microbiota transplantation reduces serum uric acid levels in patients with hyperuricaemia. World J. Clin. Cases 2022, 10, 3401–3413. [Google Scholar] [CrossRef]
- Xie, W.R.; Yang, X.Y.; Deng, Z.H.; Zheng, Y.M.; Zhang, R.; Wu, L.H.; Cai, J.Y.; Kong, L.P.; Xia, H.H.; He, X.X. Effects of washed microbiota transplantation on serum uric acid levels, symptoms and intestinal barrier function in patients with acute and recurrent gout: A pilot study. Dig. Dis. 2022, 40, 684–690. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, F.; Su, Y.; Wang, J.; Wu, D.; Hsu, W. Initial experience of fecal microbiota transplantation in gastrointestinal disease: A case series. Kaohsiung J. Med. Sci. 2019, 35, 566–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Sun, X.; Liu, Z. Application of colonic transendoscopic enteral tubing in the treatment of extensive moderate ulcerative colitis. Chin. J. Digest. Med. Imageol. 2021, 11, 106–110. [Google Scholar] [CrossRef]
- Long, C.; He, Z.; Cui, B.; Zhang, T.; Wen, Q.; Li, Q.; Zhang, J.; Ji, G.; Zhang, F. Methodology, safety and applications of colonic transendoscopic enteral tubing (with video). Chin. J. Dig. Endosc. 2020, 37, 28–32. [Google Scholar] [CrossRef]
- Luo, W.; Xie, W.; Chen, Q.; Xue, L.; He, X. Evaluation of the efficacy and safety of fecal microbiota transplantation in different ways on ulcerative colitis. Chin. J. Gastroenterol. Hepatol. 2020, 29, 1008–1011. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Wang, S.; Xu, W. Application of transendoscopic enteral tubing in the treatment of extensive colonic ulcerative colitis. J. Pract. Med. 2019, 35, 2824–2827. [Google Scholar] [CrossRef]
- Shen, B.; Kochhar, G.S.; Navaneethan, U.; Cross, R.K.; Farraye, F.A.; Iacucci, M.; Schwartz, D.A.; Gonzalez-Lama, Y.; Schairer, J.; Kiran, R.P.; et al. Endoscopic evaluation of surgically altered bowel in inflammatory bowel disease: A consensus guideline from the Global Interventional Inflammatory Bowel Disease Group. Lancet Gastroenterol. Hepatol. 2021, 6, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Kochhar, G.; Navaneethan, U.; Farraye, F.A.; Schwartz, D.A.; Iacucci, M.; Bernstein, C.N.; Dryden, G.; Cross, R.; Bruining, D.H.; et al. Practical guidelines on endoscopic treatment for Crohn’s disease strictures: A consensus statement from the Global Interventional Inflammatory Bowel Disease Group. Lancet Gastroenterol. Hepatol. 2020, 5, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.; Hull, T.L.; Shen, B. Endoscopic stricturotomy and ileo-colonic resection in patients with primary Crohn’s disease-related distal ileum strictures. Gastroenterol. Rep. 2020, 8, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lan, N.; Wu, X.; Shen, B. Endoscopic stricturotomy in the treatment of anastomotic strictures in inflammatory bowel disease (IBD) and non-IBD patients. Gastroenterol. Rep. 2019, 8, 143–150. [Google Scholar] [CrossRef]
- Book, T.; Kirstein, M.M.; Schneider, A.; Manns, M.P.; Voigtländer, T. Endoscopic decompression of acute intestinal distension is associated with reduced mortality in critically ill patients. BMC Gastroenterol. 2020, 20, 87. [Google Scholar] [CrossRef]
- Hiraki, M.; Tanaka, T.; Okuyama, K.; Kubo, H.; Ikeda, O.; Kitahara, K. Colon perforation caused by transanal decompression tube after laparoscopic low anterior resection: A case report. Int. J. Surg. Case Rep. 2021, 80, 105640. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Kumamoto, K.; Enomoto, T.; Koizumi, K.; Kato, H.; Saida, Y. Comparison of survival and perioperative outcome of the colonic stent and the transanal decompression tube placement and emergency surgery for left-sided obstructive colorectal cancer: A retrospective multi-center observational study “The CODOMO study”. Int. J. Color. Dis. 2020, 36, 987–998. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Wang, N.; Yang, Z.; Li, Y.; Xu, B.; Guo, G.; Sun, M. Efficacy of transanal drainage tube and self-expanding metallic stent in acute left malignant colorectal obstruction. Ann. Palliat. Med. 2020, 9, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Endo, K.; Takahashi, S.; Shiga, H.; Kakuta, Y.; Kinouchi, Y.; Shimosegawa, T. Short and long-term outcomes of endoscopic balloon dilatation for Crohn’s disease strictures. World J. Gastroenterol. 2013, 19, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Paspatis, G.A.; Arvanitakis, M.; Dumonceau, J.-M.; Barthet, M.; Saunders, B.; Turino, S.Y.; Dhillon, A.; Fragaki, M.; Gonzalez, J.-M.; Repici, A.; et al. Diagnosis and management of iatrogenic endoscopic perforations: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement—Update 2020. Endoscopy 2020, 52, 792–810. [Google Scholar] [CrossRef]
- Belle, S. Endoscopic Decompression in Colonic Distension. Visc. Med. 2021, 37, 142–148. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, L.J.; Xiang, J.; He, Z.; Peng, Z.Y.; Huang, G.M.; Ji, G.Z.; Zhang, F.M. Cap-assisted endoscopic sclerotherapy for hemorrhoids: Methods, feasibility and efficacy. World J. Gastrointest. Endosc. 2015, 7, 1334–1340. [Google Scholar] [CrossRef] [Green Version]
- Dorrestein, P.C.; Mazmanian, S.K.; Knight, R. Finding the missing links among metabolites, microbes, and the host. Immunity 2014, 40, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Silpe, J.E.; Balskus, E.P. Deciphering Human Microbiota–Host Chemical Interactions. ACS Central Sci. 2020, 7, 20–29. [Google Scholar] [CrossRef]
- Tang, Q.; Jin, G.; Wang, G.; Liu, T.; Liu, X.; Wang, B.; Cao, H. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front. Cell. Infect. Microbiol. 2020, 10, 151. [Google Scholar] [CrossRef]
- Stearns, J.C.; Lynch, M.D.J.; Senadheera, D.B.; Tenenbaum, H.C.; Goldberg, M.B.; Cvitkovitch, D.G.; Croitoru, K.; Moreno-Hagelsieb, G.; Neufeld, J.D. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011, 1, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Sun, J.; Yao, F.; Lin, K.; Yuan, Y.; Chen, Y.; Han, H.; Li, Z.; Zou, J.; Jiao, X. Microbiome in Intestinal Lavage Fluid May Be A Better Indicator in Evaluating the Risk of Developing Colorectal Cancer Compared with Fecal Samples. Transl. Oncol. 2020, 13, 100772. [Google Scholar] [CrossRef] [PubMed]
- Reitmeier, S.; Kiessling, S.; Clavel, T.; List, M.; Almeida, E.L.; Ghosh, T.S.; Neuhaus, K.; Grallert, H.; Linseisen, J.; Skurk, T.; et al. Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host Microbe 2020, 28, 258–272.e6. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Wang, Y.; Li, Y.; Ye, C.; Ruhn, K.A.; Behrendt, C.L.; Olson, E.N.; Hooper, L.V. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 2019, 365, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, Y.; Dai, M.; Xu, J.; Chen, L.; Zhang, F.; Zhao, N.; Wang, J. Profiling of Human Gut Virome with Oxford Nanopore Technology. Med. Microecol. 2020, 4, 100012. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Yu, Y.; Zhang, W.; Shi, J.; Zhang, X.; Dai, M.; Wang, Y.; Zhang, H.; Zhang, J.; et al. Gut microbial methionine impacts circadian clock gene expression and reactive oxygen species level in host gastrointestinal tract. Protein Cell 2022, pwac021. [Google Scholar] [CrossRef]
- Fawad, J.A.; Luzader, D.H.; Hanson, G.F.; Moutinho, T.J.; McKinney, C.A.; Mitchell, P.G.; Brown-Steinke, K.; Kumar, A.; Park, M.; Lee, S.; et al. Histone deacetylase inhibition by gut microbe-generated short chain fatty acids entrains intestinal epithelial circadian rhythms. Gastroenterology 2022, 163, 1377–1390.e11. [Google Scholar] [CrossRef]
- He, R.; Li, P.; Wang, J.; Cui, B.; Zhang, F.; Zhao, F. The interplay of gut microbiota between donors and recipients determines the efficacy of fecal microbiota transplantation. Gut Microbes 2022, 14, 2100197. [Google Scholar] [CrossRef]
- Cox, T.O.; Lundgren, P.; Nath, K.; Thaiss, C.A. Metabolic control by the microbiome. Genome. Med. 2022, 14, 80. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, L.; Fang, X.; Guo, Z.; Wang, X.; Shi, B.; Meng, Q. Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs. Microbiome 2022, 10, 115. [Google Scholar] [CrossRef]
- Serger, E.; Luengo-Gutierrez, L.; Chadwick, J.S.; Kong, G.; Zhou, L.; Crawford, G.; Danzi, M.C.; Myridakis, A.; Brandis, A.; Bello, A.T.; et al. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature 2022, 607, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, B.; Wang, N.; Zuo, Z.; Wei, H.; Zhao, F. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut 2022, gutjnl-2022-328035. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, B.; Ji, P.; Zuo, Z.; Huang, Y.; Wang, N.; Liu, C.; Liu, S.J.; Zhao, F. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8(+/−) mouse model of ASD-like behavior. Nat. Commun. 2022, 13, 1151. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Song, H.; Luo, Z.; Wu, H.; Chen, L.; Wang, Y.; Cui, H.; Zhang, Y.; Wang, B.; Li, W.; et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc. Natl. Acad. Sci. USA 2021, 118, e2017762118. [Google Scholar] [CrossRef]
- Messaoudene, M.; Pidgeon, R.; Richard, C.; Ponce, M.; Diop, K.; Benlaifaoui, M.; Nolin-Lapalme, A.; Cauchois, F.; Malo, J.; Belkaid, W.; et al. A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti–PD-1 Resistance through Effects on the Gut Microbiota. Cancer Discov. 2022, 12, 1070–1087. [Google Scholar] [CrossRef]
- Bell, K.J.; Saad, S.; Tillett, B.J.; McGuire, H.M.; Bordbar, S.; Yap, Y.A.; Nguyen, L.T.; Wilkins, M.R.; Corley, S.; Brodie, S.; et al. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome 2022, 10, 9. [Google Scholar] [CrossRef]
- Shin, J.; Noh, J.R.; Choe, D.; Lee, N.; Song, Y.; Cho, S.; Kang, E.J.; Go, M.J.; Ha, S.K.; Chang, D.H.; et al. Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. Microbiome 2021, 9, 240. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; Qin, X.; Zhou, B.; Liu, X.; Liu, T.; Xie, R.; Liu, J.; Wang, B.; Cao, H. Saccharomyces boulardii, a yeast probiotic, inhibits gut motility through upregulating intestinal serotonin transporter and modulating gut microbiota. Pharmacol. Res. 2022, 181, 106291. [Google Scholar] [CrossRef]
- Griffin, M.E.; Espinosa, J.; Becker, J.L.; Luo, J.-D.; Carroll, T.S.; Jha, J.K.; Fanger, G.R.; Hang, H.C. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 2021, 373, 1040–1046. [Google Scholar] [CrossRef]
- Lu, H.; Xu, X.; Fu, D.; Gu, Y.; Fan, R.; Yi, H.; He, X.; Wang, C.; Ouyang, B.; Zhao, P.; et al. Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis. Cell Host Microbe 2022, 30, 1139–1150.e1137. [Google Scholar] [CrossRef]
- Erny, D.; Dokalis, N.; Mezö, C.; Castoldi, A.; Mossad, O.; Staszewski, O.; Frosch, M.; Villa, M.; Fuchs, V.; Mayer, A.; et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021, 33, 2260–2276.e7. [Google Scholar] [CrossRef]
- Yang, K.; Wang, X.; Huang, R.; Wang, H.; Lan, P.; Zhao, Y. Prebiotics and Postbiotics Synergistic Delivery Microcapsules from Microfluidics for Treating Colitis. Adv. Sci. 2022, 9, e2104089. [Google Scholar] [CrossRef]
- Federici, S.; Kredo-Russo, S.; Valdés-Mas, R.; Kviatcovsky, D.; Weinstock, E.; Matiuhin, Y.; Silberberg, Y.; Atarashi, K.; Furuichi, M.; Oka, A.; et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 2022, 185, 2879–2898.e24. [Google Scholar] [CrossRef] [PubMed]
- Fluckiger, A.; Daillère, R.; Sassi, M.; Sixt, B.S.; Liu, P.; Loos, F.; Richard, C.; Rabu, C.; Alou, M.T.; Goubet, A.-G.; et al. Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science 2020, 369, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Zhang, D.; Chen, W.; He, J.; Ren, C.; Zhang, X.; Kong, N.; Tao, W.; Zhou, M. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci. Adv. 2021, 7, abi9265. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Ghosh, S.; Bhowmick, A.; Gadhave, K.; Datta, S.; Ghosh, A.; Garg, N.; Mahajan, R.L.; Basu, B.; Choudhury, D. Bacterioboat—A novel tool to increase the half-life period of the orally administered drug. Sci. Adv. 2022, 8, eabh1419. [Google Scholar] [CrossRef]
- Wu, F.; Liu, J. Decorated bacteria and the application in drug delivery. Adv. Drug. Deliv. Rev. 2022, 188, 114443. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, X.; Wang, J. Small molecules in the big picture of gut microbiome-host cross-talk. Ebiomedicine 2022, 81, 104085. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, J.; Boparai, R.K.; Zhu, J.; Mantri, S.; Khare, P.; Khardori, R.; Kondepudi, K.K.; Chopra, K.; Bishnoi, M. Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharmacol. Res. 2017, 123, 103–113. [Google Scholar] [CrossRef]
- Elkrief, A.; Routy, B. First clinical proof-of-concept that FMT can overcome resistance to ICIs. Nat. Rev. Clin. Oncol. 2021, 18, 325–326. [Google Scholar] [CrossRef]
Delivery Ways | Advantages | Limitations |
---|---|---|
Oral capsules | Overcome the concern of invasive administration; easy to perform | Efficacy may affect by gastric acid and the preservation state of bacteria |
Gastroscopy | Easy to reach the target location | Not convenient to repeat FMTs |
Mid-gut/Nasojejunal tube/PEGJ tube | Easy to reach the target location; convenient to repeat FMTs; easy to maintain | Placed under gastroscopy; limited and special population for use |
Colonoscopy | Easy to reach the target location | Not convenient to repeat FMTs |
Colonic TET tube | Easy to reach the target location; convenient to repeat FMTs; easy to maintain; | Placed under colonoscopy |
Stoma in ilecolon/colon | Convenient to repeat FMTs; easy to perform | Only for selected population with surgical double-cavity stoma in ilecolon/colon |
Enema | Easy to perform; low cost | Difficulty to hold the bacteria suspension in rectum for a long time |
Author, Year | Article Type | Case, n | Sex, Male, n (%); Age, Mean (Range), Years | Indication | Clinical Success Rate | Satisfaction Rate | The Mean Retention Time | Adverse Events | The Target Location | The Endoscopic Clips | The Average of Endoscopic Clips |
---|---|---|---|---|---|---|---|---|---|---|---|
Zhang et al., 2022 [32] | Prospective study | 27 | 17(63.0%); 47.48 ± 12.34 | UC | 100% | NA | NA | NA | NA | NA | NA |
Chen et al., 2021 [42] | Retrospective study | 16 | 10 (62.5%); 39.88 ± 11 | UC | 100% | 97.3% | NA | 3 | NA | NA | NA |
Zhong et al., 2021 [20] | Prospective study | 47 | 42 (89.36%); 5(4–6) | 21 autism, 6 UC, 2 rCDI, 1 CD, 17 others | 100% | 100% | 6 (5–7) | 4 | 29 in ileocecal, 12 in the transverse colon, 6 in left colon ileum | 35 in large, 12 in small | 2 (1.75–3) |
Long et al., 2020 [43] | Prospective study | 257 | 138 (57%); 39.9 ± 18.4 | 132 UC, 14 CD, 10 epilepsy, 8 autism, 56 others | 100% | NA | 9.3 ± 3.8 (2–28) | 21 | 215 in ileocecal, 6 in the transverse colon, 25 in the left colon, 6 in descending colon | 154 in large, 103 in small | 3.5 ± 1.0 (2–6) (in 95 cases) |
Luo et al., 2020 [44] | Retrospective study | 9 | 6 (66.7%); 47.44 ± 12.26 | UC | 100% | NA | NA | 1 | NA | NA | NA |
Wen et al., 2020 [21] | Randomized controlled trial | 303 | 155 (51.16%); 44.4 ± 17.6 | 93 constipation, 88 UC, 32 IBS, 9 CD, 2 health, 75 others | 100% | 100% | 8 (6–10) | 9 | NA | NA | 2.65 ± 1.1 |
Liu et al., 2021 [18] | Prospective study | 5 | NA | Health | 100% | NA | NA | NA | 5 in ileocecal | NA | NA |
Chen et al., 2020 [33] | Prospective study | 44 | 25 (57%); 44.4 ± 17.6 | UC | 100% | NA | NA | 5 | NA | NA | NA |
Chen et al., 2020 [36] | Prospective study | 5 | 5 (100%); 47.9 ± 10.6 | UC | 100% | NA | NA | 0 | NA | NA | NA |
Zhang et al., 2019 [45] | Randomized controlled trial | 21 | NA; 49.2 ± 13.77 | UC | 100% | 100% | NA | 3 | 21 in ileocecal | NA | NA |
Wang et al., 2019 [41] | Case series | 5 | 4 (80%); 56.33 (31–94) | 4 rCDI, 1 CD | 100% | NA | NA | NA | 5 in left colon | NA | NA |
Zhang et al., 2021 [17] | Case | 3 | 1 (50%); 38 (25–51) | 2UC, 1 CD | 100% | NA | NA | NA | 1 in left colon, 2 in descending colon | NA | NA |
Luo et al., 2021 [44] | Case | 1 | 1 (100%); 32 | UC | 100% | NA | NA | NA | NA | NA | NA |
Zhao et al., 2021 [38] | Case | 2 | 0 (0%); 40 (32–48) | Refractory IgA nephropathy | 100% | NA | NA | 2 | NA | NA | NA |
Wang et al., 2020 [41] | Case | 1 | 1 (100%); 77 | rCDI | 100% | NA | NA | NA | NA | NA | NA |
Zhong et al., 2019 [20] | Case | 1 | 1 (100%); 31 | CD | 100% | NA | NA | NA | NA | NA | NA |
Zhang et al., 2019 [45] | Case | 1 | 1 (100%); 55 | UC | 100% | NA | NA | NA | NA | NA | NA |
Item | Name | Model | Disease | Delivery Route | Possible Mechanism |
---|---|---|---|---|---|
Chemical substances and food | Acetylcholine | Mice and human | IBD | Enema | ACh promotes interleukin-10 secretion of monocytic myeloid-derived suppressor cells and suppresses the inflammation through activating the nAChR/ERK pathway [74] |
Polyphenol | Mice | Cancer | Oral administration | Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/Foxp3+CD4+ ratio within the tumor microenvironment [75]. | |
Starch modified with acetate and butyrate | Human | Type 1 diabetes | Oral administration | Changes in gut microbiota composition, function, and immune profile following 6 weeks of starch supplementation were associated with increased SCFAs in stools and plasma [76]. | |
Intestinal microbiota | Akkermansia | Mice | Aging | Oral administration | Oral administration of Akkermansia sufficiently ameliorated the senescence-related phenotype in the intestinal systems in aged mice and extended the health span [77] |
Saccharomyces Boulardii (Sb) | Mice | IBS | Gavage | Sb could upregulate SERT by EGFR activation and modulate gut microbiota to inhibit gut motility [78]. | |
Enterococcus | Mice | Cancer | Oral administration | Active enterococci express and secrete orthologs of the NlpC/p60 peptidoglycan hydrolase SagA that generate immune-active muropeptides. Expression of SagA in nonprotective E. faecalis was sufficient to promote anti-PD-1 antitumor efficacy [79]. | |
Eubacterium rectale | Mice | Lymphomagenesis | Oral administration | Producing butyrate to alleviate the TNF-induced TLR4/My88/NF-kB axis [80] | |
Metabolites | Acetate | Mice | Alzheimer’s disease | Oral administration | Acetate as the essential microbiome-derived SCFA driving microglia maturation and regulating the homeostatic metabolic state [81]. |
9-amino-acid (D3) | Mice and macaques | Obesity | Oral administration | D3 ameliorated leptin resistance and upregulated the expression of uroguanylin (UGN), which suppresses appetite via the UGN-GUCY2C endocrine axis, and increased the abundance of Akkermansia [72]. | |
Indoles-3-propionic acid (IPA) | Human | Colitis | Oral administration | Modulating the gut microbiota, that is by significantly increasing the overall richness and abundance of short-chain fatty acids (SCFA) producing bacteria such as Faecalibacterium and Roseburia [82]. | |
Phage | Kp2-phage | Mice and human | Intestinal inflammation | Oral administration | Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut [83]. |
Enterococcal bacteriophage | Mice | Tumor | Oral administration | In mouse models, administration of enterococci containing the bacteriophage boosted T cell responses after treatment with chemotherapy or programmed cell death protein 1 (PD-1) blockade. In humans, the presence of the bacteriophage was associated with improved survival after PD-1 immunotherapy [84]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Lu, G.; Wu, X.; Wen, Q.; Zhang, F. Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host–Microbiota Interaction Research. J. Clin. Med. 2023, 12, 780. https://doi.org/10.3390/jcm12030780
Wang W, Lu G, Wu X, Wen Q, Zhang F. Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host–Microbiota Interaction Research. Journal of Clinical Medicine. 2023; 12(3):780. https://doi.org/10.3390/jcm12030780
Chicago/Turabian StyleWang, Weihong, Gaochen Lu, Xia Wu, Quan Wen, and Faming Zhang. 2023. "Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host–Microbiota Interaction Research" Journal of Clinical Medicine 12, no. 3: 780. https://doi.org/10.3390/jcm12030780
APA StyleWang, W., Lu, G., Wu, X., Wen, Q., & Zhang, F. (2023). Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host–Microbiota Interaction Research. Journal of Clinical Medicine, 12(3), 780. https://doi.org/10.3390/jcm12030780