Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers
Abstract
:1. Introduction
2. Methods
3. Brief Overview on the Pathogenesis of Diabetic Retinopathy
4. Angiogenic and Inflammatory Mediators in Diabetic Retinopathy
4.1. Vitreous Humor Biomarkers
4.2. Aqueous Humor Biomarkers
4.3. Serum and Plasma Biomarkers
5. Corneal Biomarkers
5.1. Corneal Thickness
5.1.1. Anterior Segment OCT
5.1.2. Ultrasound Pachymetry
5.1.3. Specular Microscopy
5.1.4. Dynamic Sheimpflug Analyzer Corvis ST (CST) and Pentacam
5.2. Epithelial Cell Density
5.3. Endothelial Cell Density (ECD)
5.3.1. Specular Microscopy
5.3.2. In Vivo Corneal Confocal Microscopy (CCM)
5.4. Coefficient of Variation in Cell Size (CV)
5.5. Percentage of Hexagonal Cells
5.6. Diabetic Corneal Neuropathy
In Vivo Corneal Confocal Microscopy
6. Retinal Biomarkers
6.1. Diabetic Macular Oedema
6.1.1. OCT
- -
- Intraretinal cystoid spaces: The persistence of intraretinal cystoid spaces can result in permanent photoreceptor damage and visual impairment. Some findings of intraretinal cysts, including the location, size and presence of bridging hyperreflective material, have been associated with functional prognosis in diabetic eyes [153]. In particular, intraretinal cysts larger than 200 μm in the outer nuclear layer (ONL) have been associated with the disruption of IS/OS junction, reduced retinal sensitivity on microperimetry, poor visual prognosis and greater extent of macular ischemia [154,155,156]. The size of the cysts may also have a predictive value in case of pars plana vitrectomy (PPV) and internal limiting membrane (LM) peeling for chronic DME, as the presence of intraretinal cysts larger than 390 μm has been associated with the postoperative development of subfoveal atrophy [157].
- -
- Increased retinal thickness: Although increased retinal thickness (RT) is strictly associated with the presence of subretinal and/or intraretinal fluid, these findings appeared to be not correlated with visual acuity and visual outcomes in eyes with DME [154].
- -
- Hyperreflective retinal foci (HRF) is defined as intraretinal dots located in both inner and outer retina, with reflectivity similar to that of retinal nerve fiber layer, diameter <30 μm and no back-shadowing. These lesions may represent extravasated lipoproteins [158] or activated microglial cells [159] and are widely considered biomarkers of retinal inflammation [160]. It has been suggested as a better response to intravitreal dexamethasone implant compared to anti-VEGFs, but there is also a higher rate of recurrence in eyes with a higher number of HRF [161,162].
- -
- Hard exudates: Differently from HRF, hard exudates are characterized by size >30 μm, back-shadowing, reflectivity similar to the RPE–Bruch’s membrane complex and location within the outer retinal layers. Conversely, hyperreflective dots with the same characteristics but located in the inner retina have been described as microaneurysms [163]. It has been suggested that hard exudates may be used as markers for treatment response in DME [164] and may be associated with better response to dexamethasone implant compared to intravitreal anti-VEGF agents [165].
- -
- Disorganization of retinal inner layers: The presence of disorganization of retinal inner layers (DRIL) is evaluated in an area of 1 mm diameter centered on the foveal center. This finding has been associated with retinal dysfunction, even in case or early neuroretinal impairment [166]. An extent of DRIL of more than 50% of this area has been proposed as a negative prognostic factor for visual outcomes in eyes with DME before and/or after treatment [167]. In addition, DRIL may be associated with the presence of diabetic maculopathy regardless of the presence of DME, being correlated with the size of FAZ, the area of capillary non-perfusion, increased foveal thickness, the presence of EZ/ELM disruption and the severity of DR [168,169,170]. A negative correlation between RNFL thickness and DRIL has also been reported [171].
- -
- Hyperreflective bridging retinal processes: It has been suggested that these processes between the cystic cavities represent neuronal tissue bridging between outer and inner retina [153]. Bridging retinal processes may be associated with better visual outcomes after anti-VEGF injections in eyes with DME [172], whereas eyes with no bridging retinal processes may be more likely to develop foveal atrophy post-treatment [173].
- -
- Subfoveal neurosensory detachment (SND): The potential influence of SND on visual outcomes after intravitreal anti-VEGF agents for DME remains controversial [174,175,176,177]. This finding has been described in up to 30% of eyes with DME and may be correlated with the disruption of the external limiting membrane (ELM) that allow fluid and protein to migrate from the retina to the subretinal space [178]. In addition, the presence of SND may correlate with a greater amount of HF and a reduced retinal sensitivity [178]. Based on the detection of higher levels of IL-6 in eyes with SND, the latter has been proposed as a sign of retinal inflammation, and good response following dexamethasone implant has been reported [179,180]. A better response to aflibercept injection has also been reported in eyes with SND compared with those without SND [181].
- -
- Alteration in outer retinal layers: The length of the photoreceptor outer segment may be reduced in patients with DR with or without DME compared to healthy eyes and may be a good indicator of visual acuity in eyes with DME [182,183]. As in other macular pathologies, the presence of preserved outer retinal layers, in particular an external limiting membrane (ELM) and ellipsoid (EZ) band appears to be associated with better visual outcomes in eyes with DME [179].
6.1.2. Fluorescein Angiography (FA)
6.1.3. OCT-Angiography (OCTA)
6.2. Peripheral Retinal Ischemia
6.3. IRMA and Neovessels
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. Diabetes Atlas. 10th ed. Available online: http://www.diabetesatlas.org/ (accessed on 11 October 2022).
- Tang, J.; Kern, T.S. Inflammation in Diabetic Retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Elman, M.J.; Singh, S.K.; Fung, A.E.; Stoilov, I. Advances in the Treatment of Diabetic Retinopathy. J. Diabetes Complicat. 2019, 33, 107417. [Google Scholar] [CrossRef]
- Al-Kharashi, A.S. Role of Oxidative Stress, Inflammation, Hypoxia and Angiogenesis in the Development of Diabetic Retinopathy. Saudi J. Ophthalmol. 2018, 32, 318–323. [Google Scholar] [CrossRef]
- Ferrara, M.; Zheng, Y.; Romano, V. Editorial: Imaging in Ophthalmology. J. Clin. Med. 2022, 11, 5433. [Google Scholar] [CrossRef]
- Ferrara, M.; Coco, G.; Sorrentino, T.; Jasani, K.M.; Moussa, G.; Morescalchi, F.; Dhawahir-Scala, F.; Semeraro, F.; Steel, D.H.W.; Romano, V.; et al. Retinal and Corneal Changes Associated with Intraocular Silicone Oil Tamponade. J. Clin. Med. 2022, 11, 5234. [Google Scholar] [CrossRef]
- Romano, V.; Steger, B.; Ahmad, M.; Coco, G.; Pagano, L.; Ahmad, S.; Zhao, Y.; Zheng, Y.; Kaye, S.B. Imaging of Vascular Abnormalities in Ocular Surface Disease. Surv. Ophthalmol. 2022, 67, 31–51. [Google Scholar] [CrossRef]
- Palme, C.; Ahmad, S.; Romano, V.; Seifarth, C.; Williams, B.; Parekh, M.; Kaye, S.B.; Steger, B. En-Face Analysis of the Human Limbal Lymphatic Vasculature. Exp. Eye Res. 2020, 201, 108278. [Google Scholar] [CrossRef]
- Hanson, R.L.W.; Airody, A.; Sivaprasad, S.; Gale, R.P. Optical Coherence Tomography Imaging Biomarkers Associated with Neovascular Age-Related Macular Degeneration: A Systematic Review. Eye 2022. [Google Scholar] [CrossRef]
- Murtaza, F.; Goud, R.; Belhouari, S.; Eng, K.T.; Mandelcorn, E.D.; da Costa, B.R.; Miranda, R.N.; Felfeli, T. Prognostic Features of Preoperative Optical Coherence Tomography in Retinal Detachments: A Systematic Review and Meta-Analysis. Ophthalmol. Retina 2022, in press. [Google Scholar] [CrossRef]
- Petropoulos, I.N.; Bitirgen, G.; Ferdousi, M.; Kalteniece, A.; Azmi, S.; D’Onofrio, L.; Lim, S.H.; Ponirakis, G.; Khan, A.; Gad, H.; et al. Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology Meets Neurology. Front. Pain Res. 2021, 2, 725363. [Google Scholar] [CrossRef]
- Romano, M.R.; Ilardi, G.; Ferrara, M.; Cennamo, G.; Parolini, B.; Mariotti, C.; Staibano, S.; Cennamo, G. Macular Peeling-Induced Retinal Damage: Clinical and Histopathological Evaluation after Using Different Dyes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1573–1580. [Google Scholar] [CrossRef]
- Barber, A.J.; Baccouche, B. Neurodegeneration in Diabetic Retinopathy: Potential for Novel Therapies. Vis. Res. 2017, 139, 82–92. [Google Scholar] [CrossRef]
- Rezzola, S.; Guerra, J.; Krishna Chandran, A.M.; Loda, A.; Cancarini, A.; Sacristani, P.; Semeraro, F.; Presta, M. VEGF-Independent Activation of Müller Cells by the Vitreous from Proliferative Diabetic Retinopathy Patients. Int. J. Mol. Sci. 2021, 22, 2179. [Google Scholar] [CrossRef]
- Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.-P.; Simó, R.; et al. The Progress in Understanding and Treatment of Diabetic Retinopathy. Prog. Retin. Eye Res. 2016, 51, 156–186. [Google Scholar] [CrossRef]
- Semeraro, F.; Morescalchi, F.; Cancarini, A.; Russo, A.; Rezzola, S.; Costagliola, C. Diabetic Retinopathy, a Vascular and Inflammatory Disease: Therapeutic Implications. Diabetes Metab. 2019, 45, 517–527. [Google Scholar] [CrossRef]
- Kaur, G.; Rogers, J.; Rashdan, N.A.; Cruz-Topete, D.; Pattillo, C.B.; Hartson, S.D.; Harris, N.R. Hyperglycemia-Induced Effects on Glycocalyx Components in the Retina. Exp. Eye Res. 2021, 213, 108846. [Google Scholar] [CrossRef]
- Noble, M.I.M.; Drake-Holland, A.J.; Vink, H. Hypothesis: Arterial Glycocalyx Dysfunction Is the First Step in the Atherothrombotic Process. QJM 2008, 101, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Kinuthia, U.M.; Wolf, A.; Langmann, T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front. Immunol. 2020, 11, 564077. [Google Scholar] [CrossRef]
- Lechner, J.; O’Leary, O.E.; Stitt, A.W. The Pathology Associated with Diabetic Retinopathy. Vis. Res. 2017, 139, 7–14. [Google Scholar] [CrossRef]
- Liu, S.; Romano, V.; Steger, B.; Kaye, S.B.; Hamill, K.J.; Willoughby, C.E. Gene-Based Antiangiogenic Applications for Corneal Neovascularization. Surv. Ophthalmol. 2018, 63, 193–213. [Google Scholar] [CrossRef]
- Nawaz, I.M.; Rezzola, S.; Cancarini, A.; Russo, A.; Costagliola, C.; Semeraro, F.; Presta, M. Human Vitreous in Proliferative Diabetic Retinopathy: Characterization and Translational Implications. Prog. Retin. Eye Res. 2019, 72, 100756. [Google Scholar] [CrossRef]
- Loukovaara, S.; Nurkkala, H.; Tamene, F.; Gucciardo, E.; Liu, X.; Repo, P.; Lehti, K.; Varjosalo, M. Quantitative Proteomics Analysis of Vitreous Humor from Diabetic Retinopathy Patients. J. Proteome Res. 2015, 14, 5131–5143. [Google Scholar] [CrossRef]
- Semeraro, F.; Cancarini, A.; Morescalchi, F.; Romano, M.R.; dell’Omo, R.; Ruggeri, G.; Agnifili, L.; Costagliola, C. Serum and Intraocular Concentrations of Erythropoietin and Vascular Endothelial Growth Factor in Patients with Type 2 Diabetes and Proliferative Retinopathy. Diabetes Metab. 2014, 40, 445–451. [Google Scholar] [CrossRef]
- Rezzola, S.; Nawaz, M.I.; Cancarini, A.; Semeraro, F.; Presta, M. Vascular Endothelial Growth Factor in the Vitreous of Proliferative Diabetic Retinopathy Patients: Chasing a Hiding Prey? Diabetes Care 2019, 42, e105–e106. [Google Scholar] [CrossRef] [Green Version]
- Boulton, M.; Gregor, Z.; McLeod, D.; Charteris, D.; Jarvis-Evans, J.; Moriarty, P.; Khaliq, A.; Foreman, D.; Allamby, D.; Bardsley, B. Intravitreal Growth Factors in Proliferative Diabetic Retinopathy: Correlation with Neovascular Activity and Glycaemic Management. Br. J. Ophthalmol. 1997, 81, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Praidou, A.; Klangas, I.; Papakonstantinou, E.; Androudi, S.; Georgiadis, N.; Karakiulakis, G.; Dimitrakos, S. Vitreous and Serum Levels of Platelet-Derived Growth Factor and Their Correlation in Patients with Proliferative Diabetic Retinopathy. Curr. Eye Res. 2009, 34, 152–161. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Imtiaz Nawaz, M.; Kangave, D.; Siddiquei, M.M.; Geboes, K. Osteopontin and Other Regulators of Angiogenesis and Fibrogenesis in the Vitreous from Patients with Proliferative Vitreoretinal Disorders. Mediat. Inflamm. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Mitamura, Y.; Tashimo, A.; Nakamura, Y.; Tagawa, H.; Ohtsuka, K.; Mizue, Y.; Nishihira, J. Vitreous Levels of Placenta Growth Factor and Vascular Endothelial Growth Factor in Patients With Proliferative Diabetic Retinopathy. Diabetes Care 2002, 25, 2352. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.I. Angiopoietin Concentrations in Diabetic Retinopathy. Br. J. Ophthalmol. 2005, 89, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Loukovaara, S.; Robciuc, A.; Holopainen, J.M.; Lehti, K.; Pessi, T.; Liinamaa, J.; Kukkonen, K.-T.; Jauhiainen, M.; Koli, K.; Keski-Oja, J.; et al. Ang-2 Upregulation Correlates with Increased Levels of MMP-9, VEGF, EPO and TGFβ1 in Diabetic Eyes Undergoing Vitrectomy. Acta Ophthalmol. 2013, 91, 531–539. [Google Scholar] [CrossRef]
- Hinton, D.R.; Spee, C.; He, S.; Weitz, S.; Usinger, W.; LaBree, L.; Oliver, N.; Lim, J.I. Accumulation of NH2-Terminal Fragment of Connective Tissue Growth Factor in the Vitreous of Patients With Proliferative Diabetic Retinopathy. Diabetes Care 2004, 27, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Grant, M.; Russell, B.; Fitzgerald, C.; Merimee, T.J. Insulin-Like Growth Factors in Vitreous: Studies in Control and Diabetic Subjects with Neovascularization. Diabetes 1986, 35, 416–420. [Google Scholar] [CrossRef]
- You, J.J.; Yang, C.M.; Chen, M.S.; Yang, C.-H. Elevation of Angiogenic Factor Cysteine-Rich 61 Levels in Vitreous of Patients with Proliferative Diabetic Retinopathy. Retina 2012, 32, 103–111. [Google Scholar] [CrossRef]
- Butler, J.M.; Guthrie, S.M.; Koc, M.; Afzal, A.; Caballero, S.; Brooks, H.L.; Mames, R.N.; Segal, M.S.; Grant, M.B.; Scott, E.W. SDF-1 Is Both Necessary and Sufficient to Promote Proliferative Retinopathy. J. Clin. Investig. 2005, 115, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Canton, A. Hepatocyte Growth Factor in Vitreous and Serum from Patients with Proliferative Diabetic Retinopathy. Br. J. Ophthalmol. 2000, 84, 732–735. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X.; Huang, H.; Han, C.; Qu, Y.; Jin, H.; Niu, T.; Zhang, Y.; Liu, K.; Xu, X. Elevated Plasma and Vitreous Levels of Leucine-rich-α2-glycoprotein Are Associated with Diabetic Retinopathy Progression. Acta Ophthalmol. 2019, 97, 260–264. [Google Scholar] [CrossRef]
- Wang, S. Modulation of Thrombospondin 1 and Pigment Epithelium–Derived Factor Levels in Vitreous Fluid of Patients With Diabetes. Arch. Ophthalmol. 2009, 127, 507. [Google Scholar] [CrossRef] [Green Version]
- Spranger, J.; Osterhoff, M.; Reimann, M.; Möhlig, M.; Ristow, M.; Francis, M.K.; Cristofalo, V.; Hammes, H.-P.; Smith, G.; Boulton, M.; et al. Loss of the Antiangiogenic Pigment Epithelium-Derived Factor in Patients With Angiogenic Eye Disease. Diabetes 2001, 50, 2641–2645. [Google Scholar] [CrossRef] [Green Version]
- Loporchio, D.F.; Tam, E.K.; Cho, J.; Chung, J.; Jun, G.R.; Xia, W.; Fiorello, M.G.; Siegel, N.H.; Ness, S.; Stein, T.D.; et al. Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells 2021, 10, 1069. [Google Scholar] [CrossRef]
- Wu, F.; Phone, A.; Lamy, R.; Ma, D.; Laotaweerungsawat, S.; Chen, Y.; Zhao, T.; Ma, W.; Zhang, F.; Psaras, C.; et al. Correlation of Aqueous, Vitreous, and Plasma Cytokine Levels in Patients With Proliferative Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2020, 61, 26. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, B.; Heitor, J.; Coelho, C.; Leander, M.; Menéres, P.; Figueira, J.; Meireles, A.; Beirão, M. Systemic and Vitreous Biomarkers—New Insights in Diabetic Retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2449–2460. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.; Liao, N.; Mi, L.; Peng, Y.; Liu, B.; Zhang, S.; Wen, F. Enhanced Expression of NLRP3 Inflammasome-Related Inflammation in Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2018, 59, 978. [Google Scholar] [CrossRef] [PubMed]
- Funatsu, H.; Yamashita, H.; Noma, H.; Mimura, T.; Nakamura, S.; Sakata, K.; Hori, S. Aqueous Humor Levels of Cytokines Are Related to Vitreous Levels and Progression of Diabetic Retinopathy in Diabetic Patients. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 243, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Rübsam, A.; Parikh, S.; Fort, P. Role of Inflammation in Diabetic Retinopathy. Int. J. Mol. Sci. 2018, 19, 942. [Google Scholar] [CrossRef] [Green Version]
- Boss, J.D.; Singh, P.K.; Pandya, H.K.; Tosi, J.; Kim, C.; Tewari, A.; Juzych, M.S.; Abrams, G.W.; Kumar, A. Assessment of Neurotrophins and Inflammatory Mediators in Vitreous of Patients With Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2017, 58, 5594. [Google Scholar] [CrossRef] [PubMed]
- Rezzola, S.; Nawaz, I.M.; Cancarini, A.; Ravelli, C.; Calza, S.; Semeraro, F.; Presta, M. 3D Endothelial Cell Spheroid/Human Vitreous Humor Assay for the Characterization of Anti-Angiogenic Inhibitors for the Treatment of Proliferative Diabetic Retinopathy. Angiogenesis 2017, 20, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Rezzola, S.; Loda, A.; Corsini, M.; Semeraro, F.; Annese, T.; Presta, M.; Ribatti, D. Angiogenesis-Inflammation Cross Talk in Diabetic Retinopathy: Novel Insights From the Chick Embryo Chorioallantoic Membrane/Human Vitreous Platform. Front. Immunol. 2020, 11, 581288. [Google Scholar] [CrossRef]
- Rezzola, S.; Corsini, M.; Chiodelli, P.; Cancarini, A.; Nawaz, I.M.; Coltrini, D.; Mitola, S.; Ronca, R.; Belleri, M.; Lista, L.; et al. Inflammation and N-Formyl Peptide Receptors Mediate the Angiogenic Activity of Human Vitreous Humour in Proliferative Diabetic Retinopathy. Diabetologia 2017, 60, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Qiu, B.; Gao, G.; Chen, Y.; Min, H.; Wu, Z. Proteomic Changes of Aqueous Humor in Proliferative Diabetic Retinopathy Patients Treated with Different Intravitreal Anti-VEGF Agents. Exp. Eye Res. 2022, 216, 108942. [Google Scholar] [CrossRef]
- Trivedi, D.; Denniston, A.K.; Murray, P.I. Safety Profile of Anterior Chamber Paracentesis Performed at the Slit Lamp. Clin. Exp. Ophthalmol. 2011, 39, 725–728. [Google Scholar] [CrossRef]
- Funatsu, H.; Yamashita, H.; Noma, H.; Mimura, T.; Yamashita, T.; Hori, S. Increased Levels of Vascular Endothelial Growth Factor and Interleukin-6 in the Aqueous Humor of Diabetics with Macular Edema. Am. J. Ophthalmol. 2002, 133, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Xu, B.; Wang, B.; Chu, L. Study of 27 Aqueous Humor Cytokines in Patients with Type 2 Diabetes with or without Retinopathy. Mol. Vis. 2013, 19, 1734–1746. [Google Scholar] [PubMed]
- Kwon, J.; Oh, J. Aqueous Humor Analyses in Patients with Diabetic Retinopathy Who Had Undergone Panretinal Photocoagulation. J. Diabetes Res. 2022, 2022, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Noma, H.; Mimura, T.; Yasuda, K.; Motohashi, R.; Kotake, O.; Shimura, M. Aqueous Humor Levels of Soluble Vascular Endothelial Growth Factor Receptor and Inflammatory Factors in Diabetic Macular Edema. Ophthalmologica 2017, 238, 81–88. [Google Scholar] [CrossRef]
- Sohn, H.J.; Han, D.H.; Kim, I.T.; Oh, I.K.; Kim, K.H.; Lee, D.Y.; Nam, D.H. Changes in Aqueous Concentrations of Various Cytokines After Intravitreal Triamcinolone Versus Bevacizumab for Diabetic Macular Edema. Am. J. Ophthalmol. 2011, 152, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Gverović Antunica, A.; Karaman, K.; Znaor, L.; Sapunar, A.; Buško, V.; Puzović, V. IL-12 Concentrations in the Aqueous Humor and Serum of Diabetic Retinopathy Patients. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 815–821. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Liao, N.; Wen, F. Assessment of Biomarkers Using Multiplex Assays in Aqueous Humor of Patients with Diabetic Retinopathy. BMC Ophthalmol. 2017, 17, 176. [Google Scholar] [CrossRef]
- Costagliola, C.; Daniele, A.; dell’Omo, R.; Romano, M.R.; Aceto, F.; Agnifili, L.; Semeraro, F.; Porcellini, A. Aqueous Humor Levels of Vascular Endothelial Growth Factor and Adiponectin in Patients with Type 2 Diabetes before and after Intravitreal Bevacizumab Injection. Exp. Eye Res. 2013, 110, 50–54. [Google Scholar] [CrossRef]
- Stravalaci, M.; Ferrara, M.; Pathak, V.; Davi, F.; Bottazzi, B.; Mantovani, A.; Medina, R.J.; Romano, M.R.; Inforzato, A. The Long Pentraxin PTX3 as a New Biomarker and Pharmacological Target in Age-Related Macular Degeneration and Diabetic Retinopathy. Front. Pharm. 2022, 12, 811344. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, B.; Liu, X.; Jin, J.; Zou, H. Metabolic Characterization of Diabetic Retinopathy: An 1H-NMR-Based Metabolomic Approach Using Human Aqueous Humor. J. Pharm. Biomed. Anal. 2019, 174, 414–421. [Google Scholar] [CrossRef]
- Boehm, B.O.; Lang, G.; Volpert, O.; Jehle, P.M.; Kurkhaus, A.; Rosinger, S.; Lang, G.K.; Bouck, N. Low Content of the Natural Ocular Anti-Angiogenic Agent Pigment Epithelium-Derived Factor (PEDF) in Aqueous Humor Predicts Progression of Diabetic Retinopathy. Diabetologia 2003, 46, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Gouliopoulos, N.S.; Kalogeropoulos, C.; Lavaris, A.; Rouvas, A.; Asproudis, I.; Garmpi, A.; Damaskos, C.; Garmpis, N.; Kostakis, A.; Moschos, M.M. Association of Serum Inflammatory Markers and Diabetic Retinopathy: A Review of Literature. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7113–7128. [Google Scholar] [CrossRef] [PubMed]
- Soedamah-Muthu, S.S.; Chaturvedi, N.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Ebeling, P.; Fuller, J.H. Soluble Vascular Cell Adhesion Molecule-1 and Soluble E-Selectin Are Associated with Micro- and Macrovascular Complications in Type 1 Diabetic Patients. J. Diabetes Complicat. 2006, 20, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Purohit, S.; Sharma, A.; Hopkins, D.; Steed, L.; Bode, B.; Anderson, S.W.; Caldwell, R.; She, J.-X. Elevated Serum Levels of Soluble TNF Receptors and Adhesion Molecules Are Associated with Diabetic Retinopathy in Patients with Type-1 Diabetes. Mediat. Inflamm. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Hu, W. Serum and Vitreous Pentraxin 3 Concentrations in Patients with Diabetic Retinopathy. Genet. Test. Mol. Biomark. 2016, 20, 149–153. [Google Scholar] [CrossRef]
- Gustavsson, C.; Agardh, E.; Bengtsson, B.; Agardh, C.-D. TNF-α Is an Independent Serum Marker for Proliferative Retinopathy in Type 1 Diabetic Patients. J. Diabetes Complicat. 2008, 22, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Muni, R.H.; Kohly, R.P.; Lee, E.Q.; Manson, J.E.; Semba, R.D.; Schaumberg, D.A. Prospective Study of Inflammatory Biomarkers and Risk of Diabetic Retinopathy in the Diabetes Control and Complications Trial. JAMA Ophthalmol. 2013, 131, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosby-Nwaobi, R.; Chatziralli, I.; Sergentanis, T.; Dew, T.; Forbes, A.; Sivaprasad, S. Cross Talk between Lipid Metabolism and Inflammatory Markers in Patients with Diabetic Retinopathy. J. Diabetes Res. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Progression of Retinopathy with Intensive versus Conventional Treatment in the Diabetes Control and Complications Trial. Ophthalmology 1995, 102, 647–661. [CrossRef]
- Ono, Y.; Aoki, S.; Ohnishi, K.; Yasuda, T.; Kawano, K.; Tsukada, Y. Increased Serum Levels of Advanced Glycation End-Products and Diabetic Complications. Diabetes Res. Clin. Pract. 1998, 41, 131–137. [Google Scholar] [CrossRef]
- Shaker, O.G.; Abdelaleem, O.O.; Mahmoud, R.H.; Abdelghaffar, N.K.; Ahmed, T.I.; Said, O.M.; Zaki, O.M. Diagnostic and Prognostic Role of Serum MiR-20b, MiR-17-3p, HOTAIR, and MALAT1 in Diabetic Retinopathy. IUBMB Life 2019, 71, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Qing, S.; Yuan, S.; Yun, C.; Hui, H.; Mao, P.; Wen, F.; Ding, Y.; Liu, Q. Serum MiRNA Biomarkers Serve as a Fingerprint for Proliferative Diabetic Retinopathy. Cell. Physiol. Biochem. 2014, 34, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, M.V.; Januszewski, A.S.; Jenkins, A.J.; Hardikar, A.A. Circulating MicroRNA Biomarkers of Diabetic Retinopathy. Diabetes 2016, 65, 22–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampetaki, A.; Willeit, P.; Burr, S.; Yin, X.; Langley, S.R.; Kiechl, S.; Klein, R.; Rossing, P.; Chaturvedi, N.; Mayr, M. Angiogenic MicroRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1 Diabetes. Diabetes 2016, 65, 216–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Gao, K.P.; Wang, Y.X.; Liu, Z.C.; Tian, L.; Yang, X.Z.; Ding, J.Y.; Wu, W.T.; Yang, W.H.; Li, Y.L.; et al. RNA Sequencing Identified Specific Circulating MiRNA Biomarkers for Early Detection of Diabetes Retinopathy. Am. J. Physiol.-Endocrinol. Metab. 2018, 315, E374–E385. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wan, S.; Yang, T.; Niu, D.; Zhang, A.; Yang, C.; Cai, J.; Wu, J.; Song, J.; Zhang, C.-Y.; et al. Increased Serum MicroRNAs Are Closely Associated with the Presence of Microvascular Complications in Type 2 Diabetes Mellitus. Sci. Rep. 2016, 6, 20032. [Google Scholar] [CrossRef] [Green Version]
- Abdelkader, H.; Patel, D.V.; McGhee, C.N.; Alany, R.G. New Therapeutic Approaches in the Treatment of Diabetic Keratopathy: A Review. Clin. Exp. Ophthalmol. 2011, 39, 259–270. [Google Scholar] [CrossRef]
- Vieira-Potter, V.J.; Karamichos, D.; Lee, D.J. Ocular Complications of Diabetes and Therapeutic Approaches. Biomed. Res. Int. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, G.; Wang, W.; Wang, J.; Chen, L.; He, M.; Chen, Z. Changes in Corneal Biomechanics in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Acta Diabetol. 2020, 57, 973–981. [Google Scholar] [CrossRef]
- del Buey, M.A.; Casas, P.; Caramello, C.; López, N.; de la Rica, M.; Subirón, A.B.; Lanchares, E.; Huerva, V.; Grzybowski, A.; Ascaso, F.J. An Update on Corneal Biomechanics and Architecture in Diabetes. J. Ophthalmol. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Yoon, K.-C.; Im, S.-K.; Seo, M.-S. Changes of Tear Film and Ocular Surface in Diabetes Mellitus. Korean J. Ophthalmol. 2004, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choo, M.; Prakash, K.; Samsudin, A.; Soong, T.; Ramli, N.; Kadir, A. Corneal Changes in Type II Diabetes Mellitus in Malaysia. Int. J. Ophthalmol. 2010, 3, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Coco, G.; Hamill, K.J.; Troughton, L.D.; Kaye, S.B.; Romano, V. Risk Factors for Corneal Epithelial Wound Healing: Can Sex Play a Role? Eur. J. Ophthalmol. 2022, 32, 2676–2682. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, C.-S.; Sohn, E.; Jeong, I.-H.; Kim, H.; Kim, J.S. Involvement of Advanced Glycation End Products, Oxidative Stress and Nuclear Factor-KappaB in the Development of Diabetic Keratopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Suraida, A.-R.; Ibrahim, M.; Zunaina, E. Correlation of the Anterior Ocular Segment Biometry with HbA1c Level in Type 2 Diabetes Mellitus Patients. PLoS ONE 2018, 13, e0191134. [Google Scholar] [CrossRef] [PubMed]
- Yusufoğlu, E.; Güngör Kobat, S.; Keser, S. Evaluation of Central Corneal Epithelial Thickness with Anterior Segment OCT in Patients with Type 2 Diabetes Mellitus. Int. Ophthalmol. 2022. [Google Scholar] [CrossRef]
- Canan, H.; Sahinoglu-Keskek, N.; Altan-Yaycioglu, R. The Relationship of Central Corneal Thickness with the Status of Diabetic Retinopathy. BMC Ophthalmol. 2020, 20, 220. [Google Scholar] [CrossRef]
- Cui, X.; Hong, J.; Wang, F.; Deng, S.X.; Yang, Y.; Zhu, X.; Wu, D.; Zhao, Y.; Xu, J. Assessment of Corneal Epithelial Thickness in Dry Eye Patients. Optom. Vis. Sci. 2014, 91, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- de Cillà, S.; Ranno, S.; Carini, E.; Fogagnolo, P.; Ceresara, G.; Orzalesi, N.; Rossetti, L.M. Corneal Subbasal Nerves Changes in Patients with Diabetic Retinopathy: An In Vivo Confocal Study. Investig. Opthalmol. Vis. Sci. 2009, 50, 5155. [Google Scholar] [CrossRef]
- Kulaksızoglu, S.; Karalezli, A. Aqueous Humour and Serum Levels of Nitric Oxide, Malondialdehyde and Total Antioxidant Status in Patients with Type 2 Diabetes with Proliferative Diabetic Retinopathy and Nondiabetic Senile Cataracts. Can. J. Diabetes 2016, 40, 115–119. [Google Scholar] [CrossRef]
- Chang, D.; Sha, Q.; Zhang, X.; Liu, P.; Rong, S.; Han, T.; Liu, P.; Pan, H. The Evaluation of the Oxidative Stress Parameters in Patients with Primary Angle-Closure Glaucoma. PLoS ONE 2011, 6, e27218. [Google Scholar] [CrossRef]
- Lee, J.S.; Oum, B.S.; Choi, H.Y.; Lee, J.E.; Cho, B.M. Differences in Corneal Thickness and Corneal Endothelium Related to Duration in Diabetes. Eye 2006, 20, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdamar, Y.; Cankaya, B.; Ozalp, S.; Acaroglu, G.; Karakaya, J.; Ozkan, S.S. Is There a Correlation between Diabetes Mellitus and Central Corneal Thickness? J. Glaucoma 2010, 19, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Su, D.H.W.; Wong, T.Y.; Wong, W.-L.; Saw, S.-M.; Tan, D.T.H.; Shen, S.Y.; Loon, S.-C.; Foster, P.J.; Aung, T. Diabetes, Hyperglycemia, and Central Corneal Thickness. Ophthalmology 2008, 115, 964–968. [Google Scholar] [CrossRef]
- Busted, N.; Olsen, T.; Schmitz, O. Clinical Observations on the Corneal Thickness and the Corneal Endothelium in Diabetes Mellitus. Br. J. Ophthalmol. 1981, 65, 687–690. [Google Scholar] [CrossRef] [Green Version]
- Galgauskas, S.; Laurinavičiūtė, G.; Norvydaitė, D.; Stech, S.; Ašoklis, R. Changes in Choroidal Thickness and Corneal Parameters in Diabetic Eyes. Eur. J. Ophthalmol. 2016, 26, 163–167. [Google Scholar] [CrossRef] [PubMed]
- El-Agamy, A.; Alsubaie, S. Corneal Endothelium and Central Corneal Thickness Changes in Type 2 Diabetes Mellitus. Clin. Ophthalmol. 2017, 11, 481–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keoleian, G.M.; Pach, J.M.; Hodge, D.O.; Trocme, S.D.; Bourne, W.M. Structural and Functional Studies of the Corneal Endothelium in Diabetes Mellitus. Am. J. Ophthalmol. 1992, 113, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K. The Corneal Endothelium and Thickness in Type II Diabetes Mellitus. Jpn J. Ophthalmol. 2002, 46, 65–69. [Google Scholar] [CrossRef]
- Urban, B.; Raczyńska, D.; Bakunowicz-Łazarczyk, A.; Raczyńska, K.; Krętowska, M. Evaluation of Corneal Endothelium in Children and Adolescents with Type 1 Diabetes Mellitus. Mediat. Inflamm. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Storr-Paulsen, A.; Singh, A.; Jeppesen, H.; Norregaard, J.C.; Thulesen, J. Corneal Endothelial Morphology and Central Thickness in Patients with Type II Diabetes Mellitus. Acta Ophthalmol. 2014, 92, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Schnell, O.; Crocker, J.B.; Weng, J. Impact of HbA1c Testing at Point of Care on Diabetes Management. J. Diabetes Sci. Technol. 2017, 11, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Jeziorny, K.; Niwald, A.; Moll, A.; Piasecka, K.; Pyziak-Skupien, A.; Waszczykowska, A.; Baranska, D.; Malachowska, B.; Szadkowska, A.; Mlynarski, W.; et al. Measurement of Corneal Thickness, Optic Nerve Sheath Diameter and Retinal Nerve Fiber Layer as Potential New Non-Invasive Methods in Assessing a Risk of Cerebral Edema in Type 1 Diabetes in Children. Acta Diabetol. 2018, 55, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Ramm, L.; Spoerl, E.; Pillunat, L.E.; Terai, N. Is the Corneal Thickness Profile Altered in Diabetes Mellitus? Curr. Eye Res. 2020, 45, 1228–1234. [Google Scholar] [CrossRef]
- Quadrado, M.J.; Popper, M.; Morgado, A.M.; Murta, J.N.; van Best, J.A. Diabetes and Corneal Cell Densities in Humans by In Vivo Confocal Microscopy. Cornea 2006, 25, 761–768. [Google Scholar] [CrossRef]
- Szalai, E.; Deák, E.; Módis, L.; Németh, G.; Berta, A.; Nagy, A.; Felszeghy, E.; Káposzta, R.; Malik, R.A.; Csutak, A. Early Corneal Cellular and Nerve Fiber Pathology in Young Patients With Type 1 Diabetes Mellitus Identified Using Corneal Confocal Microscopy. Investig. Opthalmol. Vis. Sci. 2016, 57, 853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frueh, B.; Körner, U.; Böhnke, M. Konfokale Mikroskopie Der Hornhaut Bei Patienten Mit Diabetes Mellitus. Klin. Monbl. Augenheilkd. 1995, 206, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Vracko, R. Basal Lamina Layering in Diabetes Mellitus. Evidence for Accelerated Rate of Cell Death and Cell Regeneration. Diabetes 1974, 23, 94–104. [Google Scholar] [CrossRef]
- Jha, A.; Verma, A.; Alagorie, A.R. Association of Severity of Diabetic Retinopathy with Corneal Endothelial and Thickness Changes in Patients with Diabetes Mellitus. Eye 2022, 36, 1202–1208. [Google Scholar] [CrossRef]
- Módis, L.; Szalai, E.; Kertész, K.; Kemény-Beke, A.; Kettesy, B.; Berta, A. Evaluation of the Corneal Endothelium in Patients with Diabetes Mellitus Type I and II. Histol. Histopathol. 2010, 25, 1531–1537. [Google Scholar] [CrossRef]
- Sudhir, R.R.; Raman, R.; Sharma, T. Changes in the Corneal Endothelial Cell Density and Morphology in Patients with Type 2 Diabetes Mellitus: A Population-Based Study, Sankara Nethralaya Diabetic Retinopathy and Molecular Genetics Study (SN-DREAMS, Report 23). Cornea 2012, 31, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Islam, Q.U.; Mehboob, M.A.; Amin, Z.A. Comparison of Corneal Morphological Characteristics between Diabetic and Non Diabetic Population. Pak. J. Med. Sci. 2017, 33, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Siribunkum, J.; Kosrirukvongs, P.; Singalavanija, A. Corneal Abnormalities in Diabetes. J. Med. Assoc. Thai. 2001, 84, 1075–1083. [Google Scholar]
- Leelawongtawun, W.; Suphachearaphan, W.; Kampitak, K.; Leelawongtawun, R. A Comparative Study of Corneal Endothelial Structure between Diabetes and Non-Diabetes. J. Med. Assoc. Thai. 2015, 98, 484–488. [Google Scholar] [PubMed]
- Schultz, R.O.; Matsuda, M.; Yee, R.W.; Edelhauser, H.F.; Schultz, K.J. Corneal Endothelial Changes in Type I and Type II Diabetes Mellitus. Am. J. Ophthalmol. 1984, 98, 401–410. [Google Scholar] [CrossRef]
- Hara, M.; Morishige, N.; Chikama, T.; Nishida, T. Comparison of Confocal Biomicroscopy and Noncontact Specular Microscopy for Evaluation of the Corneal Endothelium. Cornea 2003, 22, 512–515. [Google Scholar] [CrossRef]
- Klais, C.M.C.; Bühren, J.; Kohnen, T. Comparison of Endothelial Cell Count Using Confocal and Contact Specular Microscopy. Ophthalmologica 2003, 217, 99–103. [Google Scholar] [CrossRef]
- Shenoy, R.; Khandekar, R.; Bialasiewicz, A.A.; Muniri, A. al Corneal Endothelium in Patients with Diabetes Mellitus: A Historical Cohort Study. Eur. J. Ophthalmol. 2009, 19, 369–375. [Google Scholar] [CrossRef]
- Taşlı, N.G.; Icel, E.; Karakurt, Y.; Ucak, T.; Ugurlu, A.; Yilmaz, H.; Akbas, E.M. The Findings of Corneal Specular Microscopy in Patients with Type-2 Diabetes Mellitus. BMC Ophthalmol. 2020, 20, 214. [Google Scholar] [CrossRef]
- Albers, J.W.; Pop-Busui, R. Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes. Curr. Neurol. Neurosci. Rep. 2014, 14, 473. [Google Scholar] [CrossRef] [Green Version]
- Boulton, A.J. Diabetic Neuropathy: Classification, Measurement and Treatment. Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, D.; Kar, D.; Khunti, K.; Davies, M.J.; Scott, A.R.; Walker, J.; Tesfaye, S. Diabetic Peripheral Neuropathy: Advances in Diagnosis and Strategies for Screening and Early Intervention. Lancet Diabetes Endocrinol. 2019, 7, 938–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, R.A.; Veves, A.; Tesfaye, S.; Smith, G.; Cameron, N.; Zochodne, D.; Lauria, G. Small Fibre Neuropathy: Role in the Diagnosis of Diabetic Sensorimotor Polyneuropathy. Diabetes Metab. Res. Rev. 2011, 27, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Körei, A.E.; Istenes, I.; Papanas, N.; Kempler, P. Small-Fiber Neuropathy. Angiology 2016, 67, 49–57. [Google Scholar] [CrossRef]
- Basantsova, N.Y.; Starshinova, A.A.; Dori, A.; Zinchenko, Y.S.; Yablonskiy, P.K.; Shoenfeld, Y. Small-Fiber Neuropathy Definition, Diagnosis, and Treatment. Neurol. Sci. 2019, 40, 1343–1350. [Google Scholar] [CrossRef]
- Williams, B.M.; Borroni, D.; Liu, R.; Zhao, Y.; Zhang, J.; Lim, J.; Ma, B.; Romano, V.; Qi, H.; Ferdousi, M.; et al. An Artificial Intelligence-Based Deep Learning Algorithm for the Diagnosis of Diabetic Neuropathy Using Corneal Confocal Microscopy: A Development and Validation Study. Diabetologia 2020, 63, 419–430. [Google Scholar] [CrossRef] [Green Version]
- dell’Omo, R.; Cifariello, F.; de Turris, S.; Romano, V.; di Renzo, F.; di Taranto, D.; Coclite, G.; Agnifili, L.; Mastropasqua, L.; Costagliola, C. Confocal Microscopy of Corneal Nerve Plexus as an Early Marker of Eye Involvement in Patients with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2018, 142, 393–400. [Google Scholar] [CrossRef]
- Zhao, H. Corneal Alteration and Pathogenesis in Diabetes Mellitus. Int. J. Ophthalmol. 2019, 12, 1939–1950. [Google Scholar] [CrossRef]
- Petropoulos, I.N.; Alam, U.; Fadavi, H.; Asghar, O.; Green, P.; Ponirakis, G.; Marshall, A.; Boulton, A.J.M.; Tavakoli, M.; Malik, R.A. Corneal Nerve Loss Detected With Corneal Confocal Microscopy Is Symmetrical and Related to the Severity of Diabetic Polyneuropathy. Diabetes Care 2013, 36, 3646–3651. [Google Scholar] [CrossRef] [Green Version]
- Nitoda, E.; Kallinikos, P.; Pallikaris, A.; Moschandrea, J.; Amoiridis, G.; Ganotakis, E.S.; Tsilimbaris, M. Correlation of Diabetic Retinopathy and Corneal Neuropathy Using Confocal Microscopy. Curr. Eye Res. 2012, 37, 898–906. [Google Scholar] [CrossRef]
- Messmer, E.M.; Schmid-Tannwald, C.; Zapp, D.; Kampik, A. In Vivo Confocal Microscopy of Corneal Small Fiber Damage in Diabetes Mellitus. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 248, 1307–1312. [Google Scholar] [CrossRef]
- Hertz, P.; Bril, V.; Orszag, A.; Ahmed, A.; Ng, E.; Nwe, P.; Ngo, M.; Perkins, B.A. Reproducibility of in Vivo Corneal Confocal Microscopy as a Novel Screening Test for Early Diabetic Sensorimotor Polyneuropathy. Diabet. Med. 2011, 28, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.; Pritchard, N.; Vagenas, D.; Russell, A.; Malik, R.A.; Efron, N. Utility of Corneal Confocal Microscopy for Assessing Mild Diabetic Neuropathy: Baseline Findings of the LANDMark Study. Clin. Exp. Optom. 2012, 95, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhong, Y.; Zhang, T.; Zhang, R.; Zhang, Q.; Zheng, H.; Ji, L.; Sun, W.; Zhu, X.; Zhang, S.; et al. Quantitative Analysis of Corneal Nerve Fibers in Type 2 Diabetics with and without Diabetic Peripheral Neuropathy: Comparison of Manual and Automated Assessments. Diabetes Res. Clin. Pract. 2019, 151, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Graham, J.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Ferdousi, M.; Azmi, S.; Efron, N.; et al. Corneal Nerve Fractal Dimension: A Novel Corneal Nerve Metric for the Diagnosis of Diabetic Sensorimotor Polyneuropathy. Invest. Ophthalmol. Vis. Sci. 2018, 59, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Kalteniece, A.; Ferdousi, M.; Azmi, S.; Mubita, W.M.; Marshall, A.; Lauria, G.; Faber, C.G.; Soran, H.; Malik, R.A. Corneal Confocal Microscopy Detects Small Nerve Fibre Damage in Patients with Painful Diabetic Neuropathy. Sci. Rep. 2020, 10, 3371. [Google Scholar] [CrossRef] [Green Version]
- Dhage, S.; Ferdousi, M.; Adam, S.; Ho, J.H.; Kalteniece, A.; Azmi, S.; Alam, U.; Ponirakis, G.; Petropoulos, I.; Atkinson, A.J.; et al. Corneal Confocal Microscopy Identifies Small Fibre Damage and Progression of Diabetic Neuropathy. Sci. Rep. 2021, 11, 1859. [Google Scholar] [CrossRef]
- Lewis, E.J.H.; Lovblom, L.E.; Ferdousi, M.; Halpern, E.M.; Jeziorska, M.; Pacaud, D.; Pritchard, N.; Dehghani, C.; Edwards, K.; Srinivasan, S.; et al. Rapid Corneal Nerve Fiber Loss: A Marker of Diabetic Neuropathy Onset and Progression. Diabetes Care 2020, 43, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Alam, U.; Jeziorska, M.; Petropoulos, I.N.; Asghar, O.; Fadavi, H.; Ponirakis, G.; Marshall, A.; Tavakoli, M.; Boulton, A.J.M.; Efron, N.; et al. Diagnostic Utility of Corneal Confocal Microscopy and Intra-Epidermal Nerve Fibre Density in Diabetic Neuropathy. PLoS ONE 2017, 12, e0180175. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Graham, J.; Dabbah, M.A.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Fadavi, H.; Ferdousi, M.; et al. Small Nerve Fiber Quantification in the Diagnosis of Diabetic Sensorimotor Polyneuropathy: Comparing Corneal Confocal Microscopy With Intraepidermal Nerve Fiber Density. Diabetes Care 2015, 38, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Quattrini, C.; Tavakoli, M.; Jeziorska, M.; Kallinikos, P.; Tesfaye, S.; Finnigan, J.; Marshall, A.; Boulton, A.J.M.; Efron, N.; Malik, R.A. Surrogate Markers of Small Fiber Damage in Human Diabetic Neuropathy. Diabetes 2007, 56, 2148–2154. [Google Scholar] [CrossRef] [Green Version]
- Hafner, J.; Zadrazil, M.; Grisold, A.; Ricken, G.; Krenn, M.; Kitzmantl, D.; Pollreisz, A.; Gleiss, A.; Schmidt-Erfurth, U. Retinal and Corneal Neurodegeneration and Their Association with Systemic Signs of Peripheral Neuropathy in Type 2 Diabetes. Am. J. Ophthalmol. 2020, 209, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Dehghani, C.; Pritchard, N.; Edwards, K.; Russell, A.W.; Malik, R.A.; Efron, N. Corneal and Retinal Neuronal Degeneration in Early Stages of Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2017, 58, 6365. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, I.N.; Green, P.; Chan, A.W.S.; Alam, U.; Fadavi, H.; Marshall, A.; Asghar, O.; Efron, N.; Tavakoli, M.; Malik, R.A. Corneal Confocal Microscopy Detects Neuropathy in Patients with Type 1 Diabetes without Retinopathy or Microalbuminuria. PLoS ONE 2015, 10, e0123517. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, D.; Papanas, N.; Zhivov, A.; Allgeier, S.; Winter, K.; Ziegler, I.; Brüggemann, J.; Strom, A.; Peschel, S.; Köhler, B.; et al. Early Detection of Nerve Fiber Loss by Corneal Confocal Microscopy and Skin Biopsy in Recently Diagnosed Type 2 Diabetes. Diabetes 2014, 63, 2454–2463. [Google Scholar] [CrossRef] [Green Version]
- Ferdousi, M.; Romanchuk, K.; Mah, J.K.; Virtanen, H.; Millar, C.; Malik, R.A.; Pacaud, D. Early Corneal Nerve Fibre Damage and Increased Langerhans Cell Density in Children with Type 1 Diabetes Mellitus. Sci. Rep. 2019, 9, 8758. [Google Scholar] [CrossRef] [Green Version]
- Tummanapalli, S.S.; Issar, T.; Yan, A.; Kwai, N.; Poynten, A.M.; Krishnan, A.V.; Willcox, M.D.P.; Markoulli, M. Corneal Nerve Fiber Loss in Diabetes with Chronic Kidney Disease. Ocul. Surf. 2020, 18, 178–185. [Google Scholar] [CrossRef]
- Tavakoli, M.; Kallinikos, P.; Iqbal, A.; Herbert, A.; Fadavi, H.; Efron, N.; Boulton, A.J.M.; AMalik, R. Corneal Confocal Microscopy Detects Improvement in Corneal Nerve Morphology with an Improvement in Risk Factors for Diabetic Neuropathy. Diabet. Med. 2011, 28, 1261–1267. [Google Scholar] [CrossRef]
- Mehra, S.; Tavakoli, M.; Kallinikos, P.A.; Efron, N.; Boulton, A.J.M.; Augustine, T.; Malik, R.A. Corneal Confocal Microscopy Detects Early Nerve Regeneration After Pancreas Transplantation in Patients With Type 1 Diabetes. Diabetes Care 2007, 30, 2608–2612. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, C.P.; Ferris III, F.L.; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T.; et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scale. Ophthalmology 2003, 110, 1677–1683. [Google Scholar] [CrossRef]
- Hariprasad, S.M.; Mieler, W.F.; Grassi, M.; Green, J.L.; Jager, R.D.; Miller, L. Vision-Related Quality of Life in Patients with Diabetic Macular Oedema. Br. J. Ophthalmol. 2008, 92, 89–92. [Google Scholar] [CrossRef]
- Suciu, C.-I.; Suciu, V.-I.; Nicoara, S.-D. Optical Coherence Tomography (Angiography) Biomarkers in the Assessment and Monitoring of Diabetic Macular Edema. J. Diabetes Res. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Markan, A.; Agarwal, A.; Arora, A.; Bazgain, K.; Rana, V.; Gupta, V. Novel Imaging Biomarkers in Diabetic Retinopathy and Diabetic Macular Edema. Ther. Adv. Ophthalmol. 2020, 12, 251584142095051. [Google Scholar] [CrossRef] [PubMed]
- Deák, G.G.; Bolz, M.; Ritter, M.; Prager, S.; Benesch, T.; Schmidt-Erfurth, U. A Systematic Correlation between Morphology and Functional Alterations in Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2010, 51, 6710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, T.; Nishijima, K.; Akagi, T.; Uji, A.; Horii, T.; Ueda-Arakawa, N.; Muraoka, Y.; Yoshimura, N. Optical Coherence Tomographic Reflectivity of Photoreceptors beneath Cystoid Spaces in Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2012, 53, 1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, M.R.; Romano, V.; Vallejo-Garcia, J.L.; Vinciguerra, R.; Romano, M.; Cereda, M.; Angi, M.; Valldeperas, X.; Costagliola, C.; Vinciguerra, P. Macular hypotrophy after internal limiting membrane removal for diabetic macular edema. Retina 2014, 34, 1182–1189. [Google Scholar] [CrossRef]
- Bolz, M.; Schmidt-Erfurth, U.; Deak, G.; Mylonas, G.; Kriechbaum, K.; Scholda, C. Optical Coherence Tomographic Hyperreflective Foci. Ophthalmology 2009, 116, 914–920. [Google Scholar] [CrossRef]
- Lee, H.; Jang, H.; Choi, Y.A.; Kim, H.C.; Chung, H. Association between Soluble CD14 in the Aqueous Humor and Hyperreflective Foci on Optical Coherence Tomography in Patients with Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2018, 59, 715. [Google Scholar] [CrossRef] [Green Version]
- Midena, E.; Pilotto, E.; Bini, S. Hyperreflective Intraretinal Foci as an OCT Biomarker of Retinal Inflammation in Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2018, 59, 5366. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.S.; Jia, Y.; Gao, S.S.; Bailey, S.T.; Lauer, A.K.; Flaxel, C.J.; Wilson, D.J.; Huang, D. Optical coherence tomography angiography features of diabetic retinopathy. Retina 2015, 35, 2371–2376. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.T.; Kim, D.Y.; Chae, J.B. Association between Hyperreflective Foci on Spectral-Domain Optical Coherence Tomography and Early Recurrence of Diabetic Macular Edema after Intravitreal Dexamethasone Implantation. J. Ophthalmol. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vujosevic, S.; Bini, S.; Torresin, T.; Berton, M.; Midena, G.; Parrozzani, R.; Martini, F.; Pucci, P.; Daniele, A.R.; Cavarzeran, F.; et al. Hyperreflective Retinal Spots in Normal and Diabetic Eyes. Retina 2017, 37, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Kawasaki, R.; Noonan, J.E.; Wong, T.Y.; Lamoureux, E.; Wang, J.J. Quantitative Measurement of Hard Exudates in Patients With Diabetes and Their Associations With Serum Lipid Levels. Investig. Opthalmol. Vis. Sci. 2013, 54, 5544. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.U.; Hong, E.H.; Lim, H.W.; Kang, M.H.; Seong, M.; Cho, H. Quantitative Evaluation of Hard Exudates in Diabetic Macular Edema after Short-Term Intravitreal Triamcinolone, Dexamethasone Implant or Bevacizumab Injections. BMC Ophthalmol. 2017, 17, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joltikov, K.A.; Sesi, C.A.; de Castro, V.M.; Davila, J.R.; Anand, R.; Khan, S.M.; Farbman, N.; Jackson, G.R.; Johnson, C.A.; Gardner, T.W. Disorganization of Retinal Inner Layers (DRIL) and Neuroretinal Dysfunction in Early Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2018, 59, 5481. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.K.; Lin, M.M.; Lammer, J.; Prager, S.; Sarangi, R.; Silva, P.S.; Aiello, L.P. Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes With Center-Involved Diabetic Macular Edema. JAMA Ophthalmol. 2014, 132, 1309. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, L.; Ramu, J.; Triantafyllopoulou, I.; Patrao, N.V.; Comyn, O.; Hykin, P.; Sivaprasad, S. Diagnostic Accuracy of Disorganization of the Retinal Inner Layers in Detecting Macular Capillary Non-Perfusion in Diabetic Retinopathy. Clin. Exp. Ophthalmol. 2015, 43, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Balaratnasingam, C.; Inoue, M.; Ahn, S.; McCann, J.; Dhrami-Gavazi, E.; Yannuzzi, L.A.; Freund, K.B. Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology 2016, 123, 2352–2367. [Google Scholar] [CrossRef]
- Das, R.; Spence, G.; Hogg, R.E.; Stevenson, M.; Chakravarthy, U. Disorganization of Inner Retina and Outer Retinal Morphology in Diabetic Macular Edema. JAMA Ophthalmol. 2018, 136, 202. [Google Scholar] [CrossRef]
- Nadri, G.; Saxena, S.; Stefanickova, J.; Ziak, P.; Benacka, J.; Gilhotra, J.S.; Kruzliak, P. Disorganization of Retinal Inner Layers Correlates with Ellipsoid Zone Disruption and Retinal Nerve Fiber Layer Thinning in Diabetic Retinopathy. J. Diabetes Complicat. 2019, 33, 550–553. [Google Scholar] [CrossRef]
- al Faran, A.; Mousa, A.; al Shamsi, H.; al Gaeed, A.; Ghazi, N.G. Spectral domain optical coherence tomography predictors of visual outcome in diabetic cystoid macular edema after bevacizumab injection. Retina 2014, 34, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Pelosini, L.; Hull, C.C.; Boyce, J.F.; McHugh, D.; Stanford, M.R.; Marshall, J. Optical Coherence Tomography May Be Used to Predict Visual Acuity in Patients with Macular Edema. Investig. Opthalmol. Vis. Sci. 2011, 52, 2741. [Google Scholar] [CrossRef] [Green Version]
- Seo, K.H.; Yu, S.-Y.; Kim, M.; Kwak, H.W. Visual and morphologic outcomes of intravitreal ranibizumab for diabetic macular edema based on optical coherence tomography patterns. Retina 2016, 36, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Giocanti-Aurégan, A.; Hrarat, L.; Qu, L.M.; Sarda, V.; Boubaya, M.; Levy, V.; Chaine, G.; Fajnkuchen, F. Functional and Anatomical Outcomes in Patients With Serous Retinal Detachment in Diabetic Macular Edema Treated With Ranibizumab. Investig. Opthalmol. Vis. Sci. 2017, 58, 797. [Google Scholar] [CrossRef]
- Gerendas, B.; Simader, C.; Deak, G.G.; Prager, S.G.; Lammer, J.; Waldstein, S.M.; Kundi, M.; Schmidt-Erfurth, U. Morphological Parameters Relevant for Visual and Anatomic Outcomes during Anti-VEGF Therapy of Diabetic Macular Edema in the RESTORE Trial. Invest. Ophthalmol. Vis. Sci. 2014, 55, 1791. [Google Scholar]
- Sophie, R.; Lu, N.; Campochiaro, P.A. Predictors of Functional and Anatomic Outcomes in Patients with Diabetic Macular Edema Treated with Ranibizumab. Ophthalmology 2015, 122, 1395–1401. [Google Scholar] [CrossRef] [Green Version]
- Vujosevic, S.; Torresin, T.; Berton, M.; Bini, S.; Convento, E.; Midena, E. Diabetic Macular Edema With and Without Subfoveal Neuroretinal Detachment: Two Different Morphologic and Functional Entities. Am. J. Ophthalmol. 2017, 181, 149–155. [Google Scholar] [CrossRef]
- Zur, D.; Iglicki, M.; Busch, C.; Invernizzi, A.; Mariussi, M.; Loewenstein, A.; Busch, C.; Cebeci, Z.; Chhablani, J.K.; Chaikitmongkol, V.; et al. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology 2018, 125, 267–275. [Google Scholar] [CrossRef]
- Moon, B.G.; Lee, J.Y.; Yu, H.G.; Song, J.H.; Park, Y.-H.; Kim, H.W.; Ji, Y.-S.; Chang, W.; Lee, J.E.; Oh, J.; et al. Efficacy and Safety of a Dexamethasone Implant in Patients with Diabetic Macular Edema at Tertiary Centers in Korea. J. Ophthalmol. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Korobelnik, J.-F.; Lu, C.; Katz, T.A.; Dhoot, D.S.; Loewenstein, A.; Arnold, J.; Staurenghi, G. Effect of Baseline Subretinal Fluid on Treatment Outcomes in VIVID-DME and VISTA-DME Studies. Ophthalmol. Retina 2019, 3, 663–669. [Google Scholar] [CrossRef]
- Forooghian, F.; Stetson, P.F.; Meyer, S.A.; Chew, E.Y.; Wong, W.T.; Cukras, C.; Meyerle, C.B.; Ferris, F.L. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema. Retina 2010, 30, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkaya, A.; Alkin, Z.; Karakucuk, Y.; Karatas, G.; Fazil, K.; Gurkan Erdogan, M.; Perente, I.; Taskapili, M. Thickness of the Retinal Photoreceptor Outer Segment Layer in Healthy Volunteers and in Patients with Diabetes Mellitus without Retinopathy, Diabetic Retinopathy, or Diabetic Macular Edema. Saudi J. Ophthalmol. 2017, 31, 69–75. [Google Scholar] [CrossRef]
- Jampol, L.M.; Glassman, A.R.; Sun, J. Evaluation and Care of Patients with Diabetic Retinopathy. New Engl. J. Med. 2020, 382, 1629–1637. [Google Scholar] [CrossRef]
- Bresnick, G.H. Diabetic Macular Edema. Ophthalmology 1986, 93, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Witkin, A.; Salz, D. Imaging in Diabetic Retinopathy. Middle East Afr. J. Ophthalmol. 2015, 22, 145. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.M.; Schachat, A.; Bodiford, G.; Haymond, R. Foveal avascular zone in diabetes mellitus. Retina 1993, 13, 125–128. [Google Scholar] [CrossRef]
- Couturier, A.; Rey, P.-A.; Erginay, A.; Lavia, C.; Bonnin, S.; Dupas, B.; Gaudric, A.; Tadayoni, R. Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti–Vascular Endothelial Growth Factor. Ophthalmology 2019, 126, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Salz, D.A.; de Carlo, T.E.; Adhi, M.; Moult, E.; Choi, W.; Baumal, C.R.; Witkin, A.J.; Duker, J.S.; Fujimoto, J.G.; Waheed, N.K. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes. JAMA Ophthalmol. 2016, 134, 644. [Google Scholar] [CrossRef]
- Zahid, S.; Dolz-Marco, R.; Freund, K.B.; Balaratnasingam, C.; Dansingani, K.; Gilani, F.; Mehta, N.; Young, E.; Klifto, M.R.; Chae, B.; et al. Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2016, 57, 4940. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, A.; Sacconi, R.; Corbelli, E.; Tomasso, L.; Querques, L.; Zerbini, G.; Scorcia, V.; Bandello, F.; Querques, G. Optical Coherence Tomography Angiography Analysis of Retinal Vascular Plexuses and Choriocapillaris in Patients with Type 1 Diabetes without Diabetic Retinopathy. Acta Diabetol. 2017, 54, 695–702. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Akil, H.; Pfau, M.; Sadda, S.R. Swept-Source OCT Angiography Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2016, 57, 3907. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.Y.; Chan, E.O.; Sun, Z.; Wong, R.; Lok, J.; Szeto, S.; Chan, J.C.; Lam, A.; Tham, C.C.; Ng, D.S.; et al. Clinically Relevant Factors Associated with Quantitative Optical Coherence Tomography Angiography Metrics in Deep Capillary Plexus in Patients with Diabetes. Eye Vis. 2020, 7, 7. [Google Scholar] [CrossRef]
- AttaAllah, H.R.; Mohamed, A.A.M.; Ali, M.A. Macular Vessels Density in Diabetic Retinopathy: Quantitative Assessment Using Optical Coherence Tomography Angiography. Int. Ophthalmol. 2019, 39, 1845–1859. [Google Scholar] [CrossRef]
- Veiby, N.C.B.B.; Simeunovic, A.; Heier, M.; Brunborg, C.; Saddique, N.; Moe, M.C.; Dahl-Jørgensen, K.; Margeirsdottir, H.D.; Petrovski, G. Associations between Macular OCT Angiography and Nonproliferative Diabetic Retinopathy in Young Patients with Type 1 Diabetes Mellitus. J. Diabetes Res. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Romano, M.R.; Ilardi, G.; Ferrara, M.; Cennamo, G.; Allegrini, D.; Pafundi, P.; Costagliola, C.; Staibano, S.; Cennamo, G. Intraretinal Changes in Idiopathic versus Diabetic Epiretinal Membranes after Macular Peeling. PLoS ONE 2018, 13, e0197065. [Google Scholar] [CrossRef]
- Romano, M.R.; Allegrini, D.; della Guardia, C.; Schiemer, S.; Baronissi, I.; Ferrara, M.; Cennamo, G. Vitreous and Intraretinal Macular Changes in Diabetic Macular Edema with and without Tractional Components. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1–8. [Google Scholar] [CrossRef]
- Garg, I.; Uwakwe, C.; Le, R.; Lu, E.S.; Cui, Y.; Wai, K.M.; Katz, R.; Zhu, Y.; Moon, J.Y.; Li, C.Y.; et al. Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity. Ophthalmol. Sci. 2022, 2, 100144. [Google Scholar] [CrossRef]
- Moein, H.-R.; Novais, E.A.; Rebhun, C.B.; Cole, E.D.; Louzada, R.N.; Witkin, A.J.; Baumal, C.R.; Duker, J.S.; Waheed, N.K. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema. Retina 2018, 38, 2277–2284. [Google Scholar] [CrossRef]
- Rosen, R.B.; Andrade Romo, J.S.; Krawitz, B.D.; Mo, S.; Fawzi, A.A.; Linderman, R.E.; Carroll, J.; Pinhas, A.; Chui, T.Y.P. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed Using Optical Coherence Tomography Angiography Perfused Capillary Density. Am. J. Ophthalmol. 2019, 203, 103–115. [Google Scholar] [CrossRef]
- Aiello, L.P.; Odia, I.; Glassman, A.R.; Melia, M.; Jampol, L.M.; Bressler, N.M.; Kiss, S.; Silva, P.S.; Wykoff, C.C.; Sun, J.K. Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging With Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy. JAMA Ophthalmol. 2019, 137, 65. [Google Scholar] [CrossRef] [Green Version]
- Wessel, M.M.; Nair, N.; Aaker, G.D.; Ehrlich, J.R.; D’Amico, D.J.; Kiss, S. Peripheral Retinal Ischaemia, as Evaluated by Ultra-Widefield Fluorescein Angiography, Is Associated with Diabetic Macular Oedema. Br. J. Ophthalmol. 2012, 96, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.D.; Messner, L.V.; Teitelbaum, B.; Michel, K.A.; Hariprasad, S.M. Characterization of Ischemic Index Using Ultra-Widefield Fluorescein Angiography in Patients With Focal and Diffuse Recalcitrant Diabetic Macular Edema. Am. J. Ophthalmol. 2013, 155, 1038–1044.e2. [Google Scholar] [CrossRef]
- Jiang, A.C.; Sevgi, D.D.; Mugnaini, C.; Whitney, J.; Srivastava, S.K.; Talcott, K.E.; Hu, M.; Reese, J.L.; Ehlers, J.P. Predictive Assessment of Quantitative Ultra-Widefield Angiographic Features for Future Need for Anti-VEGF Therapy in Diabetic Eye Disease. J. Pers. Med. 2022, 12, 608. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Jiang, A.C.; Boss, J.D.; Hu, M.; Figueiredo, N.; Babiuch, A.; Talcott, K.; Sharma, S.; Hach, J.; Le, T.; et al. Quantitative Ultra-Widefield Angiography and Diabetic Retinopathy Severity. Ophthalmology 2019, 126, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Nittala, M.G.; Zhou, B.; Fan, W.; Velaga, S.B.; Lampen, S.I.R.; Rusakevich, A.M.; Ehlers, J.P.; Babiuch, A.; Brown, D.M.; et al. Intravitreal Aflibercept for Retinal Nonperfusion in Proliferative Diabetic Retinopathy. Ophthalmol. Retina 2019, 3, 1076–1086. [Google Scholar] [CrossRef]
- Fan, W.; Nittala, M.G.; Wykoff, C.C.; Brown, D.M.; Uji, A.; Van Hemert, J.; Fleming, A.; Robertson, G.; Sadda, S.R.; Michael, I.P. New Biomarker Quantifying the Effect of Anti-Vegf Therapy in Eyes with Proliferative Diabetic Retinopathy on Ultrawide Field Fluorescein Angiography. Retina 2022, 42, 426–433. [Google Scholar] [CrossRef]
- Russell, J.F.; Shi, Y.; Hinkle, J.W.; Scott, N.L.; Fan, K.C.; Lyu, C.; Gregori, G.; Rosenfeld, P.J. Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation. Ophthalmol. Retina 2019, 3, 350–361. [Google Scholar] [CrossRef] [PubMed]
Molecules | Vitreous | Aqueous |
---|---|---|
Upregulated pro-angiogenic mediators | VEGF, FGF-2, Ang-1, Ang-2, PDGF, EPO, osteopontin, PlGF, CTGF, IGF, CYR61, SDF-1, HGF, LRG1 | VEGF, PlGF, PDGF, HGF |
Downregulated anti-angiogenic mediators | PEDF, TSP-1 | PEDF |
Upregulated pro-inflammatory mediators | TNF-α, IL-1α, IL-8, IL-6, IP-10, MCP-1, CRP, IL-12, IL-15, IL-16, IL-18 | MCP-1, IL-1b, IL-6, IL-8, IL-12, IP-10 |
Other molecules—upregulated | glutamine, histidine, threonine, asparagine, PTX3 | |
Other molecules—downregulated | NGF, BDNF, NT-3, NT-4, CNTF, GDNF | lactate, succinate, IL-10 |
Authors, Years | Study Design | Imaging Method | Eyes (n) | CCT (µm) | Conclusions | ||
---|---|---|---|---|---|---|---|
DM | Controls | DM | Controls | ||||
Suraida et al., 2018 [86] | CS | AS-OCT | DM = 100 NoDR = 50 NPDR = 50 | 50 | 524.60 ± 28.74 529.26 ± 33.88 | 493.12 ± 67.08 | Diabetic patients appear to have significantly thicker CCT regardless the retinopathy status (p < 0.001) |
Yusufoglu et al., 2022 [87] | P, CS | AS-OCT | 72 | 72 | 544.33 ± 31.20 | 533.77 ± 24.45 | The CCT was statistically significantly thicker in diabetic patients than in the controls (p = 0.025) |
Canan et al., 2020 [88] | P, CS | AS-OCT SST UP | NoDR = 49 NPDR = 30 PDR = 17 NoDR = 49 NPDR = 30 PDR = 17 NoDR = 49 NPDR = 30 PDR = 17 | 521.71 ± 27.58 528.20 ± 29.16 516.94 ± 34.25 568.10 ± 32.5 567.57 ± 35.49 554.47 ± 25.95 551.1 ± 29.64 556.07 ± 31.18 544.18 ± 36.33 | No correlation between CCT and the severity of retinopathy (p > 0.05) Better correlation for OCT and UP. | ||
Lee et al., 2006 [93] | CS | UP | 200 ≤10y = 111 >10y = 89 | 100 | 588.2 ± 2.7 582.2 ± 3.7 595.9 ± 4.2 | 567.8 ± 3.8 | Diabetic patients show significantly higher CCT differences compared to controls (p < 0.05) DM of over 10 years’ duration showed thicker corneas (p < 0.05) |
Özdamar et al., 2010 [92] | CS | UP | DM = 100 NoDR = 29 NPDR = 48 PDR = 23 | 145 | 564 ± 30 565 ± 32 558 ± 31 582 ± 23 | 538 ± 35 | The CCT of diabetic patients is thicker when compared with non-diabetic patients (p = 0.001) Differences between DM subgroups are not statistically significant (p = 0.056) |
Su et al., 2008 [94] | CS | UP | 748 | 2491 | 547.2 ± 1.2 | 539.3 ± 0.7 | Thicker corneas in patients with DM (p < 0.001) |
Galgauskas et al., 2016 [97] | P, CS | NCSM | 123 | 120 | 566.7 ± 35.7 | 550.0 ± 56.4 | CCT is significantly higher in diabetic patients (p < 0.05) |
El-Agamy et al., 2020 [98] | P, CS | NCSM | DM 2 = 57 | 45 | 545.61 ± 30.39 | 539.42 ± 29.22 | No significant difference in CCT between diabetic and control groups (p = 0.301) |
Inoue et al., 2002 [100] | CS | UP | DM 2 = 99 | 97 | 538 ± 36 | 537 ± 38 | CCT is not increased in type II DM (p = 0.90) |
Urban et al., 2013 [101] | CS | NCSM | DM 1 = 123 | 124 | 550 ± 30 | 530 ± 33 | CCT is increased in children and adolescents with DM (p < 0.0001) |
Storr-Paulsen et al., 2014 [102] | P, CS | NCSM | 107 | 128 | 546 ± 7 | 538 ± 5 | Diabetic patients show a significant increase in CCT (p < 0.05) |
Ramm et al., 2020 [105] | P, CS | Pentacam Corvis ST | 59 | 57 | 552.6 ± 33.2 553.4 ± 35 | 552 ± 36.6 558 ± 38.6 | No significant increase in CCT in diabetic patients (p = 0.923 and p = 0.511 with Pentacam and Corvis, respectively) |
Authors, Years | Study Design | Imaging Method | Eyes (n) | ECD Cell/mm² | Conclusions | ||
---|---|---|---|---|---|---|---|
DM | Controls | DM | Controls | ||||
Choo et al., 2010 [83] | CS | NCSM | DM 2 = 100 | 100 | 2541.6 ± 516.4 | 2660.1 ± 515.5 | ECD in DM2 group was significantly lower than in the control group (p < 0.05) |
El-Agamy et al., 2020 [98] | CS | NCSM | DM 2 = 57 | 45 | 2491.98 ± 261.08 | 2629.68 ± 293.45 | ECD was significantly lower in the diabetic cornea than in the control group (p = 0.014) |
Inoue et al., 2002 [100] | CS | SM | DM 2 = 99 | 97 | 2493 ± 330 | 2599 ± 278 | ECD was significantly lower in the diabetic cornea than in the control group (p = 0.016) |
Urban et al., 2013 [101] | CS | NCSM | DM 1 = 123 | 124 | 2435.55 ± 443.43 | 2970.75 ± 270.1 | ECD was significantly lower in patients with diabetes than in the control group (p = 0.0001) |
Jha et al., 2022 [110] | CS | NCSM | DM 2 = 592 | 596 | 2484.5 ± 299.5 | 2555.9 ± 258.2 | ECD was significantly lower in the diabetic cornea than in the control group (p = 0.017) |
Modis et al., 2010 [111] | CS | NCSM | DM 1 = 41 DM 2 = 59 | N/A | 2428 ± 219 2495 ± 191 | N/A | ECD was significantly lower in the diabetic cornea than in the control group (p = 0.02). No significant differences between DM2 and controls |
Sudhir et al., 2012 [112] | CS, P | NCSM | 1191 | 120 | 2550.96 ± 326.17 | 2634.44 ± 256.0 | ECD was significantly lower in the diabetic cornea than in the control group (p = 0.001). |
Islam et al., 2017 [113] | CS | NCSM | 149 | 149 | 2494.47 ± 394.10 | 2574.46 ± 279.97 | ECD was significantly lower in the diabetic cornea than in the control group (p = 0.04). |
Storr-Paulsen et al., 2014 [102] | CS, P | NCSM | DM 2 = 107 | 128 | 2578 ± 77 | 2605 ± 66 | No differences in ECD between well-controlled diabetic subjects and non-diabetic subjects (p = 0.60) |
Quadrado et al., 2006 [106] | CS, P | CCM | 15 | 15 | 2660 ± 364 | 2690 ± 302 | ECD in diabetic patients is not significantly different from healthy controls (p = 0.5) |
Szalai et al., 2016 [107] | CS | CCM | No DR = 10 DR = 18 | 17 | 3250.36 ± 421.5 2639.17 ± 227.5 | 3497.62 ± 519.8 | ECD was significantly lower in patients with DM without and with retinopathy compared to control subjects (p = 0.001) |
Shenoy et al., 2009 [119] | Cohort study | CCM | 110 | 110 | 2342 ± 392 | 2517 ± 647 | ECD was significantly lower in the diabetic cornea than in the control group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, M.; Loda, A.; Coco, G.; Grassi, P.; Cestaro, S.; Rezzola, S.; Romano, V.; Semeraro, F. Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. J. Clin. Med. 2023, 12, 912. https://doi.org/10.3390/jcm12030912
Ferrara M, Loda A, Coco G, Grassi P, Cestaro S, Rezzola S, Romano V, Semeraro F. Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. Journal of Clinical Medicine. 2023; 12(3):912. https://doi.org/10.3390/jcm12030912
Chicago/Turabian StyleFerrara, Mariantonia, Alessandra Loda, Giulia Coco, Piergiacomo Grassi, Silvia Cestaro, Sara Rezzola, Vito Romano, and Francesco Semeraro. 2023. "Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers" Journal of Clinical Medicine 12, no. 3: 912. https://doi.org/10.3390/jcm12030912
APA StyleFerrara, M., Loda, A., Coco, G., Grassi, P., Cestaro, S., Rezzola, S., Romano, V., & Semeraro, F. (2023). Diabetic Retinopathy: Soluble and Imaging Ocular Biomarkers. Journal of Clinical Medicine, 12(3), 912. https://doi.org/10.3390/jcm12030912