Influence of Lateral Translation of Lowest Instrumented Vertebra on L4 Tilt and Coronal Balance for Thoracolumbar and Lumbar Curves in Adolescent Idiopathic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Radiographic Parameters
2.3. Surgical Techniques
2.3.1. Posterior Spinal Fusion
2.3.2. Anterior Spinal Fusion
- (Posterior spinal fusion) A thirteen-year-old girl with a preoperative thoracolumbar (TL) curve of 48° improved to 8° 2 years after surgery. Lower instrumented vertebra translation from the central sacral vertical line (LIV translation) was 32 mm preoperatively and improved to 16 mm at the final follow up.
- (Anterior spinal fusion) A fourteen-year-old girl with a preoperative TL curve of 53° improved to 10° 18 years after surgery. LIV translation improved from 49 mm preoperatively to 11 mm at the final follow-up.
2.4. Data Analysis
3. Results
3.1. Patient Demographic Data
3.2. Radiographic Parameters
3.2.1. Radiographic Parameters for All 62 Cases
3.2.2. Radiographic Parameters of ASF and PSF Group
3.2.3. Correlation Analysis
3.2.4. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sudo, H.; Abe, Y.; Kokabu, T.; Kuroki, K.; Iwata, A.; Iwasaki, N. Impact of Multilevel Facetectomy and Rod Curvature on Anatomical Spinal Reconstruction in Thoracic Adolescent Idiopathic Scoliosis. Spine 2018, 43, E1135–E1142. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Sudo, H.; Iwasaki, N.; Chiba, A. Mechanical Analysis of Notch-Free Pre-Bent Rods for Spinal Deformity Surgery. Spine 2020, 45, E312–E318. [Google Scholar] [CrossRef] [PubMed]
- Lenke, L.G.; Betz, R.R.; Harms, J.; Bridwell, K.H.; Clements, D.H.; Lowe, T.G.; Blanke, K. Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J. Bone Jt. Surg. Am. 2001, 83, 1169–1181. [Google Scholar] [CrossRef]
- Yang, X.; Hu, B.; Song, Y.; Liu, L.; Zhou, C.; Zhou, Z.; Feng, G. Coronal and sagittal balance in Lenke 5 AIS patients following posterior fusion: Important role of the lowest instrument vertebrae selection. BMC Musculoskelet. Disord. 2018, 19, 212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bunger, C.E.; Zhang, Y.; Wu, C.; Li, H.; Dahl, B.; Hansen, E.S. Lowest instrumented vertebra selection for Lenke 5C scoliosis: A minimum 2-year radiographical follow-up. Spine 2013, 38, E894–E900. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Sudo, H.; Abumi, K.; Ito, M.; Yamada, K.; Iwasaki, N. Impact of lowest instrumented vertebra tilt and rotation on uninstrumented lumbar curve and L4 tilt in thoracic adolescent idiopathic scoliosis. J. Neurosurg. Spine 2020, 33, 471–479. [Google Scholar] [CrossRef]
- Ohashi, M.; Watanabe, K.; Hirano, T.; Hasegawa, K.; Katsumi, K.; Shoji, H.; Mizouchi, T.; Endo, N. Predicting Factors at Skeletal Maturity for Curve Progression and Low Back Pain in Adult Patients Treated Nonoperatively for Adolescent Idiopathic Scoliosis with Thoracolumbar/Lumbar Curves: A Mean 25-year Follow-up. Spine 2018, 43, E1403–E1411. [Google Scholar] [CrossRef]
- Nohara, A.; Kawakami, N.; Seki, K.; Tsuji, T.; Ohara, T.; Saito, T.; Kawakami, K. The Effects of Spinal Fusion on Lumbar Disc Degeneration in Patients with Adolescent Idiopathic Scoliosis: A Minimum 10-Year Follow-Up. Spine Deform. 2015, 3, 462–468. [Google Scholar] [CrossRef]
- Zhuang, Q.; Zhang, J.; Wang, S.; Yang, Y.; Lin, G. How to select the lowest instrumented vertebra in Lenke type 5 adolescent idiopathic scoliosis patients? Spine J. 2021, 21, 141–149. [Google Scholar] [CrossRef]
- Sanchez-Raya, J.; Bago, J.; Pellise, F.; Cuxart, A.; Villanueva, C. Does the lower instrumented vertebra have an effect on lumbar mobility, subjective perception of trunk flexibility, and quality of life in patients with idiopathic scoliosis treated by spinal fusion? J. Spinal Disord. Tech. 2012, 25, 437–442. [Google Scholar] [CrossRef]
- Sudo, H.; Ito, M.; Kaneda, K.; Shono, Y.; Abumi, K. Long-term outcomes of anterior dual-rod instrumentation for thoracolumbar and lumbar curves in adolescent idiopathic scoliosis: A twelve to twenty-three-year follow-up study. J. Bone Jt. Surg. Am. 2013, 95, e49. [Google Scholar] [CrossRef] [PubMed]
- Sudo, H.; Kaneda, K.; Shono, Y.; Iwasaki, N. Short fusion strategy for thoracolumbar and lumbar adolescent idiopathic scoliosis using anterior dual-rod instrumentation. Bone Jt. J. 2016, 98, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Banno, T.; Yamato, Y.; Oba, H.; Ohba, T.; Hasegawa, T.; Yoshida, G.; Arima, H.; Oe, S.; Mihara, Y.; Ushirozako, H.; et al. Preoperative Thoracic Curve Magnitude and L4 End Vertebra Were Risk Factors for Subjacent Disc Wedging after Selective Thoracolumbar/Lumbar Fusion with L3 as the Lowest Instrumented Vertebra in Lenke Type 5 Curve Patients. Spine 2021, 46, E878–E887. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.; Yaszay, B.; Bastrom, T.P.; Shah, S.A.; Lonner, B.S.; Miyanji, F.; Samdani, A.F.; Parent, S.; Asghar, J.; Cahill, P.J.; et al. L3 translation predicts when L3 is not distal enough for an “ideal” result in Lenke 5 curves. Eur. Spine J. 2019, 28, 1349–1355. [Google Scholar] [CrossRef]
- Rinella, A.; Bridwell, K.; Kim, Y.; Rudzki, J.; Edwards, C.; Roh, M.; Lenke, L.; Berra, A. Late complications of adult idiopathic scoliosis primary fusions to L4 and above: The effect of age and distal fusion level. Spine 2004, 29, 318–325. [Google Scholar] [CrossRef]
- Akazawa, T.; Kotani, T.; Sakuma, T.; Minami, S.; Orita, S.; Inage, K.; Fujimoto, K.; Shiga, Y.; Torii, Y.; Umehara, T.; et al. Modic Changes and Disc Degeneration of Nonfused Segments 27 to 45 Years After Harrington Instrumentation for Adolescent Idiopathic Scoliosis: Comparison to Healthy Controls. Spine 2018, 43, 556–561. [Google Scholar] [CrossRef]
- Li, J.; Hwang, S.W.; Shi, Z.; Yan, N.; Yang, C.; Wang, C.; Zhu, X.; Hou, T.; Li, M. Analysis of radiographic parameters relevant to the lowest instrumented vertebrae and postoperative coronal balance in Lenke 5C patients. Spine 2011, 36, 1673–1678. [Google Scholar] [CrossRef]
- Lim, J.L.; Hey, H.W.D.; Kumar, N.; Teo, A.Q.A.; Lau, L.L.; Hee, H.T.; Ruiz, J.N.; Kumar, N.S.; Thambiah, J.S.; Liu, G.K.; et al. A 10-Year Radiographic Study Comparing Anterior Versus Posterior Instrumented Spinal Fusion in Patients with Lenke Type 5 Adolescent Idiopathic Scoliosis. Spine 2020, 45, 612–620. [Google Scholar] [CrossRef]
- Jackson, R.P.; McManus, A.C. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine 1994, 19, 1611–1618. [Google Scholar] [CrossRef]
- Sudo, H.; Kaneda, K.; Shono, Y.; Iwasaki, N. Selection of the upper vertebra to be instrumented in the treatment of thoracolumbar and lumbar adolescent idiopathic scoliosis by anterior correction and fusion surgery using dual-rod instrumentation: A minimum 12-year follow-up study. Spine J. 2016, 16, 281–287. [Google Scholar] [CrossRef]
- Schwab, F.; Patel, A.; Ungar, B.; Farcy, J.P.; Lafage, V. Adult spinal deformity-postoperative standing imbalance: How much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 2010, 35, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Satake, K.; Lenke, L.G.; Kim, Y.J.; Bridwell, K.H.; Blanke, K.M.; Sides, B.; Steger-May, K. Analysis of the lowest instrumented vertebra following anterior spinal fusion of thoracolumbar/lumbar adolescent idiopathic scoliosis: Can we predict postoperative disc wedging? Spine 2005, 30, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Nash, C.L., Jr.; Moe, J.H. A study of vertebral rotation. J. Bone Jt. Surg. Am. 1969, 51, 223–229. [Google Scholar] [CrossRef]
- Sudo, H. Four-Dimensional Anatomical Spinal Reconstruction in Thoracic Adolescent Idiopathic Scoliosis. JBJS Essent. Surg. Tech. 2022, 12, e21.00038. [Google Scholar] [CrossRef] [PubMed]
- Sudo, H.; Abe, Y.; Abumi, K.; Iwasaki, N.; Ito, M. Surgical treatment of double thoracic adolescent idiopathic scoliosis with a rigid proximal thoracic curve. Eur. Spine J. 2016, 25, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, K.; Shono, Y.; Satoh, S.; Abumi, K. New anterior instrumentation for the management of thoracolumbar and lumbar scoliosis. Application of the Kaneda two-rod system. Spine 1996, 21, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Sudo, H.; Ito, M.; Kaneda, K.; Shono, Y.; Takahata, M.; Abumi, K. Long-term outcomes of anterior spinal fusion for treating thoracic adolescent idiopathic scoliosis curves: Average 15-year follow-up analysis. Spine 2013, 38, 819–826. [Google Scholar] [CrossRef]
- Sudo, H. Dual-Rod Instrumentation Via the Anterior Approach for Thoracolumbar and Lumbar Adolescent Idiopathic Scoliosis. JBJS Essent. Surg. Tech. 2022, 12, e22.00002. [Google Scholar] [CrossRef]
- Chang, D.G.; Yang, J.H.; Suk, S.I.; Suh, S.W.; Kim, Y.H.; Cho, W.; Jeong, Y.S.; Kim, J.H.; Ha, K.Y.; Lee, J.H. Importance of Distal Fusion Level in Major Thoracolumbar and Lumbar Adolescent Idiopathic Scoliosis Treated by Rod Derotation and Direct Vertebral Rotation Following Pedicle Screw Instrumentation. Spine 2017, 42, E890–E898. [Google Scholar] [CrossRef]
ASF (n = 30) | PSF (n = 32) | p-Value | |
---|---|---|---|
Age at surgery (years) | 14.4 ± 1.9 | 15.7 ± 2.0 | <0.01 * |
Risser sign | 3.1 ± 0.8 | 4.0 ± 1.0 | <0.01 * |
Number of vertebrae in major curve (upper-end to lower-end vertebra) | 4.8 ± 0.6 | 5.2 ± 0.8 | 0.01 * |
LIV (vertebral level: cases) | L2: 13, L3: 17 | L3: 32 | |
Instrumentation length (segments) | 3.7 ± 0.7 | 5.4 ± 1.0 | <0.01 * |
Operation time (min.) | 281.1 ± 47.0 | 205.7 ± 39.8 | <0.01 * |
Intraoperative blood loss (mL) | 416.5 ± 234.6 | 435.7 ± 263.6 | 0.39 |
Follow-up periods (yrs) | 17.2 ± 3.1 | 2.0 ± 0.1 | <0.01 * |
Preop. | Postop. | Final | |
---|---|---|---|
Coronal plane data | |||
Thoracolumbar/lumbar curve (°) | 51 ± 9 | 7 ± 6 * | 10 ± 9 * |
Thoracic curve (°) | 29 ± 10 | 15 ± 9 * | 16 ± 10 * |
Sagittal plane data | |||
Thoracic kyphosis (T5-12) (°) | 15 ± 8 * | 21 ± 11 * | 24 ± 12 * |
Lumbar lordosis (L1-S1) (°) | 45 ± 10 | 44 ± 11 | 51 ± 12 * |
Balance parameters and translational data | |||
C7 translation from CSVL (mm) | 22 ± 12 | 20 ± 14 | 10 ± 6 * |
Sagittal vertical axis (mm) | 19 ± 16 | 19 ± 16 | 22 ± 17 |
Apical vertebral translation (mm) | 52 ± 12 | 13 ± 9 * | 10 ± 9 * |
L4 tilt (°) | 22 ± 7 | 5 ± 4 * | 6 ± 5 * |
LIV translation from CSVL (mm) | 33 ± 9 | 12 ± 6 * | 12 ± 8 * |
LIV tilt (°) | 26 ± 8 | −1 ± 5 * | −2 ± 6 * |
Disc angle below LIV (°) | 3 ± 6 | −6 ± 3 * | −7 ± 4 * |
ASF (n = 30) | PSF (n = 32) | p-Value | |
---|---|---|---|
Thoracolumbar/lumbar curve | |||
Preoperatively (°) | 56 ± 9 | 46 ± 7 | <0.01 * |
Flexibility (%) | 75 ± 12 | 85 ± 16 | <0.01 * |
Immediately postoperative (°) | 8 ± 6 | 6 ± 5 | 0.10 |
Final follow-up (°) | 11 ± 8 | 9 ± 8 | 0.14 |
Correction rate at final follow-up (%) | 80 ± 14 | 81 ± 14 | 0.36 |
Thoracic curve | |||
Preoperatively (°) | 34 ± 9 | 25 ± 8 | <0.01 * |
Immediately postoperative (°) | 17 ± 10 | 13 ± 8 | 0.02 * |
Final follow-up (°) | 19 ± 10 | 14 ± 9 | 0.01 * |
Correction rate at final follow-up (%) | 46 ± 23 | 51 ± 22 | 0.18 |
Thoracic kyphosis (T5-12) (°) | |||
Preoperatively (°) | 17 ± 9 | 13 ± 8 | 0.03 * |
Immediately postoperative (°) | 28 ± 9 | 13 ± 7 | <0.01 * |
Final follow-up (°) | 31 ± 10 | 16 ± 8 | <0.01 * |
Lumbar lordosis (L1-S1) (°) | |||
Preoperatively (°) | 45 ± 10 | 46 ± 10 | 0.27 |
Immediately postoperative (°) | 48 ± 9 | 41 ± 10 | <0.01 * |
Final follow-up (°) | 54 ± 11 | 48 ± 11 | 0.03 * |
C7 translation from CSVL (mm) | |||
Preoperatively | 19 ± 12 | 25 ± 11 | 0.02 * |
Immediately postoperative | 21 ± 16 | 19 ± 12 | 0.27 |
Final follow-up | 9 ± 6 | 10 ± 6 | 0.32 |
Sagittal vertical axis (mm) | |||
Preoperatively | 17± 16 | 21 ± 17 | 0.18 |
Immediately postoperative | 16 ± 15 | 21 ± 17 | 0.12 |
Final follow-up | 17 ± 14 | 25 ± 16 | 0.03 * |
Apical vertebral translation (mm) | |||
Preoperatively | 54 ± 13 | 50 ± 11 | 0.08 |
Immediately postoperative | 12 ± 8 | 14 ± 9 | 0.20 |
Final follow-up | 9 ± 6 | 11 ± 11 | 0.11 |
L4 tilt | |||
Preoperatively (°) | 23 ± 6 | 20 ± 7 | 0.04 * |
Immediately postoperative (°) | 5 ± 4 | 4 ± 4 | 0.25 |
Final follow-up (°) | 7 ± 5 | 5 ± 5 | 0.12 |
LIV translation from CSVL (mm) | |||
Preoperatively | 36 ± 10 | 30 ± 7 | <0.01 * |
Immediately postoperative | 12 ± 7 | 13 ± 6 | 0.33 |
Final follow-up | 12 ± 6 | 12 ± 9 | 0.39 |
LIV tilt (°) | |||
Preoperatively | 27 ± 9 | 26 ± 7 | 0.24 |
Immediately postoperative | −2 ± 4 | 0 ± 6 | 0.09 |
Final follow-up | −4 ± 5 | 1 ± 7 | <0.01 * |
Disc angle below LIV (°) | |||
Preoperatively | 0 ± 8 | 5 ± 4 | <0.01 * |
Immediately postoperative | −6 ± 3 | −5 ± 3 | 0.11 |
Final follow-up | −9 ± 5 | −5 ± 3 | <0.01 * |
Correlation Coefficient | Statistical Significance | |
---|---|---|
Thoracolumbar/Lumbar curve | ||
Correction rate | r = −0.64 | p < 0.01 * |
Correction loss | r = 0.42 | p < 0.01 * |
C7 translation from CSVL | r = 0.38 | p < 0.01 * |
Apical vertebral translation | r = 0.83 | p < 0.01 * |
L4 tilt | r = 0.69 | p < 0.01 * |
LIV tilt | r = 0.47 | p < 0.01 * |
Disc angle below LIV (°) | r = −0.21 | p = 0.10 |
L4 Tilt < 8° and C7-CSVL < 15 mm (n = 38) | L4 Tilt ≥ 8° or C7-CSVL ≥ 15 mm (n = 24) | p-Value | |
---|---|---|---|
Age at surgery (yrs) | 14.9 ± 2.0 | 15.4 ± 2.1 | 0.18 |
Risser sign | 3.5 ± 1.0 | 3.7 ± 1.1 | 0.27 |
Number of vertebrae in major curve (upper-end to lower-end vertebra) | 5.1 ± 0.7 | 5.0 ± 0.8 | 0.32 |
Surgical procedure | ASF: 19, PSF: 19 | ASF:11, PSF:13 | 0.38 |
LIV (vertebral level: cases) | L2: 8, L3: 30 | L2: 5, L3: 19 | |
Instrumentation length (segments) | 4.6 ± 1.2 | 4.5 ± 1.3 | 0.30 |
Thoracolumbar/lumbar curve (°) | 7 ± 6 | 15 ± 9 | <0.01 * |
Thoracic curve (°) | 16 ± 9 | 17 ± 11 | 0.31 |
Thoracic kyphosis (T5-12) (°) | 26 ± 13 | 21 ± 11 | 0.07 |
Lumbar lordosis (L1-S1) (°) | 52 ± 12 | 50 ± 11 | 0.24 |
C7 translation from CSVL (mm) | 7 ± 4 | 14 ± 6 | <0.01 * |
Apical vertebral translation (mm) | 6 ± 7 | 16 ± 7 | <0.01 * |
L4 tilt (°) | 3 ± 3 | 10 ± 5 | <0.01 * |
Sagittal vertical axis (mm) | 17 ± 13 | 27 ± 17 | <0.01 * |
LIV translation from CSVL (mm) | 8 ± 6 | 17 ± 6 | <0.01 * |
LIV tilt (°) | −4 ± 5 | 2 ± 7 | <0.01 * |
Disc angle below LIV (°) | −6 ± 3 | −8 ± 6 | 0.10 |
ASF (n = 19) | PSF (n = 13) | p-Value | |
---|---|---|---|
Age at surgery (years) | 14.5 ± 2.1 | 14.9 ± 1.6 | 0.26 |
Risser sign | 3.2 ± 0.8 | 3.8 ± 0.7 | 0.01 * |
Number of vertebrae in major curve (upper-end to lower-end vertebra) | 4.9 ± 0.6 | 5.0 ± 0.8 | 0.41 |
LIV (vertebral level: cases) | L2: 11, L3: 8 | L3: 13 | |
Instrumentation length (segments) | 3.8 ± 0.5 | 5.2 ± 0.9 | <0.01 * |
LIV: L2 (n = 13) | LIV: L3 (n = 17) | p-Value | |
---|---|---|---|
Number of vertebrae in major curve (upper-end to lower-end vertebra) | 4.9 ± 0.7 | 4.8 ± 0.5 | 0.36 |
Instrumentation length (segments) | 3.4 ± 0.6 | 3.9 ± 0.7 | 0.03 * |
Thoracolumbar/lumbar curve (°) | 12 ± 5 | 11 ± 9 | 0.42 |
C7 translation from CSVL (mm) | 9 ± 6 | 10 ± 6 | 0.31 |
Apical vertebral translation (mm) | 9 ± 7 | 8 ± 5 | 0.31 |
L4 tilt (°) | 8 ± 5 | 6 ± 5 | 0.13 |
Sagittal vertical axis (mm) | 17 ± 14 | 16 ± 13 | 0.47 |
LIV translation from CSVL (mm) | 12 ± 7 | 12 ± 6 | 0.50 |
LIV tilt (°) | −4 ± 4 | −4 ± 5 | 0.39 |
Disc angle below LIV (°) | −9 ± 4 | −9 ± 5 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, K.; Sudo, H.; Abe, Y.; Kokabu, T.; Tachi, H.; Endo, T.; Ohnishi, T.; Ukeba, D.; Ura, K.; Takahata, M.; et al. Influence of Lateral Translation of Lowest Instrumented Vertebra on L4 Tilt and Coronal Balance for Thoracolumbar and Lumbar Curves in Adolescent Idiopathic Scoliosis. J. Clin. Med. 2023, 12, 1389. https://doi.org/10.3390/jcm12041389
Yamada K, Sudo H, Abe Y, Kokabu T, Tachi H, Endo T, Ohnishi T, Ukeba D, Ura K, Takahata M, et al. Influence of Lateral Translation of Lowest Instrumented Vertebra on L4 Tilt and Coronal Balance for Thoracolumbar and Lumbar Curves in Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine. 2023; 12(4):1389. https://doi.org/10.3390/jcm12041389
Chicago/Turabian StyleYamada, Katsuhisa, Hideki Sudo, Yuichiro Abe, Terufumi Kokabu, Hiroyuki Tachi, Tsutomu Endo, Takashi Ohnishi, Daisuke Ukeba, Katsuro Ura, Masahiko Takahata, and et al. 2023. "Influence of Lateral Translation of Lowest Instrumented Vertebra on L4 Tilt and Coronal Balance for Thoracolumbar and Lumbar Curves in Adolescent Idiopathic Scoliosis" Journal of Clinical Medicine 12, no. 4: 1389. https://doi.org/10.3390/jcm12041389
APA StyleYamada, K., Sudo, H., Abe, Y., Kokabu, T., Tachi, H., Endo, T., Ohnishi, T., Ukeba, D., Ura, K., Takahata, M., & Iwasaki, N. (2023). Influence of Lateral Translation of Lowest Instrumented Vertebra on L4 Tilt and Coronal Balance for Thoracolumbar and Lumbar Curves in Adolescent Idiopathic Scoliosis. Journal of Clinical Medicine, 12(4), 1389. https://doi.org/10.3390/jcm12041389