Role of Phytotherapy in the Management of BPH: A Summary of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serenoa Repens (Saw Palmetto)
2.2. Pygeum Africanum (Prunus Africana)
2.3. Cucurbita Pepo
2.4. Urtica Dioica
2.5. Epilobium Angustifolium
2.6. Hypoxis Hemerocallidea
2.7. Pinus Pinaster
2.8. Solanum Lycopersicum (Lycopersicum esculentum)
2.9. Roystonea Regia
2.10. Secale Cereale
2.11. Linum Usitatissimum
2.12. Isoflavones
2.13. Others
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awedew, A.F.; Han, H.; Abbasi, B.; Abbasi-Kangevari, M.; Ahmed, M.B.; Almidani, O.; Amini, E.; Arabloo, J.; Argaw, A.M.; Athari, S.S.; et al. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Heal. Longev. 2022, 3, e754–e776. [Google Scholar] [CrossRef]
- Lowe, F.C.; Ku, J.C. Phytotherapy in treatment of benign prostatic hyperplasia: A critical review. Urology 1996, 48, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Weisser, H.; Tunn, S.; Behnke, B.; Krieg, M. Effects of the Sabal serrulata extract IDS 89 and its subfractions on 5α-reductase activity in human benign prostatic hyperplasia. Prostate 1996, 28, 300–306. [Google Scholar] [CrossRef]
- Comhaire, F.; Mahmoud, A. Preventing diseases of the prostate in the elderly using hormones and nutriceuticals. Aging Male 2004, 7, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Gravas, S.; Samarinas, M.; Zacharouli, K.; Karatzas, A.; Tzortzis, V.; Koukoulis, G.; Melekos, M. The effect of hexanic extract of Serenoa Repens on prostatic inflammation: Results from a randomized biopsy study. World J. Urol. 2018, 37, 539–544. [Google Scholar] [CrossRef]
- Papaioannou, M.; Schleich, S.; Prade, I.; Degen, S.; Roell, D.; Schubert, U.; Tanner, T.; Claessens, F.; Matusch, R.; Baniahmad, A. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J. Cell. Mol. Med. 2009, 13, 2210–2223. [Google Scholar] [CrossRef]
- Yablonsky, F.; Nicolas, V.; Riffaud, J.P.; Bellamy, F. Antiproliferative Effect of Pygeum africanum Extract on Rat Prostatic Fibroblasts. J. Urol. 1997, 157, 2381–2387. [Google Scholar] [CrossRef]
- Quiles, M.T.; Arbós, M.A.; Fraga, A.; de Torres, I.M.; Reventós, J.; Morote, J. Antiproliferative and apoptotic effects of the herbal agent Pygeum africanum on cultured prostate stromal cells from patients with benign prostatic hyperplasia (BPH). Prostate 2010, 70, 1044–1053. [Google Scholar] [CrossRef]
- Paubert-Braquet, M.; Cave, A.; Hocquemiller, R.; Delacroix, D.; Dupont, C.; Hedef, N.; Borgeat, P. Effect of Pygeum africanum extract on A23187-stimulated production of lipoxygenase metabolites from human polymorphonuclear cells. J. Lipid Mediat. Cell Signal. 1994, 9, 285–290. [Google Scholar]
- Levin, R.M.; Riffaud, J.-P.; Bellamy, F.; Rohrmann, D.; Habib, M.; Krasnopolsky, L.; Zhao, Y.; Wein, A.J. Protective Effect of Tadenan of Bladder Function Secondary to Partial Outlet Obstruction. J. Urol. 1996, 155, 1466–1470. [Google Scholar] [CrossRef]
- Heim, S.; Seibt, S.; Stier, H.; Moré, M.I. Uromedic® Pumpkin Seed Derived Δ7-Sterols, Extract and Oil Inhibit 5α-Reductases and Bind to Androgen Receptor In Vitro. Pharmacol. Pharm. 2018, 9, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Gossell-Williams, M.; Davis, A.; O’Connor, N. Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. J. Med. Food 2006, 9, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Schroecksn, K.; Wirleitner, B.; Schennach, H.; Fuchs, D. Extracts of Pumpkin (Cucurbita pepo L.) Seeds Suppress Stimulated Peripheral Blood Mononuclear Cells in vitro. Am. J. Immunol. 2005, 1, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Hata, K.; Takahashi, S.; Wakida, Y. Effects of Pumpkin Seed Extract on urinary bladder function in anesthesized rats. Med. Sci. Pharm. Sci. 2005, 54, 1–10. [Google Scholar]
- Konrad, L.; Müller, H.-H.; Lenz, C.; Laubinger, H.; Aumüller, G.; Lichius, J.J. Antiproliferative Effect on Human Prostate Cancer Cells by a Stinging Nettle Root (Urtica dioica) Extract. Planta Med. 2000, 66, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Nahata, A.; Dixit, V.K. Ameliorative effects of stinging nettle (Urtica dioica) on testosterone-induced prostatic hyperplasia in rats. Andrologia 2012, 44 (Suppl. 1), 396–409. [Google Scholar] [CrossRef]
- Deng, L.; Zong, W.; Tao, X.; Liu, S.; Feng, Z.; Lin, Y.; Liao, Z.; Chen, M. Evaluation of the therapeutic effect against benign prostatic hyperplasia and the active constituents from Epilobium angustifolium L. J. Ethnopharmacol. 2019, 232, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; De Falco, B.; Lanzotti, V.; Motti, R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2020, 19, 1341–1377. [Google Scholar] [CrossRef]
- Owira, P.M.O.; Ojewole, J.A.O. ‘African potato’ (Hypoxis hemerocallideacorm): A plant-medicine for modern and 21st century diseases of mankind?—A review. Phytother. Res. 2009, 23, 147–152. [Google Scholar] [CrossRef]
- Klippel, K.F.; Hiltl, D.M.; Schipp, B. A multicentric, placebo-controlled, double-blind clinical trial of β-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. Br. J. Urol. 1997, 80, 427–432. [Google Scholar] [CrossRef]
- Allkanjari, O.; Vitalone, A. What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci. 2015, 126, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Yohani Perez, L.; Menendez, R.; Mas, R.; Gonzalez, R.M. In Vitro Effect of D-O04, a Lipid Extract of the Fruit of the Cuban Royal Palm (Roystonea regia), on Prostate Steroid 5-Reductase Activity. Curr. Ther. Res. 2006, 67, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruzazabala, M.L.; Pérez, Y.; Ravelo, Y.; Molina, V.; Carbajal, D.; Mas, R.; Rodríguez, E. Effect of oleic, lauric and myristic acids on phenylephrine-induced contractions of isolated rat vas deferens. Indian J. Exp. Biol. 2011, 49, 684–688. [Google Scholar]
- Tarique, M.; Ali, T.; Aziz, I. Efficacy of a novel unani drug katan (Linum usitatissimum) in the management of BPH and carcinoma prostate. A narrative review. World J. Pharm. Res. 2022, 11, 1223–1235. [Google Scholar]
- Stephens, F.O. Phytoestrogens and prostate cancer: Possible preventive role. Med. J. Aust. 1997, 167, 138–140. [Google Scholar] [CrossRef] [PubMed]
- McVary, K.T.; Roehrborn, C.G.; Avins, A.L.; Barry, M.J.; Bruskewitz, R.C.; Donnell, R.F.; Foster, H.E.; Gonzalez, C.M.; Kaplan, S.A.; Penson, D.F.; et al. Update on AUA Guideline on the Management of Benign Prostatic Hyperplasia. J. Urol. 2011, 185, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Gravas, S.; Cornu, J.N.; Gacci, M.; Gratzke, C.; Herrmann, T.R.; Mamomulakis, C.; Rieken, M.; Speakman, M.J.; Tikkinen, K.A.O.; Karavitakis, M.; et al. EAU: Guidelines on Male Lower Urinary Tract Symptoms (LUTS), including Benign Prostatic Obstruction (BPO). Eur. Assoc. Urol. 2022, 1–112. Available online: https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-Guidelines-on-Non-Neurogenic-Male-LUTS-2022.pdf (accessed on 2 February 2023).
- Nickel, J.C.; Chughtai, B.; De Nunzio, C.; Brahmbhatt, J.; Shore, N.; Te, A.E.; Djavan, B. Rethinking the Role of Saw Palmetto Extract for Men with Lower Urinary Tract Symptoms in North America. Uro 2022, 2, 137–150. [Google Scholar] [CrossRef]
- Tacklind, J.; Macdonald, R.; Rutks, I.; Ju, S.; Tj, W.; Tacklind, J.; Macdonald, R.; Rutks, I.; Ju, S.; Tj, W. Serenoa Repens for Benign Prostatic Hyperplasia (Review). 2012. Available online: Cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001423.pub3/epdf/abstract (accessed on 2 February 2023).
- Barry, M.J.; Meleth, S.; Lee, J.Y.; Kreder, K.J.; Avins, A.L.; Nickel, J.C.; Roehrborn, C.G.; Crawford, E.D.; Foster, H.E.; Kaplan, S.A.; et al. Effect of Increasing Doses of Saw Palmetto Extract on Lower Urinary Tract Symptoms: A Randomized Trial. JAMA 2011, 306, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- Wilt, T.J.; Ishani, A. Pygeum africanum for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 1998, 1998, CD001044. [Google Scholar] [CrossRef]
- Andro, M.-C.; Riffaud, J.-P. Pygeum africanum extract for the treatment of patients with benign prostatic hyperplasia: A review of 25 years of published experience. Curr. Ther. Res. 1995, 56, 796–817. [Google Scholar] [CrossRef]
- Breza, J.; Dzurny, O.; Borowka, A.; Hanus, T.; Petrik, R.; Blane, G.; Chadha-Boreham, H. Efficacy and Acceptability of Tadenan® (Pygeum africanum Extract) in the Treatment of Benign Prostatic Hyperplasia (BPH): A Multicentre Trial in Central Europe. Curr. Med. Res. Opin. 2008, 14, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Casado, J.; Esteban-Fuertes, M.; Carballido-Rodríguez, J.; Cozar-Olmo, J. Review of the experience and evidence of Pygeum africanum in urological practice. Actas Urológicas Españolas 2020, 44, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.; Cook, P.; Walker, V.; Somani, B. Evaluation of the economic burden of kidney stone disease in the UK: A retrospective cohort study with a mean follow-up of 19 years. BJU Int. 2020, 125, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, C.; Autet, W.; Brackman, F. Comparison of once and twice daily dosage forms of Pygeum africanum extract in patients with benign prostatic hyperplasia: A randomized, double-blind study, with long-term open label extension. Urology 1999, 54, 473–478. [Google Scholar] [CrossRef]
- Hamvas, A.; Corradi, G.; Hegedüs, M.; Frang, D. Experience with the Peponen® capsule in the management of benign prostatic hyperplasia. Int. Urol. Nephrol. 1991, 23, 51–55. [Google Scholar] [CrossRef]
- Zerafatjou, N.; Amirzargar, M.; Biglarkhani, M.; Shobeirian, F.; Zoghi, G. Pumpkin seed oil (Cucurbita pepo) versus tamsulosin for benign prostatic hyperplasia symptom relief: A single-blind randomized clinical trial. BMC Urol. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Theil, G.; Richter, M.; Schulze, M.; Köttig, T.; Patz, B.; Heim, S.; Krauß, Y.; Markov, M.; Fornara, P. Extract from Cucurbita pepo improves BPH symptoms without affecting sexual function: A 24-month noninterventional study. World J. Urol. 2022, 40, 1769–1775. [Google Scholar] [CrossRef]
- Alejandro, J.; Cabreja, Á.; García Méndez, F.M.; De La Rodríguez Venegas, C.E.; Peña Velázquez, A. Effectiveness of Cucurbita Pepo in the Prostatic Hyperplasia Treatment. Systematic Review and Meta-Analysis. Available online: http://medisur.sld.cu/index.php/medisur/article/view/4799 (accessed on 2 February 2023).
- Hong, H.; Kim, C.-S.; Maeng, S. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia. Nutr. Res. Pract. 2009, 3, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Safarinejad, M.R. Urtica dioica for treatment of benign prostatic hyperplasia: A prospective, randomized, double-blind, placebo-controlled, crossover study. J. Herb. Pharmacother. 2005, 5, 1–11. [Google Scholar] [CrossRef]
- Men, C.; Wang, M.; Aiyireti, M.; Cui, Y. The efficacy and safety of Urtica dioica in treating benign prostatic hyperplasia: A systematic review and meta-analysis. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 143. [Google Scholar] [CrossRef] [Green Version]
- Esposito, C.; Santarcangelo, C.; Masselli, R.; Buonomo, G.; Nicotra, G.; Insolia, V.; D’Avino, M.; Caruso, G.; Buonomo, A.R.; Sacchi, R.; et al. Epilobium angustifolium L. extract with high content in oenothein B on benign prostatic hyperplasia: A monocentric, randomized, double-blind, placebo-controlled clinical trial. Biomed. Pharmacother. 2021, 138, 111414. [Google Scholar] [CrossRef] [PubMed]
- Wilt, T.J.; Ishani, A.; MacDonald, R.; Stark, G.; Mulrow, C.D.; Lau, J. Beta-sitosterols for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 1999, 2011, CD001043. [Google Scholar] [CrossRef]
- Suardi, N.; Gandaglia, G.; Nini, A.; Montorsi, F.; Pellucchi, F.; Agostini, A.; Rigatti, P. Effects of Difaprost® on voiding dysfunction, histology and inflammation markers in patients with benign prostatic hyperplasia who are candidates for surgical treatment. Minerva Urol. Nefrol. 2014, 66, 119–125. [Google Scholar] [PubMed]
- Pavone, C.; Abbadessa, D.; Tarantino, M.; Oxenius, I.; Laganà, A.; Lupo, A.; Rinella, M. Associating Serenoa Repens, Urtica dioica and Pinus Pinaster. Safety and Efficacy in the Treatment of Lower Urinary Tract Symptoms. Prospective Study on 320 Patients. Urologia 2010, 77, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.; Misso, M. Lycopene for the prevention and treatment of benign prostatic hyperplasia and prostate cancer: A systematic review. Maturitas 2012, 72, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Lambertini, L.; Di Maida, F.; Tellini, R.; Bisegna, C.; Valastro, F.; Grosso, A.A.; Scelzi, S.; Del Giudice, F.; Ferro, M.; Pirola, G.M.; et al. Impact of the Treatment of Serenoa Repens, Solanum lycopersicum, Lycopene and Bromelain in Combination with Alfuzosin for Benign Prostatic Hyperplasia. Results from a Match-Paired Comparison Analysis. Uro 2021, 1, 228–237. [Google Scholar] [CrossRef]
- Pérez, Y.; Molina, V.; Mas, R.; Menéndez, R.; González, R.M.; Oyarzábal, A.; Jiménez, S. Ex vivo antioxidant effects of D-004, a lipid extract from Roystonea regia fruits, on rat prostate tissue. Asian J. Androl. 2008, 10, 659–666. [Google Scholar] [CrossRef]
- Guzmán, R.; Fernández, J.C.; Pedroso, M.; Fernández, L.; Illnait, J.; Mendoza, S.; Quiala, A.T.; Rodríguez, Z.; Mena, J.; Rodíguez, A.; et al. Efficacy and tolerability of Roystonea regia lipid extract (D-004) and terazosin in men with symptomatic benign prostatic hyperplasia: A 6-month study. Ther. Adv. Urol. 2019, 11, 1756287219854923. [Google Scholar] [CrossRef] [Green Version]
- Wilt, T.J.; MacDonald, R.; Ishani, A.; Rutks, I.; Stark, G. Cernilton for benign prostatic hyperplasia. Cochrane Database Syst. Rev. 2011, CD001042. [Google Scholar] [CrossRef]
- Macdonald, R.; Ishani, A.; Rutks, I.; Wilt, T. A systematic review of Cernilton for the treatment of benign prostatic hyperplasia. BJU Int. 2000, 85, 836–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.C.; Wu, S.L.; Jin, J.; Qiu, S.P.; Kong, C.Z.; Song, Y.S.; Ye, Z.Q.; Sun, G.; Sun, Y.H.; Sun, Y.C.; et al. Comparison of different drugs on the treatment of benign prostate hyperplasia. Zhonghua Wai Ke Za Zhi 2007, 45, 947–950. [Google Scholar] [PubMed]
- Xu, J.; Qian, W.Q.; Song, J.D. A comparative study on different doses of cernilton for preventing the clinical progression of benign prostatic hyperplasia. Zhonghua Nan Ke Xue 2008, 14, 533–537. [Google Scholar]
- Demark-Wahnefried, W.; Robertson, C.N.; Walther, P.J.; Polascik, T.J.; Paulson, D.F.; Vollmer, R.T. Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. Urology 2004, 63, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, X.; Liu, Y.; Tian, H.; Flickinger, B.; Empie, M.W.; Sun, S.Z. Effects of Dietary Flaxseed Lignan Extract on Symptoms of Benign Prostatic Hyperplasia. J. Med. Food 2008, 11, 207–214. [Google Scholar] [CrossRef]
- Wiesner, J. Assessment report on Linum usitatissimum L., semen. Eur. Med. Agency 2014, 1–59. Available online: www.ema.europa.eu/contact (accessed on 2 February 2023).
- Semenov, A.L.; Gubareva, E.A.; Ermakova, E.D.; Dorofeeva, A.A.; Tumanyan, I.A.; Radetskaya, E.A.; Yurova, M.N.; Aboushanab, S.A.; Kanwugu, O.N.; Fedoros, E.I.; et al. Astaxantin and Isoflavones Inhibit Benign Prostatic Hyperplasia in Rats by Reducing Oxidative Stress and Normalizing Ca/Mg Balance. Plants 2021, 10, 2735. [Google Scholar] [CrossRef]
- Trinchieri, A. Soy in benign prostate hyperplasia and prostate cancer: A literature review. Longhua Chin. Med. 2022, 5, 9. [Google Scholar] [CrossRef]
- Cho, A.; Eidelberg, A.; Chughtai, B. Eastern Diet and Benign Prostatic Hyperplasia. In Molecular Mechanisms of Nutritional Interventions and Supplements for the Management of Sexual Dysfunction and Benign Prostatic Hyperplasia; Academic Press: Cambridge, MA, USA, 2021; pp. 127–136. [Google Scholar]
- Adorini, L.; Penna, G.; Fibbi, B.; Maggi, M. Vitamin D receptor agonists target static, dynamic, and inflammatory components of benign prostatic hyperplasia. Ann. N. Y. Acad. Sci. 2010, 1193, 146–152. [Google Scholar] [CrossRef]
- Osuna-Martínez, U.; Reyes-Esparza, J.; Rodríguez-Fragoso, L. Cactus (Opuntia ficus-indica): A Review on its Antioxidants Properties and Potential Pharmacological Use in Chronic Diseases. Nat. Prod. Chem. Res. 2014, 2, 1000153. [Google Scholar]
- Ajani, R.; Akinyemi, A. Telfairia occidentalis Leaf and Seed Extracts as Possible Preventive and Therapeutic Agents for Induced Benign Prostatic Hyperplasia. Eur. J. Med. Plants 2016, 12, 1–11. [Google Scholar] [CrossRef]
- Ejike, C.E.C.; Ezeanyika, L.U.S. Inhibition of the Experimental Induction of Benign Prostatic Hyperplasia: A Possible Role for Fluted Pumpkin (Telfairia occidentalis Hook f.) Seeds. Urol. Int. 2011, 87, 218–224. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2013, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, R.L.; Gahche, J.J.; Lentino, C.V.; Dwyer, J.T.; Engel, J.S.; Thomas, P.R.; Betz, J.M.; Sempos, C.T.; Picciano, M.F. Dietary Supplement Use in the United States, 2003–2006. J. Nutr. Epidemiol. 2011, 141, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Bent, S.; Kane, C.; Shinohara, K.; Neuhaus, J.; Hudes, E.S.; Goldberg, H.; Avins, A.L. Saw Palmetto for Benign Prostatic Hyperplasia. N. Engl. J. Med. 2006, 41, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hızlı, F.; Uygur, M.C. A prospective study of the efficacy of Serenoa Repens, Tamsulosin, and Serenoa Repens plus Tamsulosin treatment for patients with benign prostate hyperplasia. Int. Urol. Nephrol. 2007, 39, 879–886. [Google Scholar] [CrossRef]
- Barlet, A.; Albrecht, J.; Aubert, A.; Fischer, M.; Grof, F.; Grothuesmann, H.G.; Masson, J.C.; Mazeman, E.; Mermon, R.; Reichelt, H. Efficacy of Pygeum africanum extract in the medical therapy of urination disorders due to benign prostatic hyperplasia: Evaluation of objective and subjective parameters. A placebo-controlled double-blind multicenter study. Wien. Klin. Wochenschr. 1990, 102, 667–673. [Google Scholar]
- Hosseinabadi, R.; Heidari, M.; Anbari, K.; Pournia, Y. Urtica dioicafor treatment of lower urinary tract symptoms associated with benign prostatic hyperplasia. Int. J. Urol. Nurs. 2014, 8, 114–121. [Google Scholar] [CrossRef]
- Berges, R.R.; Windeler, J.; Trampisch, H.J.; Senge, T. Randomised, placebo-controlled, double-blind clinical trial of beta-sitosterol in patients with benign prostatic hyperplasia. Beta-sitosterol Study Group. Lancet 1995, 345, 1529–1532. [Google Scholar] [CrossRef]
- Westwood, J.; Geraghty, R.; Jones, P.; Rai, B.P.; Somani, B.K. Rezum: A new transurethral water vapour therapy for benign prostatic hyperplasia. Ther. Adv. Urol. 2018, 10, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Rajkumar, G.; Rai, B.P.; Aboumarzouk, O.M.; Cleaveland, P.; Srirangam, S.J.; Somani, B. Medium-term Outcomes of Urolift (Minimum 12 Months Follow-up): Evidence from a Systematic Review. Urology 2016, 97, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Maclean, D.; Harris, M.; Drake, T.; Maher, B.; Modi, S.; Dyer, J.; Somani, B.; Hacking, N.; Bryant, T. Factors Predicting a Good Symptomatic Outcome After Prostate Artery Embolisation (PAE). Cardiovasc. Interv. Radiol. 2018, 41, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
Name | Origin | Proposed Mechanisms of Action for BPH |
---|---|---|
Serenoa repens (Saw Palmetto) | Fruit from a dwarf palm tree | |
Pygeum Africanum (Prunus Africana) | Bark from an evergreen tree, part of the Rosacea family | |
Cucurbita pepo | Oil from pumpkin seeds | |
Urtica dioica | Roots of the common stinging nettle | |
Epilobium angustifolium | Aerial parts of the flowering willow herb | |
Hypoxis hemerocallidea | Tuber (underground part of the stem) of the African star grass (African potato) |
|
Pinus pinaster | Twigs and resin from the maritime pine, part of the Pinaceae family |
|
Solanum lycopersicum (Lycopersicum esculentum) | Tomatoes (Lycopene, also found in watermelon, peaches, and red berries) | |
Roystonea regia | Mature fruit of a palm tree | |
Secale cereale | Pollen from the rye plant of the Graminaceae family | |
Linum usitatissimum | Oil from the common flax | |
Isoflavones | Soy products |
|
Name | Authors | Number of Participants | Country of Origin | Comparison Arm | Follow-Up Period | Summary of Results |
---|---|---|---|---|---|---|
Serenoa repens (Saw Palmetto) | Bent et al., 2006 [68] | 225 | United States | Placebo | 14 months | No significant reduction in prostate volume (mean difference −1.22 cc), peak flow (mean difference 0.43 mL/s), or residual volume (mean difference −4.51 mL), after treatment with Serenoa repens compared with placebo. |
Serenoa repens (Saw Palmetto) | Barry et al., 2011 [30] | 369 | United States | Placebo | 72 weeks | No significant difference in American Urological Association Symptom Index (AUASI) scores after treatment with Serenoa repens compared with placebo (mean difference −0.79 points). |
Serenoa repens (Saw Palmetto) | Hizli & Uygur 2007 [69] | 60 | Turkey | Tamsulosin | 6 months | No significant improvement in peak flow (mean difference −0.4 mL/s), International Prostate Symptom Scores (IPSS) (mean difference 1.5 points), prostate volume (mean difference −0.3 cc), or residual volume (mean difference 4.6 mL), after treatment with Serenoa repens compared with tamsulosin (mean difference −0.4 mL/s). |
Pygeum africanum (Prunus Africana) | Barlet et al., 1990 [70] | 263 | Germany, France, and Austria | Placebo | 60 days | Improvement in peak flow rate after treatment with pygeum africanum compared with placebo (mean difference 1.1 mL/s). No significant improvement in residual volume rate after treatment with pygeum africanum compared with placebo (mean difference -12.6 mL). |
Pygeum africanum (Prunus Africana) | Chatelain et al., 1999 [36] | 209 | France | None | 12 months | Single or bi-daily dosing had similar efficacy. IPSS scores improved from baseline by between 35 and 38%. Qmax increased by between 1.63 and 2.02 mL/s. |
Cucurbita pepo | Theil et al., 2022 [39] | 130 | Germany | None | 24 months | IPSS was improved at 12 months, on average, by 4.7 points. IIEF-5 scores indicated a minimal impact on sexual function. |
Cucurbita pepo | Zerafatjou et al., 2021 [38] | 73 | Iran | Tamsulosin | 3 months | No significant difference in International Prostate Symptom Scores (IPSS) after treatment with cucurbita pepo compared with tamsulosin (mean difference 1.81 points). No significant difference in prostate volume after treatment with cucurbita pepo compared with tamsulosin (mean difference 0.72 cc). No significant difference in peak flow after treatment with cucurbita pepo compared with tamsulosin (mean difference 1.71 mL/s). |
Urtica dioica | Safarinejad 2005 [42] | 558 | Iran | Placebo | 6 months | Significant improvement in peak flow (mean difference 4.8 mL/s), IPSS (mean difference 6.5 points), and residual volume (mean difference 37 mLs), after treatment with urtica dioica, compared with placebo. |
Urtica dioica | Hosseinabadi et al., 2014 [71] | 248 | Iran | Prazosin | 2 months | 3 g/5 g/7 g, in combination, significantly improved IPSS scores after treatment, compared to treatment with prazosin alone (mean change in IPSS 10.46 points in the 7 g urtica dioica group compared with 2 points in the control group) |
Epilobium angustifolium | Esposito et al., 2021 [44] | 128 | Italy | Placebo | 6 months | Epilobium angustifolium was significantly more effective than placebo for IPSS scores (mean difference 2.5 points) and residual volume (mean difference 4.3 mL), but not for prostate volume (mean difference −1.3 cc). |
Hypoxis hemerocallidea | Berges et al., 1995 [72] | 200 | Germany | Placebo | 6 months | Peak flow (mean difference 4.1 mL/s), IPSS placebo (mean difference 5.3 points), and residual volume (mean difference 23.8 mL) were improved more in β-sitosterol (the active ingredient in hypoxis hemerocallidea) than placebo (mean difference 4.1 mL/s). There was no difference between prostate volume after treatment with β-sitosterol compared with placebo. |
Hypoxis hemerocallidea | Klippel et al., 1997 [20] | 177 | Germany | Placebo | 6 months | Hypoxis hermerocallidea was significantly more effective than placebo for IPSS scores (mean difference 5.4 points), residual volume (mean difference 33.5 mL), and peak flow (mean difference 4.5 mL/s). |
Pinus pinaster | Pavone et al., 2010 [47] | 80 | Italy | None | 12 months | Combination therapy (serenoa repens 320 mg, urtica dioica 120 mg, and pinus pinaster 5 mg)—85% of patients reported symptomatic improvement in LUTS. No improvement in prostate size or peak volume. |
Solanum lycopersicum (Lycopersicum esculentum) | Lambertini et al., 2021 [49] | 250 | Italy | Alfuzosin | 12 months | Combination therapy (alfuzosin, serenoa repens, solanum lycopersicum, lycopene, and bromelain) compared with alfuzosin alone. Combination therapy significantly decreased IPSS compared to the control group (mean difference of 5 points) and residual volume compared with the control (mean difference of 23 mL). |
Roystonea regia | Guzmán et al., 2019 [51] | 100 | Cuba | Terazosin | 6 months | D-004 (containing roystonea regia) was more effective than terazosin in reducing the IPSS score (mean difference of 1.1 points). There was no significant difference between the two groups with regard to effects on prostate volume and residual volume. |
Secale cereale | Xu et al., 2008 [55] | 240 | China | Lower dose of secale cereale (375mg) | 4 years | Cernilton (containing secale cereale), administered at 750 mg daily, was more efficacious than 375 mg daily at reducing IPSS (mean difference 5.3 points), residual volume (mean difference 11.1 mL), and peak flow (mean difference 9.5 mL/s) |
Linum usitatissimum | Zhang et al., 2008 [57] | 78 | China | Placebo | 4 months | Linum usitatissimum did not show significantly improved IPSS or peak flow over placebo. Despite this, treatment for 4 months with 600 mg of linum usitatissimum reduced IPSS by 6.88 points and improved peak flow by 2.7 mL/s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, V.; Gauhar, V.; Modi, S.; Somani, B.K. Role of Phytotherapy in the Management of BPH: A Summary of the Literature. J. Clin. Med. 2023, 12, 1899. https://doi.org/10.3390/jcm12051899
Antoniou V, Gauhar V, Modi S, Somani BK. Role of Phytotherapy in the Management of BPH: A Summary of the Literature. Journal of Clinical Medicine. 2023; 12(5):1899. https://doi.org/10.3390/jcm12051899
Chicago/Turabian StyleAntoniou, Vaki, Vineet Gauhar, Sachin Modi, and Bhaskar Kumar Somani. 2023. "Role of Phytotherapy in the Management of BPH: A Summary of the Literature" Journal of Clinical Medicine 12, no. 5: 1899. https://doi.org/10.3390/jcm12051899
APA StyleAntoniou, V., Gauhar, V., Modi, S., & Somani, B. K. (2023). Role of Phytotherapy in the Management of BPH: A Summary of the Literature. Journal of Clinical Medicine, 12(5), 1899. https://doi.org/10.3390/jcm12051899