Changes in Bone Metabolism in Patients with Rheumatoid Arthritis during Tumor Necrosis Factor Inhibitor Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics
3.2. Effect of TNF Inhibitors on Bone Mineral Density
3.3. Changes in Other Parameters of Bone Metabolism after One-Year Use of TNF Inhibitors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, T.L.; Chang, K.H.; Su, K.Y. Effects of Biological/Targeted Therapies on Bone Mineral Density in Inflammatory Arthritis. Int. J. Mol. Sci. 2022, 23, 4111. [Google Scholar] [CrossRef]
- Moon, S.J.; Ahn, I.E.; Kwok, S.K.; Park, K.S.; Min, J.K.; Park, S.H.; Kim, H.Y.; Ju, J.H. Periarticular Osteoporosis Is a Prominent Feature in Early Rheumatoid Arthritis: Estimation Using Shaft to Periarticular Bone Mineral Density Ratio. J. Korean Med. Sci. 2013, 28, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.C.; Crotti, T.N.; Goldring, S.R.; Gravallese, E.M. Rheumatic diseases: The effects of inflammation on bone. Immunol. Rev. 2005, 208, 228–251. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Schett, G. Pathways for Bone Loss in Inflammatory Disease. Curr. Osteoporos. Rep. 2012, 10, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.A.; Eastell, R.; Jorgensen, N.R.; Cavalier, E.; Vasikaran, S.; Chubb, S.A.P.; Kanis, J.A.; Cooper, C.; Makris, K. Clinical Usefulness of Bone Turnover Marker Concentrations in Osteoporosis. Clin. Chim. Acta 2017, 467, 34–41. [Google Scholar] [CrossRef]
- Tobeiha, M.; Moghadasian, M.H.; Amin, N.; Jafarnejad, S. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res. Int. 2020, 2020, 6910312. [Google Scholar] [CrossRef] [Green Version]
- Wysocki, T. Tumor Necrosis Factor in Rheumatoid Arthritis. Encyclopedia. Available online: https://encyclopedia.pub/entry/20537 (accessed on 16 February 2023).
- Yi, S.-J.; Lee, H.; Lee, J.; Lee, K.; Kim, J.; Kim, Y.; Park, J.-I.; Kim, K. Bone Remodeling: Histone Modifications as Fate Determinants of Bone Cell Differentiation. Int. J. Mol. Sci. 2019, 20, 3147. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Fan, Z. The Role of the Wnt Signalling Pathway in the Energy Metabolism of Bone Remodelling. Cell Prolif. 2022, 55, e13309. [Google Scholar] [CrossRef]
- Glass, D.A.; Karsenty, G. In Vivo Analysis of Wnt Signaling in Bone. Endocrinology 2007, 148, 2630–2634. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B. TNF and Bone Remodeling. Curr. Osteoporos. Rep. 2017, 15, 126–134. [Google Scholar] [CrossRef]
- Choy, E. Understanding the Dynamics: Pathways Involved in the Pathogenesis of Rheumatoid Arthritis. Rheumatology 2012, 51, v3–v11. [Google Scholar] [CrossRef] [Green Version]
- Neumann, E.; Schett, G. Bone Metabolism: Molecular Mechanisms. Z. Rheumatol. 2007, 66, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.R.; Chen, C.H. Bone Biomarker for the Clinical Assessment of Osteoporosis: Recent Developments and Future Perspectives. Biomark. Res. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, S.; Kapoor, N.; Bondu, J.D.; Thomas, N.; Paul, T.V. Bone Turnover Markers: Emerging Tool in the Management of Osteoporosis. Indian J. Endocrinol. Metab. 2016, 20, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.; Landewé, R.; Bijlsma, J.; Burmester, G.; Dougados, M.; Kerschbaumer, A.; Mcinnes, I.; Sepriano, A.; Van Vollenhoven, R.; Aletaha, D.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Hsu, C.Y.; Yu, S.F.; Ko, C.H.; Chiu, W.C.; Lai, H.M.; Chen, Y.C.; Su, Y.J.; Cheng, T.T. The Impact of Long-Term Biologics/Target Therapy on Bone Mineral Density in Rheumatoid Arthritis: A Propensity Score-Matched Analysis. Rheumatology 2020, 59, 2471–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2022, 3, 2049–2102. [Google Scholar] [CrossRef] [PubMed]
- Gerriets, V.; Bansal, P.; Khaddour, K. Tumor Necrosis Factor (TNF) Inhibitors. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482425/ (accessed on 20 May 2022).
- Soós, B.; Szentpétery, Á.; Raterman, H.G.; Lems, W.F.; Bhattoa, H.P.; Szekanecz, Z. Effects of Targeted Therapies on Bone in Rheumatic and Musculoskeletal Diseases. Nat. Rev. Rheumatol. 2022, 18, 249–257. [Google Scholar] [CrossRef]
- Haugeberg, G.; Uhlig, T.; Falch, J.A.; Halse, J.I.; Kvien, T.K. Bone Mineral Density and Frequency of Osteoporosis in Female Patients with Rheumatoid Arthritis: Results from 394 Patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum. 2000, 43, 522. [Google Scholar] [CrossRef]
- Chopin, F.; Garnero, P.; le Henanff, A.; Debiais, F.; Daragon, A.; Roux, C.; Sany, J.; Wendling, D.; Zarnitsky, C.; Ravaud, P.; et al. Long-Term Effects of Infliximab on Bone and Cartilage Turnover Markers in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2008, 67, 353–357. [Google Scholar] [CrossRef]
- Orsolini, G.; Adami, G.; Adami, S.; Viapiana, O.; Idolazzi, L.; Gatti, D.; Rossini, M. Short-Term Effects of TNF Inhibitors on Bone Turnover Markers and Bone Mineral Density in Rheumatoid Arthritis. Calcif. Tissue Int. 2016, 98, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Fries, J.F.; Spitz, P.; Kraines, R.G.; Holman, H.R. Measurement of Patient Outcome in Arthritis. Arthritis Rheum. 1980, 23, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Greenmyer, J.R.; Stacy, J.M.; Sahmoun, A.E.; Beal, J.R.; Diri, E. DAS28-CRP Cutoffs for High Disease Activity and Remission Are Lower than DAS28-ESR in Rheumatoid Arthritis. ACR Open Rheumatol. 2020, 2, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [Green Version]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541070/ (accessed on 24 September 2022).
- Fardellone, P.; Séjourné, A.; Paccou, J.; Goëb, V. Bone Remodelling Markers in Rheumatoid Arthritis. Mediators Inflamm. 2014, 2014, 484280. [Google Scholar] [CrossRef]
- Manara, M.; Sinigaglia, L. Bone and TNF in Rheumatoid Arthritis: Clinical Implications. RMD Open 2015, 1, e000065. [Google Scholar] [CrossRef] [Green Version]
- Hamar, A.; Szekanecz, Z.; Pusztai, A.; Czókolyová, M.; Végh, E.; Pethő, Z.; Bodnár, N.; Gulyás, K.; Horváth, Á.; Soós, B.; et al. Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos. Int. 2021, 32, 1621–1629. [Google Scholar] [CrossRef]
- Aeberli, D.; Schett, G. Cortical Remodeling during Menopause, Rheumatoid Arthritis, Glucocorticoid and Bisphosphonate Therapy. Arthritis Res. Ther. 2013, 15, 208. [Google Scholar] [CrossRef] [Green Version]
- Nut, A.; Duny, Y.; Barnetche, T.; Morel, J.; Combe, B.; Daien, C. Can tumor necrosis factor inhibitors protect rheumatoid arthritis patients from osteoporosis? Impact of tumor necrosis factor inhibitors on bone mineral density and bone remodeling markers. In Proceedings of the ACR/ARHP Annual Meeting, Boston, MA, USA, 14–19 November 2014; p. 1490. [Google Scholar]
- Zerbini, C.A.F.; Clark, P.; Mendez-Sanchez, L.; Pereira, R.M.R.; Messina, O.D.; Uña, C.R.; Adachi, J.D.; Lems, W.F.; Cooper, C.; Lane, N.E. Biologic Therapies and Bone Loss in Rheumatoid Arthritis. Osteoporos. Int. 2016, 28, 429–446. [Google Scholar] [CrossRef]
- Sakthiswary, R.; Das, S. The Effects of TNF α Antagonist Therapy on Bone Metabolism in Rheumatoid Arthritis: A Systematic Review. Curr. Drug Targets 2013, 14, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Klareskog, L.; van der Heijde, D.; de Jager, J.P.; Gough, A.; Kalden, J.; Malaise, M.; Martín Mola, E.; Pavelka, K.; Sany, J.; Settas, L.; et al. TEMPO (Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes) study investigators. Therapeutic Effect of the Combination of Etanercept and Methotrexate Compared with Each Treatment Alone in Patients with Rheumatoid Arthritis: Double-Blind Randomised Controlled Trial. Lancet 2004, 363, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Llorente, I.; García-Castañeda, N.; Valero, C.; González-Álvaro, I.; Castañeda, S. Osteoporosis in Rheumatoid Arthritis: Dangerous Liaisons. Front. Med. 2020, 7, 601618. [Google Scholar] [CrossRef] [PubMed]
- Vis, M.; Wolbink, G.J.; Lodder, M.C.; Kostense, P.J.; van de Stadt, R.J.; de Koning, M.H.M.T.; Dijkmans, B.A.C.; Lems, W.F. Early Changes in Bone Metabolism in Rheumatoid Arthritis Patients Treated with Infliximab. Arthritis Rheum. 2003, 48, 2996–2997. [Google Scholar] [CrossRef] [PubMed]
- Jura-Półtorak, A.; Szeremeta, A.; Olczyk, K.; Zoń-Giebel, A.; Komosińska-Vassev, K. Bone Metabolism and RANKL/OPG Ratio in Rheumatoid Arthritis Women Treated with TNF-α Inhibitors. J. Clin. Med. 2021, 10, 2905. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Bauer, D.C.; Eastell, R. Biochemical Markers of Bone Turnover in Osteoporosis. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism; Academic Press: Cambridge, MA, USA, 2013; pp. 297–306. [Google Scholar] [CrossRef]
- Cao, J.J. Effects of Obesity on Bone Metabolism. J. Orthop. Surg. Res. 2011, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcotte, A.F.; O’Connor, S.; Morin, S.N.; Gibbs, J.C.; Willie, B.M.; Jean, S.; Gagnon, C. Association between Obesity and Risk of Fracture, Bone Mineral Density and Bone Quality in Adults: A Systematic Review and Meta-Analysis. PLOS ONE 2021, 16, e0252487. [Google Scholar] [CrossRef]
- Takahashi, K.; Setoguchi, T.; Tawaratsumida, H.; Arishima, Y.; Tominaga, H.; Ishidou, Y.; Nagano, S.; Shigemizu, S.; Aoki, N.; Akimoto, M.; et al. Risk of Low Bone Mineral Density in Patients with Rheumatoid Arthritis Treated with Biologics. BMC Musculoskelet. Disord. 2015, 16, 269. [Google Scholar] [CrossRef] [Green Version]
- Oelzner, P.; Müller, A.; Deschner, F.; Hüller, M.; Abendroth, K.; Hein, G.; Stein, G. Relationship between Disease Activity and Serum Levels of Vitamin D Metabolites and PTH in Rheumatoid Arthritis. Calcif. Tissue Int. 1998, 62, 193–198. [Google Scholar] [CrossRef]
- Scott, D.L.; Farr, M.; Hawkins, C.F.; Wilkinson, R.; Bold, A.M. Serum Calcium Levels in Rheumatoid Arthritis. Ann. Rheum. Dis. 1981, 40, 580–583. [Google Scholar] [CrossRef]
- Lin, J.; Liu, J.; Davies, M.L.; Chen, W. Serum Vitamin D Level and Rheumatoid Arthritis Disease Activity: Review and Meta-Analysis. PLoS ONE 2016, 11, e0146351. [Google Scholar] [CrossRef] [PubMed]
- Sainaghi, P.P.; Gibbin, A. Vitamin D, Inflammation and Osteoporosis in Rheumatoid Arthritis. Open Rheumatol. J. 2018, 12, 300–312. [Google Scholar] [CrossRef]
Clinical Characteristics | RA (n = 50) |
---|---|
Female patients, n (%) | 50 (100.0%) |
Age (years), mean ± SD | 51.50 ± 3.94 |
RA duration, n (%) | |
1–5 years | 42 (84.0%) |
5–10 years | 8 (16.0%) |
Rheumatoid factor, n (%) | |
Negative | 13 (26.0%) |
Positive | 37 (74.0%) |
ACPA, n (%) | |
Negative | 1 (2.0%) |
Positive | 49 (98.0%) |
Biological drug, n (%) | |
Etanercept | 17 (34.0%) |
Adalimumab | 23 (46.0%) |
Golimumab | 9 (18.0%) |
Infliximab | 1 (2.0%) |
BMI (kg/m2) category, n (%) | |
Normal weight (18.50–24.99) | 18 (36.0%) |
Slightly overweight (25.00–29.99) | 24 (48.0%) |
Obese (30.00–34.99) | 7 (14.0%) |
Severely obese (≥35) | 1 (2.0%) |
N | Min | Max | Me | IQR | Z | p | |
---|---|---|---|---|---|---|---|
BMD (g/cm2) L1–L4, first measurement | 50 | 0.78 | 1.19 | 0.96 | 0.10 | 1.34 | 0.180 |
BMD (g/cm2) L1–L4, second measurement | 50 | 0.75 | 1.20 | 0.97 | 0.12 | ||
BMD (g/cm2) femoral neck, first measurement | 50 | 0.64 | 1.09 | 0.84 | 0.11 | 0.67 | 0.502 |
BMD (g/cm2) femoral neck, second measurement | 50 | 0.71 | 1.07 | 0.84 | 0.14 |
BMI (18.5–24.9) | BMI (25+) | |||||
---|---|---|---|---|---|---|
Me | IQR | % Change | Me | IQR | % Change | |
P1NP, first measurement | 40.20 | 16.83 | 42.85 | 22.25 | ||
P1NP, second measurement | 59.30 | 12.78 | 47.51% | 57.70 | 21.85 | 34.65% |
b-CTX, first measurement | 593.50 | 72.50 | 593.00 | 68.75 | ||
b-CTX, second measurement | 632.50 | 99.85 | 6.57% | 626.00 | 104.50 | 5.56% |
Biological Drug Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|
Etanercept | Adalimumab | Golimumab | |||||||
Me | IQR | % Change | Me | IQR | % Change | Me | IQR | % Change | |
P1NP, 1st measurement | 44.50 | 25.80 | 34.38% | 42.30 | 14.30 | 41.37% | 38.40 | 25.78 | 53.12% |
P1NP, 2nd measurement | 59.80 | 27.05 | 59.80 | 15.43 | 58.80 | 20.15 | |||
b-CTX 1st measurement | 620.00 | 70.00 | 8.87% | 589.00 | 71.00 | 6.09% | 583.00 | 43.45 | 4.97% |
b-CTX 2nd measurement | 675.00 | 95.65 | 624.90 | 100.00 | 612.00 | 48.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janković, T.; Mikov, M.; Zvekić Svorcan, J.; Minaković, I.; Mikov, J.; Bošković, K.; Mikić, D. Changes in Bone Metabolism in Patients with Rheumatoid Arthritis during Tumor Necrosis Factor Inhibitor Therapy. J. Clin. Med. 2023, 12, 1901. https://doi.org/10.3390/jcm12051901
Janković T, Mikov M, Zvekić Svorcan J, Minaković I, Mikov J, Bošković K, Mikić D. Changes in Bone Metabolism in Patients with Rheumatoid Arthritis during Tumor Necrosis Factor Inhibitor Therapy. Journal of Clinical Medicine. 2023; 12(5):1901. https://doi.org/10.3390/jcm12051901
Chicago/Turabian StyleJanković, Tanja, Momir Mikov, Jelena Zvekić Svorcan, Ivana Minaković, Jelena Mikov, Ksenija Bošković, and Darko Mikić. 2023. "Changes in Bone Metabolism in Patients with Rheumatoid Arthritis during Tumor Necrosis Factor Inhibitor Therapy" Journal of Clinical Medicine 12, no. 5: 1901. https://doi.org/10.3390/jcm12051901
APA StyleJanković, T., Mikov, M., Zvekić Svorcan, J., Minaković, I., Mikov, J., Bošković, K., & Mikić, D. (2023). Changes in Bone Metabolism in Patients with Rheumatoid Arthritis during Tumor Necrosis Factor Inhibitor Therapy. Journal of Clinical Medicine, 12(5), 1901. https://doi.org/10.3390/jcm12051901