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Abstract: The aim of this study was to use deep learning based on a deep convolutional neural
network (DCNN) for automated image classification of healthy optic discs (OD) and visible optic
disc drusen (ODD) on fundus autofluorescence (FAF) and color fundus photography (CFP). In this
study, a total of 400 FAF and CFP images of patients with ODD and healthy controls were used. A
pre-trained multi-layer Deep Convolutional Neural Network (DCNN) was trained and validated
independently on FAF and CFP images. Training and validation accuracy and cross-entropy were
recorded. Both generated DCNN classifiers were tested with 40 FAF and CFP images (20 ODD
and 20 controls). After the repetition of 1000 training cycles, the training accuracy was 100%, the
validation accuracy was 92% (CFP) and 96% (FAF), respectively. The cross-entropy was 0.04 (CFP)
and 0.15 (FAF). The sensitivity, specificity, and accuracy of the DCNN for classification of FAF images
was 100%. For the DCNN used to identify ODD on color fundus photographs, sensitivity was 85%,
specificity 100%, and accuracy 92.5%. Differentiation between healthy controls and ODD on CFP and
FAF images was possible with high specificity and sensitivity using a deep learning approach.

Keywords: deep learning; artificial intelligence; optic disc drusen; visible optic disc drusen; optic
disc drusen; deep convolutional neural network; DCNN; inceptionv3

1. Introduction

Optic disc drusen (ODD) are acellular deposits that are located in the optic nerve head
of 0.3% to 2.0% of the population [1,2].

In children and younger individuals, ODD are mostly buried deep in the optic nerve
head [3,4]. They can be diagnosed using various imaging techniques, such as B-scan
ultrasonography or, more recently, swept source (SS) or enhanced depth imaging (EDI)
optical coherence tomography (OCT) [5,6]. Most of these cases are asymptomatic [7].

Due to an increase in drusen number, drusen growth or age-related thinning of
the overlying retinal nerve fiber layer, ODD become visible with age and can, therefore,
be detected on color fundus photography (CFP), fundus autofluorescence (FAF), and
ophthalmoscopy [7]. Visible ODD are associated with visual field defects in up to 87% of
cases [2,8–10]. Consequently, they are associated with high clinical relevance for visual
function [11].

Because of the widespread use of multimodal imaging technologies as well as the
digital fundus cameras for eye screening programs, there is an increasing amount of data
to be analyzed by ophthalmologists, and therefore, a remarkable interest in the automated
screening for optic nerve pathologies, such as ODD.

Artificial intelligence using deep learning (DL), a subtype of machine learning (ML),
is used to solve complex and large-scale problems, such as speech and image recognition
and language processing. The three most popular DL models are recurrent neural networks
(RNNs), generative adversarial networks (GANs), and convolution neural networks (CNNs),
which are particularly well suited for different tasks depending on their architecture.
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RNNs are widely used in natural language processing and speech recognition tasks,
where the input data are sequential in nature, such as text or speech. They use feedback
connections that allow previous outputs to be used as inputs for subsequent processing,
enabling the network to persist information across multiple steps and analyze complex
dependencies in the data [12].

GANs have been applied to generative modeling tasks, such as image generation.
They consist of two parts, a generator and a discriminator, that compete with each other to
generate new data samples that are indistinguishable from real data [12].

CNNs are designed specifically for image classification tasks and are particularly well
suited for recognizing patterns and features in images and have revolutionized data pro-
cessing in medicine, especially in image-centric disciplines [12], such as Dermatology [13],
Radiology [14], Pathology [15], and Ophthalmology [12,16]. In this context, CNNs have
already been successfully used for automated image analysis using color fundus images
for a number of ophthalmologic diseases with high prevalence, including glaucoma [17],
diabetic retinopathy [18], and age-related macular degeneration [19].

ML and DL algorithms have several inherent limitations, including the need for very
large, accurate datasets for learning. To overcome this limitation, transfer learning, which
uses an already pre-trained deep learning algorithm can be used [19–21].

The aim of this study was to evaluate the use of a pre-trained CNN for the automated
classification of visible ODD and healthy optic discs on fundus autofluorescence (FAF) and
color fundus photography (CFP).

2. Materials and Methods

This study adhered to the tenets of the Declaration of Helsinki. Informed consent was
waived due to the retrospective nature of the study and the fully anonymized usage of
the database.

2.1. Patient and Image Selection

Patients with a clinical diagnosis of ODD and color fundus photography and fundus
autofluorescence image of the optic disc were included in this study. Patients with no
evidence of an optic disc pathology as determined by an ophthalmologist were defined
as controls.

Images were chosen from a database of the Eye Clinics of Muenster University Hospi-
tal, compiled between January 2015 and January 2020. A total of 480 CFP and FAF images
of the ODD and control group were used. All images were focused on the optic nerve
head and were obtained using the same fundus autofluorescence (Spectralis, Heidelberg
Engineering, Heidelberg, Germany) and color fundus photography (Visucam 500, Carl
Zeiss Meditec AG, Jena, Germany) device. FAF devices produce greyscale images, whereas
CFP devices produce Red-Green-Blue (RGB) images.

Inclusion criteria were selected in which drusen were visible in FAF as hyperfluores-
cent material. Images with buried optic disc drusen that were only visible in sonography
or OCT were excluded.

All images were saved as JPEG files and had an input size of 299 × 299 × 3 pixels.

2.2. Deep Learning

Training and validation of the DL model (InceptionV3) were performed using TensorFlowTM

(Google Inc., Mountain View, CA, USA), which is an open-source software program de-
veloped by Google. It provides a high-level interface for designing and training DL
models [20,22–25]. InceptionV3 is a DCNN designed for image classification tasks that
was introduced by Szegedy et al. in 2015 [22]. It uses a modular architecture with mul-
tiple parallel convolutional paths and a concatenation layer that merges the result. This
allows the network to capture both global and local features in the input image. Each layer
takes an input and produces an output, which becomes an input to the next processing
layer, creating a deep architecture. In each successive layer, the data were represented in
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an increasingly more abstract way. All layers, with the exception of the last layer, were
pre-trained with an ImageNet [26] data set consisting of more than 14 million images of
different objects and scenes. InceptionV3 can be fine-tuned for specific image-classification
tasks with smaller datasets, which allows for faster and more accurate results. For this
study, the last layer was trained with our ophthalmic dataset [27,28].

Two deep learning models were independently trained and validated using 120 FAF
photos (ODD: n = 60; healthy: n = 60) and 120 CFP images (ODD: n = 60; healthy: n = 60)
over the course of 1000 training steps (Figure 1). The training and validation accuracy,
as well as the cross-entropy, were calculated in each of the training steps to evaluate the
effectiveness of both training strategies. Forty FAF and 40 CFP photos (OOD: n = 20,
healthy: n = 20) were used to assess the performance of both the developed DCNN models
once the pre-training was completed (FAF and CFP). The 40 FAF and 40 CFP images used
for testing were excluded from the dataset before training and validation of the algorithm
were performed. The algorithm, therefore, had no access to the test data set during training
and validation. Accordingly, the performance of the algorithm could be tested without bias.
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Figure 1. Fundus autofluorescence (A,C) and color fundus photography images (B,D) were used
independently for training of the two different classifiers.

2.3. Statistics

SPSS was used to perform the statistics (IBM SPSS Statistics 23.0; IBM, Armonk, NY,
USA). For descriptive statistics, Prism was utilized (Prism 7, GraphPad Software, Inc. San
Diego, CA, USA). Data administration was carried out using Microsoft Excel (Microsoft®

Excel® for Mac 2011, 14.6.2; Microsoft®, Redmond, WA, USA).
Mean differences in the probability scores of the two classifiers were verified with

Mann–Whitney U-test for independent samples. The level of significance was defined as
p < 0.05.

Using a 2 × 2 table, the sensitivity, specificity, and accuracy were computed. Both
the DL procedure and the testing were repeated with the same data set to enable the
evaluation of the precision of the repeatability of the ODD testing score. Coefficients of
variation were computed to evaluate the precision. Bland–Altman plots were employed to
evaluate repeatability.
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3. Results
3.1. Performance of the Training Process

Both classifiers for FAF and CFP images had a training accuracy of 100% after 1000 per-
formed training steps. The validation accuracy of the classifier for CFP and FAF images
was 92% and 96%, respectively. There were no notable differences in the course of the
curves of the training and the validation accuracy. The cross-entropy of both classifiers
constantly decreased and was 0.15 (CFP images) and 0.04 (FAF images) after completion of
the training process, as seen in Figure 2.
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Figure 2. The graphs show the development of the training accuracy, validation accuracy, and
cross-entropy of the two classifiers trained with color fundus photography (A–C) and fundus aut-
ofluorescence (D–F).

3.2. Testing of the Classifiers

All FAF images of both ODD and healthy test patients were correctly diagnosed by
the classifier trained on this image modality. Consequently, sensitivity, specificity, and
accuracy of this classifier were 100%, as shown in Table 1. The mean ODD testing scores for
the ODD testing group’s photos were 0.91 ± 0.15, and 0.05 ± 0.07 for the healthy control
group’s images. The mean healthy testing scores for the ODD testing group’s images were
0.09 ± 0.15, and for the healthy control group’s images, they were 0.95 ± 0.07.

Table 1. All fundus autofluorescence images of patients with ODD and normal optic discs were
correctly identified, therefore, the sensitivity and specificity of the classifier were 100%.

ODD Testing Group Healthy Testing Group

Positive n = 20 n = 0
Negative n = 0 n = 20

ODD = Optic Disc Drusen.

All CFP images of the healthy test group were correctly diagnosed by the classifier
whose last layer was trained with 120 CFP images. Three CFP images of patients with ODD
were misdiagnosed by this classifier. Therefore, this classifier had a sensitivity of 85%, a
specificity of 100% and an accuracy of 92.5%, as shown in Table 2.
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Table 2. All color fundus photography images from healthy patients were correctly identified,
whereas 3 CFP images from patients with ODD were misdiagnosed. Therefore, the sensitivity was
85%, and specificity was 100%.

ODD Testing Group Healthy Testing Group

Positive n = 17 n = 0
Negative n = 3 n = 20

ODD = Optic Disc Drusen.

The mean ODD testing scores were 0.79 ± 0.25 for the images in the ODD testing
group and 0.10 ± 0.12 in the healthy control group. The mean healthy testing scores
were 0.09 ± 0.15 for the images in the ODD testing group and 0.90 ± 0.12 for the healthy
control group.

The difference between the mean testing scores for the differentiation of diseased and
healthy optic discs was statistically significant (p < 0.001) for both FAF and CFP images.

3.3. Repeatability and Precision

The initial computed testing scores and the scores of the repeated testing had a
mean coefficient of variation of 0.22 ± 0.59% (FAF) and 3.73 ± 5.83% (CFP), respectively,
indicating both classifiers had good precision. Between the two tests, the mean difference
had absolute values of 0.001 ± 0.005 (FAF) and 0.006 ± 0.07 (CFP).

The Bland–Altman plots indicate high values of repeatability for both classifiers. The
results for the classifier using FAF images were even superior to that using CFP images, as
seen in Figure 3.
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Figure 3. To determine the degree of agreement between the test results from the initial and subse-
quent deep learning procedures using fundus autofluorescence (A) and color fundus photography
(B), Bland–Altman plots were used. The average difference in ODD score between the two treatments
is shown by the solid line. The ranges ([mean of the difference] + 1.96 [standard deviation of the
difference]) and ([mean of the difference] − 1.96 [standard deviation of the difference]) are shown by
the dashed lines.

4. Discussion

Machine learning (ML) and deep learning (DL) have increased the possibilities for au-
tomatic image analysis in ophthalmology. DL has been successfully used for the automatic
detection of diseases with high prevalence, such as diabetic retinopathy [18,29], age-related
macular degeneration [27,30], and glaucoma [17], using different image modalities. In this
context, it seems plausible to extend the use of DL to other, less frequent diseases, like optic
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disc drusen (ODD). Our results show that DL is a suitable approach to facilitate image
analysis in this rare diagnosis.

Many of the DL studies mentioned above achieved a sensitivity and specificity of
more than 90%, but in most of them, thousands of images were necessary to train the
algorithms [17,18,27]. Despite the small amount of data used due to the low prevalence of
ODD, especially when compared to widespread diseases, the classifiers used in this study
achieved an accuracy of 100% and 92.5%, respectively. Additionally, this approach has
already been successfully applied in pre-published work [27,28,31].

Shah et al. were able to show in a preliminary study that DL can be effectively
used with a small amount of data for training to classify normal OCT scans and those
from patients with Stargardt’s disease at different stages and, therefore, characteristic of
the disease [32]. Training and testing data were composed of 749 OCT B-scans of only
93 individuals. Similar to our study, a CNN architecture pre-trained with the ImageNet
dataset was used and achieved sensitivity and specificity levels of over 95% [26].

In our study, an even smaller amount of FAF and CFP images was used, achieving
similar results with a sensitivity of 100% for both classifiers and a specificity of 100% with
fundus autofluorescence and 85% with color fundus imaging.

Different aspects could explain why a similar performance of the algorithm was
achieved in this study although an even smaller data set was used.

First, the use of multiple images of a single eye potentially reduced the diversity
within the data set of Shah et al. [32]. In our study, only one image of a single eye was used.
Second, the use of data from one disease at various stages of Stargardt’s disease leads to
a limited ability of the classification model to differentiate images with a milder disease
phenotype. In contrast, our study only considered images with superficial drusen. This
makes it easier for the algorithm to learn specific aspects of this disease subgroup, although
its field of application is limited to a smaller patient collective.

In our study, we used FAF and CFP images to analyze ODD because first, superfi-
cial ODD visible in FAF have a higher risk of causing a visual field defect compared to
buried ODD [11], and second, CFP imaging is a widely used image modality in screening
examinations. Thus, the algorithm could be used as s screening tool for visible ODD on
color fundus photographs to then initiate further diagnostics, such as performing a visual
field examination.

Comparing the results of FAF and CFP image analysis, patterns of ODD seemed to
be easier to recognize on FAF images for the algorithm. This can be seen in the relatively
flatter training accuracy curve in Figure 2 and is an indicator of a higher learning rate.
Additionally, the DCNN is able to distinguish more clearly between healthy subjects and
ODD on FAF images. All ODD eyes were correctly identified on FAF images, whereas
three CFP images were misdiagnosed as being healthy (Figure 4). This may indicate that
FAF is superior to CFP in the identification of superficial optic disc drusen. This seems
plausible since visible drusen in FAF are clearly distinguishable by autofluorescence [7].

However, RGB images (CFP) are 3-channel color images, while greyscale images (FAF)
have only one channel that represents the intensity of the image. When using InceptionV3,
the model would expect an input image with the same number of channels as its pre-trained
weights. If a grayscale image is fed as an input, it would have to be first converted to an
RGP image by repeating the single channel across the three channels. Thus, it could be
expected that the DCNN might perform better when given RGB images as input compared
to grayscale images. However, if the FAF images contain sufficient information for the task,
they may even outperform RGB images, which is the case in our study [33].

Three CFB images were misdiagnosed by the classifier (Figure 4). Due to the black
box formation of DCNN the reasons for misdiagnosis of the images by the classifier
can only be suspected. However, one reason for this could be that in these three cases,
the drusen are not clearly delineated on fundus photographs despite their visibility in
fundus autofluorescence.
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contrast due to low image quality, (C) unclear.

Even though the applicability for FAF images was better, the CFP images analysis
also showed promising results. Automated analysis of CFP images will probably play an
even more important role in everyday clinical routine. In contrast to FAF, CFP imaging is a
widespread procedure in screening, even without symptoms, in many in- and outpatient
settings. The increasing usefulness of fundus imaging offers a vast amount of data that
clinicians must thoroughly assess quickly. Similar to computer-assisted detection systems
created to help radiologists interpret medical pictures, DL methods, as applied in this
study, could help radiologists with the diagnosis and treatment of optic disc illnesses [14].
This could increase the usefulness of screening examinations in general and help to ensure
that the data collected are actually fully evaluated and a true benefit for the patient can
be derived.

In a recent study, Milea et al. used a deep learning system to detect papilledema on
color fundus photographs using a dataset of 14,341 images. They reached sensitivity levels
of 96.4% and specificity of 84.7% [34]. Here, ODD were analyzed as a part of a group of
“Disks with Other Abnormalities” and were, therefore, not discussed separately. However,
the performance results of the algorithms are comparable [34].

This study was limited by different aspects. First, by training the DCNNs exclusively
with visible ODD, the algorithms presented here have questionable relevance to everyday
clinical practice. For an ophthalmologist, detecting visible ODD, especially using FAF
images, is, in most cases, very simple. Therefore, the high specificity and sensitivity values
achieved here are not surprising. In contrast, the detection of buried optic disc drusen
and its differentiation from other optic disc pathologies, such as optic disc edema, is both
highly clinically significant and challenging. In order to support ophthalmologists in their
decision-making based on artificial intelligence in everyday clinical practice, further studies
are necessary, including buried optic disc drusen. In this pilot study, however, the primary
aim was to detect superficial drusen. The classification of deep ODD and its differentiation
from other optic nerve pathologies is planned in a follow-up study.

Second, each of our DL classifiers was trained and tested on FAF and CFP images
from a single device type. Therefore, the applicability to FAF and CFP images from other
devices is unknown. However, we believe that image data from different devices can be
used after prior alignment to uniform recording conditions.

Third, the image data set for this study was small compared to other AI studies in the
field of ophthalmology. However, as explained above, this can also be seen as a strength
of our approach since it can be difficult and time-consuming to build up large data pools,
especially for rare diseases. Therefore, algorithms that make reliable statements based on
smaller data sets offer an exciting perspective. Maybe, the results of our testing will even
improve with a higher amount of data.
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Finally, overfitting is a risk associated with using a small dataset to train a DCNN.
This can happen if the model is trained with only a few images or with a large number
of training steps. The risk is that the model corresponds too closely to the training data
and fails to make reliable predictions on new data. In other words, the model is learning
patterns that are unique to the training data but irrelevant to other data. The capacity of the
DCNN to detect unseen images decreases with subsequent training steps after an initial
improvement. Based on the training and validation accuracy curves, an increasing gap is
formed between the training and validation accuracy curves. There were no significant
differences in the course of the curves of training and validation accuracy in this study,
indicating that neither model is overfitting.

5. Conclusions

In conclusion, we were able to demonstrate that it is possible to use DL classification
models to differentiate between normal FAF and CFP images and those from patients with
superficial ODD using a transfer-learning-based DL algorithm.

FAF images seem to be superior to CFP images in the diagnostics using our DL
approach. However, the analysis of CFP images also showed promising results. Prospective
studies will be crucial for clinical translation and will hopefully confirm and improve
our results.

We hypothesize that the general principle demonstrated in this study can be applied
to other optic disc abnormalities with a lower prevalence.
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