Reduction in the Risk of Peripheral Neuropathy and Lower Decrease in Kidney Function with Metformin, Linagliptin or Their Fixed-Dose Combination Compared to Placebo in Prediabetes: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Statistical Analysis
2.2. Ethical Issues
3. Results
3.1. Drug Adherence
3.2. Safety Analysis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Clinical Trial Registration
References
- Wagner, R.; Heni, M.; Tabák, A.G.; Machann, J.; Schick, F.; Randrianarisoa, E.; de Angelis, M.H.; Birkenfeld, A.L.; Stefan, N.; Peter, A.; et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 2021, 27, 49–57. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Gernstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.M.; Balion, C.; Hunt, D.; Yazdi, H.; Booker, L. Annual incidence and relative risk of diabetes in people with various categories of dysglycaemia: A systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 2007, 78, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Prevention Program Research Group; Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.; Hoffman, H.J.; Brenneman, A.T.; Brown-Friday, J.O.; Goldberg, R.; Venditti, E.; et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009, 374, 1677–1686. [Google Scholar] [PubMed] [Green Version]
- Yeboah, J.; Bertoni, A.G.; Herrington, D.M.; Post, W.S.; Burke, G.L. Impaired Fasting Glucose and the Risk of Incident Diabetes Mellitus and Cardiovascular Events in an Adult Population: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2011, 58, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Heianza, Y.; Hara, S.; Arase, Y.; Saito, K.; Fujiwara, K.; Tsuji, H.; Kodama, S.; Hsieh, S.D.; Mori, Y.; Shimano, H.; et al. HbA1c 5·7–6·4% and impaired fasting plasma glucose for diagnosis of pre-diabetes and risk of progression to diabetes in Japan (TOPICS 3): A longitudinal cohort study. Lancet 2011, 378, 147–155. [Google Scholar] [CrossRef]
- Kanat, M.; Mari, A.; Norton, L.; Winnier, D.; DeFronzo, R.A.; Jenkinson, C.; Abdul-Ghani, M.A. Distinct β-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes 2012, 61, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Plantinga, L.C.; Crews, D.C.; Coresh, J.; Miller, E.R., 3rd; Saran, R.; Yee, J.; Hedgeman, E.; Pavkov, M.; Eberhardt, M.S.; Williams, D.E.; et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or pre-diabetes. Clin. J. Am. Soc. Nephrol. 2010, 5, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.P.; Larson, M.; O’Donnell, C.J.; Wilson, P.F.; Tsuji, H.; Lloyd-Jones, D.; Levy, D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol. 2000, 86, 309–312. [Google Scholar] [CrossRef]
- Tapp, R.J.; Tikellis, G.; Wong, T.Y.; Harper, C.A.; Zimmet, P.Z.; Shaw, J.E.; Australian Diabetes Obesity and Lifestyle Study Group. Longitudinal association of glucose metabolism with retinopathy: Results from the Australian Diabetes Obesity and Lifestyle (AusDiab) study. Diabetes Care 2008, 31, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Balkau, B.; Hu, G.; Qiao, Q.; Tuomilehto, J.; Borch-Johnsen, K.; Pyorala, K.; DECODE Study Group; European Diabetes Epidemiology Group. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor. The DECODE Study. Diabetologia 2004, 47, 2118–2128. [Google Scholar]
- Barr, E.L.; Zimmet, P.Z.; Welborn, T.A.; Jolley, D.; Magliano, D.J.; Dunstan, D.W.; Cameron, A.J.; Dwyer, T.; Taylor, H.R.; Tonkin, A.M.; et al. Risk of Cardiovascular and All-Cause Mortality in Individuals With Diabetes Mellitus, Impaired Fasting Glucose, and Impaired Glucose Tolerance: The Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 2007, 116, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, B.M.; Houben, A.J.; Berendschot, T.T.; Schouten, J.S.; Kroon, A.A.; van der Kallen, C.J.; Henry, R.M.A.; Koster, A.; Sep, S.J.S.; Dagnelie, P.C.; et al. Pre-diabetes and type 2 diabetes are associated with generalized microvascular dysfunction: The Maastricht study. Circulation 2016, 134, 1339–1352. [Google Scholar] [CrossRef] [Green Version]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Pre-diabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Vas, P.R.J.; Alberti, K.G.; Edmonds, M.E. Pre-diabetes: Moving away from a glucocentric definition. Lancet Diabetes Endocrinol. 2017, 5, 848–849. [Google Scholar] [CrossRef]
- Galaviz, K.I.; Weber, M.B.; Straus, A.; Haw, J.S.; Narayan, K.V.; Ali, M.K. Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose. Diabetes Care 2018, 41, 1526–1534. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.R.; Coleman, R.L.; Chan, J.C.N.; Chiasson, J.L.; Feng, H.; Ge, J.; Gerstein, H.C.; Gray, R.; Huo, Y.; Lang, Z.; et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 877–886. [Google Scholar] [CrossRef] [Green Version]
- The Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- DREAM Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with glucose impaired tolerance or impaired fasting glucose: A randomized controlled trial. Lancet 2006, 368, 1096–1105. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Tripathy, D.; Schwenke, D.C.; Banerji, M.A.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Henry, R.R.; Hodis, H.N.; Kitabchi, A.E.; et al. ACT NOW Study. N. Engl. J. Med. 2011, 364, 1104–1115. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet. Med. 2007, 24, 137–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, J.; Kahn, S.E.; Johansen, O.E.; Zinman, B.; Espeland, M.A.; Woerle, H.J.; Pfarr, E.; Keller, A.; Mattheus, M.; Baanstra, D.; et al. Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes: The CAROLINA Randomized Clinical Trial. JAMA 2019, 322, 1155–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Paldánius, P.M.; Proot, P.; Chiang, Y.; Stumvoll, M.; Del Prato, S.; VERIFY Study Group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): A 5-year, multicentre, randomised, double-blind trial. Lancet 2019, 394, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Gregg, E.W.; Wang, J.; An, Y.; Zhang, P.; Yang, W.; Li, H.; Li, H.; Jiang, Y.; Shuai, Y.; et al. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: The China DaQing Diabetes Prevention Outcome Study. Diabetologia 2011, 54, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Aro, A.; Kauppinen, A.; Kivinen, N.; Selander, T.; Kinnunen, K.; Tuomilehto, J.; Keinänen-Kiukaanniemi, S.; Lindström, J.; Uusitupa, M.; Kaarniranta, K. Life Style Intervention Improves Retinopathy Status—The Finnish Diabetes Prevention Study. Nutrients 2019, 11, 1691. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, N.; Kolibabka, M.; Busch, S.; Bugert, P.; Kaiser, U.; Lin, J.; Fleming, T.; Morcos, M.; Klein, T.; Schlotterer, A.; et al. The DPP4 Inhibitor Linagliptin Protects from Experimental Diabetic Retinopathy. PLoS ONE 2016, 11, e0167853. [Google Scholar] [CrossRef] [Green Version]
- Groop, P.H.; Cooper, M.E.; Perkovic, V.; Hocher, B.; Kanasaki, K.; Haneda, M. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: The randomized MARLINA-T2D trial. Diabetes Obes. Metab. 2017, 19, 1610–1619. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef]
- GRADE Study Research Group; Nathan, D.M.; Lachin, J.M.; Bebu, I.; Burch, H.B.; Buse, J.B.; Cherrington, A.L.; Fortmann, S.P.; Green, J.B.; Kahn, S.E.; et al. Glycemia Reduction in Type 2 Diabetes—Microvascular and Cardiovascular Outcomes. N. Engl. J. Med. 2022, 387, 1075–1088. [Google Scholar]
- Baranowska-Jurkun, A.; Matuszewski, W.; Bandurska-Stankiewicz, E. Chronic Microvascular Complications in Prediabetic States—An Overview. J. Clin. Med. 2020, 9, 3289. [Google Scholar] [CrossRef]
- Gabriel, R.; Boukichou Abdelkader, N.; Acosta, T.; Gilis-Januszewska, A.; Gómez-Huelgas, R.; Makrilakis, K.; Kamenov, Z.; Paulweber, B.; Satman, I.; Djordjevic, P.; et al. Early prevention of diabetes microvascular complications in people with hyperglycaemia in Europe. ePREDICE randomized trial. Study protocol, recruitment and selected baseline data. PLoS ONE 2020, 15, e0231196. [Google Scholar] [CrossRef] [Green Version]
- Lindström, J.; Neumann, A.; Sheppard, K.E.; Gilis-Januszewska, A.; Greaves, C.J.; Handke, U.; Pajunen, P.; Puhl, S.; Pölönen, A.; Rissanen, A.; et al. Take action to prevent diabetes--the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm. Metab. Res. 2010, 42 (Suppl. 1), S37–S55. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Mosenzon, O.; Wiviott, S.D.; Cahn, A.; Rozenberg, A.; Yanuv, I.; Goodrich, E.L.; Murphy, S.A.; Heerspink, H.J.L.; Zelniker, T.A.; Dwyer, J.P.; et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 606–617. [Google Scholar] [CrossRef]
- Räisänen, A.M.; Eklund, J.; Calvet, J.-H.; Tuomilehto, J. Sudomotor Function as a Tool for Cardiorespiratory Fitness Level Evaluation: Comparison with Maximal Exercise Capacity. Int. J. Environ. Res. Public Health 2014, 11, 5839–5848. [Google Scholar] [CrossRef] [Green Version]
- Domecq, J.P.; Prutsky, G.; Leppin, A.; Sonbol, M.; Altayar, O.; Undavalli, C.; Wang, Z.; Elraiyah, T.; Brito, J.P.; Mauck, K.F.; et al. Drugs Commonly Associated With Weight Change: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2015, 100, 363–370. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2012, 35, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Barua, M.; Pathan, F.; Nabi, M.U.; Kabir, M. Assessment of clinical and biochemical profile of prediabetic subject in Bangladesh, attending in BIRDEM and results of intervention by lifestyle modification, metformin, and DPP4 inhibitor. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1603–1608. [Google Scholar] [CrossRef]
- Alvarez-Canales, M.F.D.L.L.; Salazar-López, S.S.; Farfán-Vázquez, D.; Martínez-López, Y.E.; González-Mena, J.N.; Jiménez-Ceja, L.M.; Vargas-Ortiz, K.; Evia-Viscarra, M.L.; de Oca-Loyola, M.L.M.; Folli, F.; et al. Effect of linagliptin on glucose metabolism and pancreatic beta cell function in patients with persistent prediabetes after metformin and lifestyle. Sci. Rep. 2021, 11, 8750. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V. The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.W.; Khunti, K.; Harvey, R.; Johnson, M.; Preston, L.; Woods, H.B.; Davies, M.; Goyder, E. Peventing the progression to type 2 diabetes mellitus in adults at high risk: A systematic review and network meta-analysis of lifestyle, pharmacological and surgical interventions. Diabetes Res. Clin. Pract. 2015, 107, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Guardado-Mendoza, R.; Salazar-López, S.S.; Álvarez-Canales, M.; Farfán-Vázquez, D.; Martínez-López, Y.E.; Jiménez-Ceja, L.M.; Suárez-Pérez, E.L.; Angulo-Romero, F.; Evia-Viscarra, M.L.; de Oca-Loyola, M.L.M.; et al. The combination of linagliptin, metformin and lifestyle modification to prevent type 2 diabetes (PRELLIM). A randomized clinical trial. Metabolism 2020, 104, 154054. [Google Scholar] [CrossRef] [PubMed]
- for the Diabetes Prevention Program Research Group; Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; et al. Metformin for diabetes prevention: Insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia 2017, 60, 1601–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D.; Vijay, V.; Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006, 49, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiasson, J.-L. Acarbose for the Prevention of Diabetes, Hypertension, and Cardiovascular Disease in Subjects with Impaired Glucose Tolerance: The Study to Prevent Non-Insulin-Dependent Diabetes Mellitus (Stop-Niddm) Trial. Endocr. Pract. 2006, 12 (Suppl. 1), 25–30. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, C.W.; Astrup, A.; Fujioka, K.; Greenway, F.; Lau, D.C.W.; Van Gaal, L.; Ortiz, R.V.; Wilding, J.P.H.; Skjøth, T.V.; Manning, L.S.; et al. 3 years of liraglutide versus placebo for type2 diabetes risk reduction and weight management in individuals with prediabetes: A randomised, double-blind trial. Lancet 2017, 389, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.C.; Crandall, J.P. Pharmacologic Randomized Clinical Trials in Prevention of Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 154. [Google Scholar] [CrossRef]
- Griffin, S.J.; Bethel, M.A.; Holman, R.R.; Khunti, K.; Wareham, N.; Brierley, G.; Davies, M.; Dymond, A.; Eichenberger, R.; Evans, P.; et al. Metformin in non-diabetic hyperglycaemia: The GLINT feasibility RCT. Health Technol. Assess. 2018, 22, 18. [Google Scholar] [CrossRef] [Green Version]
- Haw, J.S.; Galaviz, K.I.; Straus, A.N.; Kowalski, A.J.; Magee, M.J.; Weber, M.B.; Wei, J.; Narayan, K.M.V.; Ali, M.K. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern. Med. 2017, 177, 1808–1817. [Google Scholar] [CrossRef]
- NAVIGATOR Study Group; Holman, R.R.; Haffner, S.M.; McMurray, J.J.; Bethel, M.A.; Holzhauer, B.; Hua, T.A.; Belenkov, Y.; Boolell, M.; Buse, J.B.; et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 2010, 362, 1463–1476. [Google Scholar]
- Phung, O.J.; Sobieraj, D.; Engel, S.S.; Rajpathak, S.N. Early combination therapy for the treatment of type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes Obes. Metab. 2014, 16, 410–417. [Google Scholar] [CrossRef]
Variables | Placebo (n = 195) | Metformin (n = 203) | Linagliptin (n = 205) | Metformin + Linagliptin (n = 206) | p-Value |
---|---|---|---|---|---|
Percent of females | 57.7 | 58.0 | 58.9 | 56.8 | 0.975 |
Percent of smokers | 14.4 | 15.6 | 13.2 | 13.5 | 0.793 |
Percent with family history of diabetes | 36.5 | 41.0 | 37.8 | 46.4 | 0.121 |
Mean age in years (SD) | 58.5 (7.5) | 58.1 (7.5) | 58.1 (7.4) | 58.1 (8.0) | 0.936 |
Mean weight in kg (SD) | 84.7 (16.9) | 83.1 (15.8 | 84.0 (16.9) | 84.4 (16.1) | 0.757 |
Mean BMI in kg/m2 (SD) | 30.9 (5.1) | 30.2 (4.8) | 30.8 (5.5) | 30.6 (4.6) | 0.500 |
Waist circumference in cm in men (SD) | 104.5 (15.7) | 105.2 (13.6) | 105.1 (12.4)] | 107.6 (10.6) | 0.791 |
Waist circumference in women in cm (SD) | 101.2 (12.2) | 98.9 (11.4) | 99.2 (11.9) | 98.4 (11.2) | 0.791 |
Systolic blood pressure (SBP) in mmHg (SD) | 131 (16.0) | 132 (17.1)] | 132 (18.0) | 132 (17.1) | 0.967 |
Diastolic blood pressure (DBP) in mmHg (SD) | 81 (10.9) | 82 (10.5) | 82 (11.5) | 81 (10.2) | 0.786 |
Fasting plasma glucose in mmol/L (SD) | 6.3 (0.5) | 6.3 (0.5) | 6.3 (0.5) | 6.4 (0.5) | 0.119 |
Two-hour plasma glucose in mmol/L (SD) | 8.1 (1.7) | 8.2 (1.7) | 8.2 (1.7) | 8.1 (1.8) | 0.687 |
Serum total cholesterol (in mmol/L (SD) | 5.3 (1.2) | 5.3 (1.2) | 5.3 (1.1) | 5.2 (1.1) | 0.652 |
Serum HDL cholesterol in mmol/L (SD) | 1.3 (0.3) | 1.3 (0.4) | 1.4 (0.4) | 1.3 (0.5) | 0.885 |
Serum LDL cholesterol in mmol/L (SD) | 3.4 (0.9) | 3.3 (1.1) | 3.3 (0.9) | 3.3 (0.8) | 0.755 |
Serum triglycerides in mmol/L (SD) | 1.5 (0.7) | 1.5 (1.1) | 1.5 (0.7) | 1.6 (0.9) | 0.474 |
Percentage of HbA1c (SD) | 5.9 (2.6) | 5.8 (0.4) | 5.8 (0.4) | 5.8 (0.4) | 0.683 |
eGFR CKD-EPI in mL/min per 1.73 m2 (SD) | 94.0 (9.0) | 94.3 (9.4) | 94.0 (10.0) | 94.9 (9.9) | 0.729 |
Mean ESC of feet in µSiemens (SD) | 79.2 (10.6) | 78.5 (9.8) | 79.6 (22.5) | 78.0 (9.8) | 0.652 |
Glycemic categories (%) | 0.200 | ||||
Isolated IGT | 35.1 | 33.5 | 28.3 | 24.3 | |
Isolated IFG | 37.4 | 35.8 | 38.4 | 39.6 | |
IGT + IFG combined | 27.5 | 30.7 | 33.3 | 36.0 | |
Percent with hypertension (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg or antihypertensive drug use) | 58.1 | 59.0 | 58.4 | 60.8 | 0.940 |
Percent with hypercholesterolemia (Serum total cholesterol ≥ 200 mg or lipid lowering drug use) | 65.3 | 64.2 | 66.7 | 65.8 | 0.958 |
Percent with overweight (BMI 25–29 kg/m2) | 25.2 | 25.0 | 31.5 | 29.7 | 0.326 |
Percent with obesity (BMI ≥ 30 kg/m2) | 52.3 | 50.0 | 47.0 | 53.6 | 0.535 |
Percent with abdominal obesity (Men: WC ≥ 94 cm) | 41.0 | 42.9 | 41.4 | 46.0 | 0.856 |
Percent with abdominal obesity (Women: WC ≥ 88 cm) | 59.0 | 57.1 | 58.6 | 54.0 | 0.856 |
Percent with diabetic retinopathy (ETDRS > 14) | 3.4 | 4.6 | 4.9 | 3.9 | 1.000 |
Percent with peripheral neuropathy (feet ESC [µS] <50 or hands ESC [µS] <40) | 3.6 | 6.6 | 6.8 | 7.2 | 0.359 |
Percent with nephropathy (Albumin: creatinine ratio > 30 mg/dL) | 4.5 | 4.7 | 8.2 | 5.0 | 0.280 |
Variable | Placebo (n = 169) | Metformin Monotherapy (n = 151) | Linagliptin Monotherapy (n = 160) | Metformin/Linagliptin Combination (n = 178) |
---|---|---|---|---|
Body weight (kg) | ||||
Mean (SD) baseline | 84.9 (17.0) | 84.0 (16.8) | 84.5 (16.9) | 84.0 (17.0) |
Mean (SD) year1 | 83.8 (17.0) | 80.9 (16.1) | 83.3 (17.3) | 80.9 (16.0) |
Mean diff. year1-baseline (95% CI) | −1.1 (−1.8; −0.5) | −3.1 (−4.1; −2.2) | −1.2 (−2.0; −0.4) | −3.1 (−3.7; −2.4) |
Baseline-adjusted year1 mean (SD) | 83.2 (17.0) | 81.2 (16.1) | 83.1 (17.1) | 81.3 (16.6) |
Mean difference with placebo (95% CI); p value | 2.0 (−5.6532; −1.6532); p = 0.0006 | 0.1 (.1521; 0.9523); p= 0.5822 | 1.9 (−3.0291; −0.9709) p = 0.0002 | |
Waist circumference in males (cm) | ||||
Mean (SD) baseline | 104.8 (11.4) | 104.8 (11.5) | 105.6 (11.7) | 107.7 (12.4) |
Mean (SD) year1 | 105.0 (11.1) | 103.3 (11.4) | 104.8 (11.8) | 104.6 (12.6) |
Mean diff. year1-baseline (95% CI) | 0.2 (−3.4; 3.9) | −1.5 (−3.9; 0.8) | −0.8 (−2.3; 0.8) | −3.1 (−4.5; −1.7) |
Baseline-adjusted year1 mean (SD) | 105.6 (11.2) | 103.8 (11.3) | 104.9 (11.8) | 103.5 (12.7) |
Mean difference with placebo (95% CI); p value | 1.8 (−4.2780; 0.6780) p = 0.1539 | 0.7 (−3.1945; 1.7945) p = 0.5813 | −2.1 (−4.6335; 0.4335) p = 0.1039 | |
Waist circumference in females (cm) | ||||
Mean (SD) baseline | 101.4 (12.3) | 99.8 (11.8) | 100.0 (11.9) | 98.4 (12.4) |
Mean (SD) year1 | 99.4 (12.7) | 96.4 (11.9) | 98.5 (12.1) | 96.2 (12.8) |
Mean diff. year1-baseline (95% CI) | −2.0 (−3.6; −0.4) | −3.4 (−5.0; −1.7) | −1.5 (−3.0; −0.1) | −2.2 (−3.7; −0.8) |
Baseline-adjusted year1 mean (SD) | 98.1 (12.6) | 96.5 (12.2) | 98.4 (12.0) | 97.4 (12.7) |
Mean difference with placebo (95% CI); p value | −1.6 (−4.3348; 1.1348) p = 0.2506 | 0.3 (−2.3716 to 2.9716) p = 0.8253 | −0.7 (−3.3725; 1.9725) p = 0.6068 | |
Systolic blood pressure (mmHg) | ||||
Mean (SD) baseline | 132 (13.7) | 132 (14.0) | 132 (14.7) | 131 (14.8) |
Mean (SD) year1 | 128 (13.6) | 127 (15) | 129 (16.1) | 128 (14.1) |
Mean diff. year1-baseline (95% CI) | −4.2 (−6.5; −1.8) | −4.9 (−7.5; −2.2) | −2.6 (−5.3; −0.0) | −2.9 (−5.2; −0.6) |
Baseline-adjusted year1 mean (SD) | 128 (13.6) | 127 (14.9) | 129 (16.2) | 128 (13.9) |
Mean difference with placebo (95% CI); p value | −1.0 (−4.1347; 2.1347) p = 0.5307 | 1.0 (−2.2378; 4.2378) p = 0.5439 | 0.0 (2.9056; 2.9056) p = 1.0 | |
Diastolic blood pressure (mmHg) | ||||
Mean (SD) baseline | 81 (10.1) | 82 (9.8) | 81 (10.5) | 81 (9,4) |
Mean (SD) year1 | 79 (9.6) | 78 (9.0) | 79 (9.4) | 78 (9.4) |
Mean diff. year1-baseline (95% CI) | −1.5 (−3.2; 0.1) | −4.5 (−6.3; −2.7) | −1.3 (−3.1; 0.5) | −2.9 (−4.5; −1.3) |
Baseline-adjusted year1 mean (SD) | 79 (9.6) | 77 (9.3) | 79 (9.4) | 78 (9.4) |
Mean difference with placebo (95% CI); p value | −2.0 (−4.0841; 0.0841) p = 0.0599 | 0.0 (−2.0622; 2.0622) p = 1.0 | 1.0 (−3.0064 to 1.0064) p = 0.3276 | |
Fasting plasma glucose (mmol/L) | ||||
Mean (SD) baseline | 6.3 (0.8) | 6.3 (0.8) | 6.37 (0.6) | 6.4 (0.8) |
Mean (SD) year1 | 6.4 (0.7) | 6.1 (0.9) | 6.4 (0.8) | 6.2 (0.9) |
Mean diff. year1-baseline (95% CI) | 0.1 (−0.03; 0.2) | −0.2 (−0.3; –0.04) | 0.03 (−0.1; 0.1) | −0.2 (−0.3; −0.1) |
Baseline-adjusted year1 mean (SD) | 6.4 (0.7) | 6.1 (0.9) | 6.4 (0.8) | 6.2 (0.8) |
Mean difference with placebo (95% CI); p value | 0.3 (−0.4764; −0.1236) p = 0.0009 | 0,0 (−0.1628; 0.1628) p = 1.0 | −0,2 (−0.3709; −0.0291) p = 0.0219 | |
2-hour plasma glucose (mmol/L) | ||||
Mean (SD) baseline | 8.2 (1.9) | 8.3 (2.1) | 8.3 (2.2) | 8.1 (2.3) |
Mean (SD) year1 | 7.9 (2.2) | 8.0 (2.4) | 7.6 (2.0) | 7.6 (2.3) |
Mean diff. year1-baseline (95% CI) | −0.3 (−0.6; 0.03) | −0.3 (−0.7; 0.02) | −0.7 (−1.0; −0.4) | −0.5 (−0.8; −0.2) |
Baseline-adjusted year1 mean (SD) | 7.9 (2.2) | 7.9 (2.4) | 7.6 (2.0) | 7.7 (2.3) |
Mean difference with placebo (95% CI); p value | 0.0 (−0.5060; 0.5060) p = 1.0 | −0.3 (−0.7568; 0.1568) p = 0.1973 | −0.2 (−0.6757 to 0.2757 p = 0.4088 | |
Serum triglycerides (mmol/L) | ||||
Mean (SD) baseline | 1.49 (0.7) | 1.63 (1.1) | 1.43 (0.9) | 1.53 (0.9) |
Mean (SD) year1 | 1.50 (0.9) | 1.60 (1.1) | 1.40 (0.6) | 1.50 (0.8) |
Mean diff. year1-baseline (95% CI) | 0.01 (−0.1; 0.1) | 0.03 (−0.1; 0.2) | −0.03 (−0.1; 0.1) | −0.03 (−0.2; 0.1) |
Baseline-adjusted year1 mean (SD) | 1.5 (0.9) | 1.6 (1.1) | 1.5 (0.6) | 1.5 (0.8) |
Mean difference with placebo (95% CI); p value | 0.1 (0.1202; 0.3202) p = 0.3722 | 0.0 (−0.1668; 0.1668) p = 1.0 | 0.0 (−0.1851; 0.1851) p = 1.0 | |
HbA1c (%) | ||||
Mean (SD) baseline | 6.0 (0.6) | 5.9 (0.4) | 5.7 (0.4) | 5.9 (0.4) |
Mean (SD) year1 | 5.8 (0.4) | 5.7 (0.4) | 5.6 (0.4) | 5.6 (0.4) |
Mean diff. year1-baseline (95% CI) | −0.2 (−0.7; 0.3) | −0.2 (−0.3; −0.1) | −0.1 (−0.2; −0.1) | −0.3 (−0.3; −0.2) |
Baseline-adjusted year1 mean (SD) | 5.70 (0.42) | 5.68(0.40) | 5.64 (0.43) | 5.60 (0.38) |
Mean difference with placebo (95% CI); p value | 0.02 (−0.5001; 0.5001) p = 0.9853 | 0.06 (−0.6001 to 0.5001) p = 0.8710 | −0.1 (−0.5610; 0.3610) p = 0.2318 | |
eGFR CKD-EPI (mL/min per 1.73 m2 | ||||
Mean (SD) baseline | 93.4 (10.6) | 94.3 (14.0) | 93.6 (13.6) | 94.7 (13.7) |
Mean (SD) year1 | 90.2 (8.9) | 93.7 (10.5) | 91.8 (15.8) | 94.4 (11.4) |
Mean diff. year1-baseline (95% CI) | −3.2 (−5.6; −0.8) | −0.6 (−2.0; 0.8) | −1.8 (−4.5; 0.9) | −0.3 (−1.7; 1.1) |
Baseline-adjusted year1 mean (SD) | 90.6 (15.9) | 93.6 (10.3) | 91.9 (15.8) | 93.9 (11.4) |
Mean difference with placebo (95% CI); p value | 3.0 (−0.0148; 6.0148) p = 0.0511 | 1.3 (−2.1397; 4.7397) p = 0.4577 | 3.3 (0.3780; 6.2220) p = 0.0270 | |
Proportion of SFPN high-risk at baseline | 26.3 | 39.4 | 34.8 | 38.6 |
Proportion of SFPN high-risk at 1-year | 34.1 | 41.2 | 39.1 | 42.5 |
Difference (1-year change) in high-risk proportion adjusted by baseline | 29.6 | 4.5 | 12.3 | 10.1 |
Difference 1-year (change) in high-risk proportion compared to placebo (95%CI), p value | - | −25.1 (−16.3; −33.9) <0.0001 | −17.3 (−7.4; −27.2) <0.0001 | −19.5 (−10.1; −29.0) <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, R.; Boukichou-Abdelkader, N.; Gilis-Januszewska, A.; Makrilakis, K.; Gómez-Huelgas, R.; Kamenov, Z.; Paulweber, B.; Satman, I.; Djordjevic, P.; Alkandari, A.; et al. Reduction in the Risk of Peripheral Neuropathy and Lower Decrease in Kidney Function with Metformin, Linagliptin or Their Fixed-Dose Combination Compared to Placebo in Prediabetes: A Randomized Controlled Trial. J. Clin. Med. 2023, 12, 2035. https://doi.org/10.3390/jcm12052035
Gabriel R, Boukichou-Abdelkader N, Gilis-Januszewska A, Makrilakis K, Gómez-Huelgas R, Kamenov Z, Paulweber B, Satman I, Djordjevic P, Alkandari A, et al. Reduction in the Risk of Peripheral Neuropathy and Lower Decrease in Kidney Function with Metformin, Linagliptin or Their Fixed-Dose Combination Compared to Placebo in Prediabetes: A Randomized Controlled Trial. Journal of Clinical Medicine. 2023; 12(5):2035. https://doi.org/10.3390/jcm12052035
Chicago/Turabian StyleGabriel, Rafael, Nisa Boukichou-Abdelkader, Aleksandra Gilis-Januszewska, Konstantinos Makrilakis, Ricardo Gómez-Huelgas, Zdravko Kamenov, Bernhard Paulweber, Ilhan Satman, Predrag Djordjevic, Abdullah Alkandari, and et al. 2023. "Reduction in the Risk of Peripheral Neuropathy and Lower Decrease in Kidney Function with Metformin, Linagliptin or Their Fixed-Dose Combination Compared to Placebo in Prediabetes: A Randomized Controlled Trial" Journal of Clinical Medicine 12, no. 5: 2035. https://doi.org/10.3390/jcm12052035
APA StyleGabriel, R., Boukichou-Abdelkader, N., Gilis-Januszewska, A., Makrilakis, K., Gómez-Huelgas, R., Kamenov, Z., Paulweber, B., Satman, I., Djordjevic, P., Alkandari, A., Mitrakou, A., Lalic, N., Egido, J., Más-Fontao, S., Calvet, J. H., Pastor, J. C., Lindström, J., Lind, M., Acosta, T., ... on behalf of the e-PREDICE Consortium. (2023). Reduction in the Risk of Peripheral Neuropathy and Lower Decrease in Kidney Function with Metformin, Linagliptin or Their Fixed-Dose Combination Compared to Placebo in Prediabetes: A Randomized Controlled Trial. Journal of Clinical Medicine, 12(5), 2035. https://doi.org/10.3390/jcm12052035