Repeated Dose of Contrast Media and the Risk of Contrast-Induced Acute Kidney Injury in a Broad Population of Patients Hospitalized in Cardiology Department
Abstract
:1. Introduction
2. Methods
- demographic data: age, sex, weight, height, body mass index (BMI);
- volumes of first, second, and third contrast administrations, total volume of administered contrast, and total volume of contrast to body weight ratio; diagnosis and performed procedure: coronary angiography, percutaneous coronary intervention, computed tomography;
- laboratory blood morphological and biochemical parameters;
- serum creatinine level: before the procedure, and daily for 3 days after the administration of the contrast agents;
- echocardiography and electrocardiography parameters;
- past medical history.
Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.1.1. Study vs. Control Group
3.1.2. Admission Diagnosis
3.1.3. Medical History
3.1.4. Echocardiography and Laboratory Testing
3.1.5. Coronary Angiography
3.1.6. Propensity Score Matching: Study vs. Control Group
3.1.7. Non-CI-AKI vs. CI-AKI Group
3.1.8. Admission Diagnosis
3.1.9. Medical History
3.1.10. Echocardiography and Laboratory Testing
3.1.11. Coronary Angiography
3.1.12. Predictors of CI-AKI
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandiramani, R.; Cao, D.; Nicolas, J.; Mehran, R. Contrast-induced acute kidney injury. Cardiovasc. Interv. Ther. 2020, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Weisbord, S.D.; Palevsky, P.M.; Kaufman, J.S.; Wu, H.; Androsenko, M.; Ferguson, R.E.; Parikh, C.R.; Bhatt, D.L.; Gallagher, M. Contrast-Associated Acute Kidney Injury and Serious Adverse Outcomes Following Angiography. J. Am. Coll. Cardiol. 2020, 75, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Wybraniec, M.T.; Mizia-Stec, K.; Więcek, A. Contrast-induced acute kidney injury: The dark side of cardiac catheterization. Pol. Arch. Intern. Med. 2015, 125, 938–949. [Google Scholar] [CrossRef] [Green Version]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [CrossRef] [Green Version]
- Vachharajani, T.J.; Hossain, M.A.; Costanzo, E.; Cosentino, J.; Patel, C.; Qaisar, H.; Singh, V.; Khan, T.; Cheng, J.S.; Asif, A. Contrast-Induced nephropathy: Pathophysiology, risk factors, and prevention. Saudi J. Kidney Dis. Transplant. 2018, 29, 1–9. [Google Scholar] [CrossRef]
- Lee, H.-C.; Chuang, K.-I.; Lu, C.-F.; Chiang, Y.; Wang, H.-J.; Hsieh, K.L.-C. Use of Contrast Medium Volume to Guide Prophylactic Hydration to Prevent Acute Kidney Injury After Contrast Administration: A Meta-Analysis. Am. J. Roentgenol. 2020, 215, 15–24. [Google Scholar] [CrossRef]
- Michel, P.; Amione-Guerra, J.; Sheikh, O.; Jameson, L.C.; Bansal, S.; Prasad, A. Meta-analysis of intravascular volume expansion strategies to prevent contrast-associated acute kidney injury following invasive angiography. Catheter. Cardiovasc. Interv. 2020, 98, 1120–1132. [Google Scholar] [CrossRef]
- He, H.; Chen, X.R.; Chen, Y.Q.; Niu, T.S.; Liao, Y.M. Prevalence and Predictors of Contrast-Induced Nephropathy (CIN) in Patients with ST-Segment Elevation Myocardial Infarction (STEMI) Undergoing Percutaneous Coronary Intervention (PCI): A Meta-Analysis. J. Interv. Cardiol. 2019, 2019, 2750173. [Google Scholar] [CrossRef] [Green Version]
- Andò, G.; Morabito, G.; de Gregorio, C.; Trio, O.; Saporito, F.; Oreto, G. Age, glomerular filtration rate, ejection fraction, and the AGEF score predict contrast-induced nephropathy in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2013, 82, 878–885. [Google Scholar] [CrossRef]
- Liu, L.; Liang, Y.; Li, H.; Lun, Z.; Ying, M.; Chen, S.; Chen, G.; Liu, J.; Ling, Y.; Xin, S.; et al. Association between Diabetes Mellitus and Contrast-Associated Acute Kidney Injury: A Systematic Review and Meta-Analysis of 1.1 Million Contrast Exposure Patients. Nephron 2021, 145, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Wybraniec, M.T.; Bożentowicz-Wikarek, M.; Chudek, J.; Mizia-Stec, K. Pre-procedural renal resistive index accurately predicts contrast-induced acute kidney injury in patients with preserved renal function submitted to coronary angiography. Int. J. Cardiovasc. Imaging 2017, 33, 595–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehran, R.; Owen, R.; Chiarito, M.; Baber, U.; Sartori, S.; Cao, D.; Nicolas, J.; Pivato, C.A.; Nardin, M.; Krishnan, P.; et al. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: Derivation and validation from an observational registry. Lancet 2021, 398, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Aycock, R.D.; Westafer, L.M.; Boxen, J.L.; Majlesi, N.; Schoenfeld, E.M.; Bannuru, R.R. Acute Kidney Injury After Computed Tomography: A Meta-analysis. Ann. Emerg. Med. 2018, 71, 44–53.e4. [Google Scholar] [CrossRef] [PubMed]
- Obed, M.; Gabriel, M.M.; Dumann, E.; Barbosa, C.V.; Weißenborn, K.; Schmidt, B.M.W. Risk of acute kidney injury after contrast-enhanced computerized tomography: A systematic review and meta-analysis of 21 propensity score–matched cohort studies. Eur. Radiol. 2022, 32, 8432–8442. [Google Scholar] [CrossRef]
- Mukete, B.N.; Riehl, R.A.; Alonso, A.; Samson, R.; Jaiswal, A.; Le Jemtel, T.H. Multivessel Revascularization Does Not Increase Contrast-Induced Acute Kidney Injury Incidence in Acute Myocardial Infarction: A Meta-Analysis. Am. J. Cardiovasc. Drugs 2016, 16, 419–426. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kundu, A.; Mukherjee, D.; Sardar, P.; Mehran, R.; Bashir, R.; Giri, J.; Abbott, J.D. Risk of contrast-induced acute kidney injury in ST-elevation myocardial infarction patients undergoing multi-vessel intervention-meta-analysis of randomized trials and risk prediction modeling study using observational data. Catheter. Cardiovasc. Interv. 2017, 90, 205–212. [Google Scholar] [CrossRef]
- Andò, G.; Gragnano, F.; Calabrò, P.; Valgimigli, M. Radial vs femoral access for the prevention of acute kidney injury (AKI) after coronary angiography or intervention: A systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 2018, 92, E518–E526. [Google Scholar] [CrossRef]
- Zahler, D.; Rozenfeld, K.-L.; Merdler, I.; Peri, Y.; Shacham, Y. Contrast Volume to Glomerular Filtration Ratio and Acute Kidney Injury among ST-Segment Elevation Myocardial Infarction Patients Treated with Primary Percutaneous Coronary Intervention. Cardiorenal Med. 2019, 10, 108–115. [Google Scholar] [CrossRef]
- Gu, C.-H.; Wang, X.-Z.; Han, Y.-L.; Jing, Q.-M.; Ren, L.-L.; Zhang, Y.; Peng, J.-Y.; Zhao, X. Predictors of contrast-induced acute kidney injury in patients with coronary artery disease receiving contrast agents twice within 30 days. Mil. Med. Res. 2020, 7, 14. [Google Scholar] [CrossRef]
- Hu, M.J.; Luo, E.F.; Tang, C.C.; Wang, L.; Zhang, Q.G.; Gong, J.B. Meta-analysis of the effects of furosemide combined with hydration therapy on contrast-induced acute kidney injury after coronary intervention. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4729–4737. [Google Scholar] [CrossRef] [PubMed]
- Lohiya, R.V.; Phadke, M.; Lanjewar, C.; Kerkar, P. Lipid Laden in the true sense. Eur. Heart J. 2015, 36, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Overall Population n = 291 | Study Group n = 138 | Control Group n = 153 | p-Value |
---|---|---|---|---|
Age [years] | 67.59 ± 11.59 | 69.57 ± 11.72 | 65.82 ± 11.21 | 0.006 |
BMI [kg/m2] | 28.47 ± 4.48 | 28.25 ± 4.40 | 28.63 ± 4.54 | 0.377 |
Male sex | 183 (62.9%) | 90 (65.2%) | 93 (60.8%) | 0.434 |
Medical history and pharmacotherapy | ||||
Chronic kidney disease | 71 (24.5%) | 43 (31.4%) | 28 (18.3%) | 0.010 |
History of AKI | 8 (2.8%) | 3 (2.2%) | 5 (3.3%) | 0.562 |
History of nephrectomy | 7 (2.41%) | 3 (2.2%) | 4 (2.6%) | 0.800 |
History of MI | 89 (30.7%) | 29 (21.0%) | 60 (39.5%) | 0.001 |
History of stroke | 26 (9.0%) | 16 (11.6%) | 10 (6.6%) | 0.135 |
History of PCI | 99 (34.1%) | 31 (22.5%) | 68 (44.7%) | 0.000 |
Atrial fibrillation | 29 (14.7%) | 15 (10.9%) | 14 (23.3%) | 0.023 |
Heart failure | 107 (36.8%) | 51 (37.0%) | 56 (36.6%) | 0.950 |
MV-CAD | 100 (34.6%) | 21 (15.2%) | 79 (52.3%) | <0.001 |
Diabetes | 97 (33.5%) | 62 (44.9%) | 35 (23.0%) | 0.000 |
Arterial hypertension | 252 (86.9%) | 115 (83.3%) | 137 (90.1%) | 0.087 |
Hyperlipidemia | 209 (72.1%) | 82 (59.4%) | 127 (83.6%) | <0.001 |
Peripheral artery disease | 60 (20.8%) | 34 (24.6%) | 26 (17.3%) | 0.127 |
Cigarette smoking | 126 (43.5%) | 53 (38.4%) | 73 (48.0%) | 0.099 |
COPD | 25 (8.6%) | 14 (10.1%) | 11 (7.2%) | 0.378 |
Statins | 150 (61.5%) | 41 (42.7%) | 109 (73.7%) | <0.001 |
MRA | 52 (17.9%) | 25 (18.1%) | 27 (17.7%) | 0.917 |
ACEI/ARB | 173 (59.5%) | 68 (49.3%) | 105 (68.6%) | 0.001 |
Thiazide diuretics | 27 (10.6%) | 9 (8.4%) | 18 (12.2%) | 0.337 |
Loop diuretics | 63 (24.8%) | 34 (32.1%) | 29 (19.6%) | 0.023 |
NSAIDs | 26 (10.2%) | 8 (7.6%) | 18 (12.2%) | 0.231 |
Index hospitalization-initial diagnosis and course of treatment | ||||
STEMI | 67 (23.0%) | 52 (37.7%) | 15 (9.8%) | <0.001 |
NSTE-ACS | 169 (58.1%) | 59 (42.8%) | 110 (71.9%) | |
Chronic coronary syndrome | 13 (4.5%) | 9 (6.5%) | 4 (2.6%) | |
Aortic valve stenosis | 38 (13.1%) | 14 (10.1%) | 24 (15.7%) | |
Aortic aneurysm | 3 (1.0%) | 3 (2.2%) | 0 (0.0%) | |
Systolic BP | 130 (120; 140) | 130 (120; 140) | 130 (120; 140) | 0.048 |
Diastolic BP | 80 (70; 80) | 80 (70; 80) | 80 (70; 85) | 0.179 |
ST-segment abnormalities | 125 (62.5%) | 80 (58.0%) | 45 (72.6%) | 0.048 |
Regional wall motion abnormalities | 200 (69.0%) | 105 (76.1%) | 95 (62.5%) | 0.012 |
Proteinuria | 35 (12.7%) | 20 (15.3%) | 15 (10.3%) | 0.220 |
CI-AKI during index hospitalization | 36 (12.4%) | 18 (13.0%) | 18 (11.8%) | 0.741 |
Sudden cardiac arrest during index hospitalization | 12 (6.0%) | 5 (3.6%) | 7 (11.1%) | 0.038 |
In-hospital death | 5 (1.75%) | 4 (3.0%) | 1 (0.7%) | 0.128 |
Laboratory testing | ||||
Troponin [ng/mL] | 0.16 (0.02; 1.15) | 0.44 (0.07; 1.92) | 0.03 (0.01; 0.25) | <0.001 |
Hemoglobin | 13.54 ± 1.67 | 13.60 ± 1.79 | 13.50 ± 1.57 | 0.574 |
[K+] [mmol/L] | 4.27 ± 2.23 | 4.29 ± 3.03 | 4.25 ± 1.09 | 0.121 |
[Na+] [mmol/L] | 140.01 ± 3.30 | 139.28 ± 3.37 | 140.67 ± 3.11 | <0.001 |
Urine specific gravity | 1.02 ± 0.06 | 1.02 ± 0.09 | 1.02 ± 0.01 | <0.001 |
SCr—baseline [mg/dL] | 0.94 (0.78; 1.18) | 0.95 (0.79; 1.20) | 0.92 (0.78; 1.12) | 0.439 |
SCr—24 h [mg/dL] | 0.93 (0.76; 1.16) | 0.92 (0.75; 1.21) | 0.95 (0.77; 1.13) | 0.866 |
SCr—48 h [mg/dL] | 1.01 (0.83; 1.21) | 0.96 (0.76; 1.24) | 1.09 (0.96; 1.19) | 0.200 |
SCr—72 h [mg/dL] | 0.96 (0.79; 1.28) | 0.93 (0.78; 1.29) | 1.05 (0.85; 1.21) | 0.649 |
SCr—7 days | 1.07 (0.68; 1.23) | 1.09 (0.75; 1.23) | 0.78 (0.57; 0.98) | 0.149 |
ΔSCr 24 h—7 days | 0.06 (−0.01; 0.17) | 0.08 (−0.02; 0.21) | 0.05 (0.00; 0.13) | 0.355 |
eGFR—baseline [mL/min/1.73 m2] | 77.9 (61; 90) | 76.0 (56; 90) | 78.1 (65; 90) | 0.009 |
Echocardiography | ||||
LVEF [%] | 47.70 ± 11.81 | 45.39 ± 11.63 | 49.78 ± 11.62 | <0.001 |
IVS [mm] | 12.43 ± 3.36 | 12.92 ± 3.99 | 12.03 ± 2.71 | 0.005 |
ESD [mm] | 33.25 ± 8.49 | 33.39 ± 8.47 | 33.14 ± 8.54 | 0.401 |
EDD [mm] | 51.18 ± 7.66 | 51.02 ± 8.20 | 51.32 ± 7.19 | 0.897 |
LAd [mm] | 39.47 ± 6.42 | 38.86 ± 6.78 | 39.97 ± 6.07 | 0.357 |
Coronary angiography | ||||
Vascular access | ||||
Radial | 131 (48.9%) | 95 (75.4%) | 36 (25.4%) | <0.001 |
Femoral | 118 (44.0%) | 30 (23.8%) | 88 (62.0%) | |
Brachial | 19 (7.1%) | 1 (0.8%) | 18 (12.7%) | |
Local vascular complications | 15 (7.5%) | 12 (8.7%) | 3 (4.8%) | 0.338 |
Stenosis > 50% in coronary arteries | 223 (78.0%) | 125 (91.2%) | 98 (65.8%) | <0.001 |
PCI | 188 (65.5%) | 113 (82.5%) | 75 (50.0%) | <0.001 |
Intra-aortic balloon pump | 6 (2.1%) | 6 (4.4%) | 0 (0.0%) | 0.009 |
Low-osmolar contrast media | 243 (83.8%) | 113 (82.5%) | 130 (85.0%) | 0.566 |
Volume of contrast—1 [mL] | 120 (80; 170) | 120 (80; 180) | 100 (70; 160) | 0.114 |
Volume of contrast—2 [mL] | 120 (100; 160) | 120 (100; 160) | - | - |
Volume of contrast—3 [mL] | 100 (60; 130) | 100 (60; 130) | - | - |
Total volume of contrast | 180 (100; 270) | 265.00 (200; 330) | 120.00 (80; 160) | <0.001 |
Time between contrast media dose [days] | 2.00 (2.00; 4.00) | 2.00 (2.00; 4.00) | - | - |
Variable | Non-CI-AKI n = 255 | CI-AKI Group n = 36 | p-Value |
---|---|---|---|
Age [years] | 66 ± 11.5 | 73 ± 10.8 | 0.001 |
BMI [kg/m2] | 28.5 ± 4.5 | 28 ± 4.3 | 0.609 |
Male sex | 161 (63%) | 22 (61%) | 0.814 |
Medical history and pharmacotherapy | |||
Chronic kidney disease | 53 (20.9%) | 18 (50%) | <0.001 |
History of AKI | 5 (1.97%) | 3 (8.33%) | 0.029 |
History of nephrectomy | 5 (1.97%) | 2 (5.6%) | 0.189 |
History of MI | 71 (27.9%) | 18 (50%) | 0.007 |
History of stroke | 20 (7.87%) | 6 (16.7%) | 0.084 |
History of PCI | 83 (32.7%) | 16 (44.4%) | 0.502 |
Atrial fibrillation | 33 (13%) | 9 (25%) | 0.074 |
Heart failure | 90 (35.3%) | 17 (47.2%) | 0.165 |
MV-CAD | 78 (30.7%) | 22 (62.9%) | <0.001 |
Diabetes | 77 (30.3%) | 20 (55.6%) | 0.003 |
Arterial hypertension | 221 (87%) | 311 (86.1%) | 0.881 |
Hyperlipidemia | 182 (71.7%) | 27 (75%) | 0.675 |
Peripheral artery disease | 47 (18.7%) | 13 (36.1%) | 0.016 |
Cigarette smoking | 113 (44.5%) | 13 (36.1%) | 0.343 |
COPD | 22 (8.7%) | 3 (8.3%) | 0.948 |
Statins | 131 (60.7%) | 19 (67.9%) | 0.461 |
MRA | 46 (18%) | 6 (16.7%) | 0.841 |
ACEI/ARB | 152 (59.6%) | 21 (58.3%) | 0.884 |
Thiazide diuretics | 26 (11.5%) | 1 (3.45%) | 0.184 |
Loop diuretics | 52 (23%) | 11 (39.3%) | 0.06 |
NSAIDs | 19 (8.4%) | 7 (25%) | 0.006 |
Index hospitalization-initial diagnosis and course of treatment | |||
STEMI | 60 (23.5%) | 7 (19.4%) | 0.934 |
NSTE-ACS | 48 (58%) | 21 (58.3%) | |
Chronic coronary syndrome | 11 (4.3%) | 2 (5.6%) | |
Aortic valve stenosis | 32 (12.6%) | 6 (16.7%) | |
Aortic aneurysm | 3 (1.2%) | 0 (0%) | |
Systolic BP | 130 (120; 140) | 120 (110; 140) | 0.160 |
Diastolic BP | 80 (70; 80) | 80 (70; 80) | 0.376 |
ST-segment abnormalities | 109 (63.4%) | 16 (57.1%) | 0.528 |
Regional wall motion abnormalities | 173 (68.1%) | 27 (75%) | 0.403 |
Proteinuria | 30 (12.2%) | 5 (16.1%) | 0.540 |
Sudden cardiac arrest during index hospitalization | 8 (4.6%) | 4 (14.3%) | 0.045 |
In-hospital death | 4 (1.6%) | 1 (2.9%) | 0.596 |
Laboratory testing | |||
Troponin [ng/mL] | 0.15 (0.02; 1.0) | 0.49 (0.03; 1.5) | 0.190 |
Hemoglobin | 13.7 ± 1.63 | 12.8 ± 1.8 | 0.008 |
[K+] [mmol/L] | 4.3 ± 2.4 | 4.3 ± 0.6 | 0.083 |
[Na+] [mmol/L] | 140.2 ± 3.2 | 138.6 ± 3.6 | 0.009 |
Urine specific gravity | 1.03 ± 0.01 | 0.99 ± 0.18 | 0.618 |
SCr—baseline [mg/dL] | 0.93 (0.77; 1.2) | 1 (0.8; 1.2) | 0.133 |
SCr—24 h [mg/dL] | 0.9 (0.75; 1.1) | 1.06 (0.8; 1.3) | 0.013 |
SCr—48 h [mg/dL] | 0.98 (0.8; 1.1) | 1.42 (1.1; 1.9) | 0.001 |
SCr—72 h [mg/dL] | 0.93 (0.8; 1.2) | 1.59 (0.9; 1.8) | 0.003 |
SCr—7 days | 0.98 (0.6; 1.1) | 1.44 (1; 2.1) | 0.05 |
ΔSCr 24 h—7 days | 0.05 (−0.03; 0.1) | 0.46 (0.4; 0.7) | <0.001 |
eGFR—baseline [mL/min/1.73 m2] | 78 (63.7; 90) | 66.5 (49; 90) | 0.057 |
Echocardiography | |||
LVEF [%] | 48 ± 11 | 42 ± 14 | 0.017 |
IVS [mm] | 12 ± 3 | 12.5 ± 3 | 0.206 |
ESD [mm] | 33 ± 7.8 | 35 ± 12.3 | 0.261 |
EDD [mm] | 51 ± 6.9 | 52 ± 12 | 0.127 |
LAd [mm] | 39.2 ± 6 | 41.2 ± 8.9 | 0.007 |
Coronary angiography | |||
Vascular access | |||
Radial | 116 (49.2%) | 15 (46.9%) | 0.936 |
Femoral | 103 (43.6%) | 15 (46.9%) | |
Brachial | 17 (7.2%) | 2 (6.3%) | |
Local vascular complications | 11 (6.4%) | 4 (14.8%) | 0.121 |
Stenosis > 50% in coronary arteries | 190 (75.7%) | 25 (94.3%) | 0.663 |
PCI | 166 (65.9%) | 22 (62.9%) | 0.725 |
Intra-aortic balloon pump | 6 (2.4%) | 0 (0%) | 0.351 |
Low-osmolar contrast media | 215 (84.7%) | 28 (77.8%) | 0.295 |
Volume of contrast—1 [mL] | 120 (80; 160) | 130 (80; 230) | 0.201 |
Volume of contrast—2 [mL] | 125 (100; 170) | 100 (80; 150) | 0.093 |
Volume of contrast—3 [mL] | 90 (50; 125) | 200 (200; 200) | 0.121 |
Total volume of contrast | 180 (100; 270) | 205 (100; 375) | 0.417 |
Time between contrast media dose [days] | 2 (2; 4) | 3 (2; 3) | 0.203 |
Univariable Analysis | |||
---|---|---|---|
Variable | OR | 95%CI | p-Value |
Study group (double contrast administration) | 0.8889 | 0.4423–1.7866 | 0.7409 |
>50% stenosis in coronary artery | 0.6721 | 0.0632–7.1511 | 0.7419 |
CKD | 7.9571 | 1.8037–35.1031 | 0.0062 |
Diabetes | 4.0328 | 1.1748–13.8442 | 0.0267 |
History of AKI | 7.5117 | 0.6943–81.2714 | 0.097 |
MV-CAD | 22.6315 | 3.9675–129.0946 | 0.0004 |
Age | 1.0787 | 1.0028–1.1605 | 0.0419 |
NSAIDs use | 6.7687 | 1.4828–30.8975 | 0.0136 |
PAD | 4.4525 | 1.2313–16.1007 | 0.0228 |
Loop diuretics | 0.189 | 0.0391–0.9128 | 0.0381 |
LVEF | 0.9886 | 0.9396–1.0402 | 0.6596 |
Total volume of contrast | 0.9921 | 0.9778–1.0066 | 0.2828 |
Total volume of contrast-to-body weight ratio | 2.3129 | 0.7715–6.9335 | 0.1344 |
Multivariable Logistic Regression | |||
Variable | logOR | 95%CI | p-Value |
CKD | 3.7268 | 1.0732–12.9415 | 0.0383 |
Diabetes | 3.0242 | 1.0340–8.8446 | 0.0433 |
MV-CAD | 9.4553 | 2.6483–33.7591 | 0.0005 |
Age [years] | 1.0738 | 1.0073–1.1447 | 0.029 |
NSAIDs use | 6.4447 | 1.7891–23.2150 | 0.0044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichoń, M.; Wybraniec, M.T.; Okoń, O.; Zielonka, M.; Antoniuk, S.; Szatan, T.; Mizia-Stec, K. Repeated Dose of Contrast Media and the Risk of Contrast-Induced Acute Kidney Injury in a Broad Population of Patients Hospitalized in Cardiology Department. J. Clin. Med. 2023, 12, 2166. https://doi.org/10.3390/jcm12062166
Cichoń M, Wybraniec MT, Okoń O, Zielonka M, Antoniuk S, Szatan T, Mizia-Stec K. Repeated Dose of Contrast Media and the Risk of Contrast-Induced Acute Kidney Injury in a Broad Population of Patients Hospitalized in Cardiology Department. Journal of Clinical Medicine. 2023; 12(6):2166. https://doi.org/10.3390/jcm12062166
Chicago/Turabian StyleCichoń, Małgorzata, Maciej T. Wybraniec, Oliwia Okoń, Marek Zielonka, Sofija Antoniuk, Tomasz Szatan, and Katarzyna Mizia-Stec. 2023. "Repeated Dose of Contrast Media and the Risk of Contrast-Induced Acute Kidney Injury in a Broad Population of Patients Hospitalized in Cardiology Department" Journal of Clinical Medicine 12, no. 6: 2166. https://doi.org/10.3390/jcm12062166
APA StyleCichoń, M., Wybraniec, M. T., Okoń, O., Zielonka, M., Antoniuk, S., Szatan, T., & Mizia-Stec, K. (2023). Repeated Dose of Contrast Media and the Risk of Contrast-Induced Acute Kidney Injury in a Broad Population of Patients Hospitalized in Cardiology Department. Journal of Clinical Medicine, 12(6), 2166. https://doi.org/10.3390/jcm12062166