Pyridostigmine Bromide Pills and Pesticides Exposure as Risk Factors for Eye Disease in Gulf War Veterans
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Ocular surface inflammation measured using InflammaDry (Quidel, San Diego). This test measures ocular surface levels of matrix metalloproteinase 9 (MMP9) with the intensity of the pink stripe qualitatively graded as 0 = none, 1 = mild, 2 = moderate, or 3 = severe;
- (b)
- Tear stability assessed by measuring tear break-up time (TBUT) in seconds (three measurements taken in each eye and averaged after instilling 5 μL of fluorescein dye);
- (c)
- Corneal fluorescein staining (cornea divided into five areas and staining graded in each area on a scale of 0 = none to 3 = severe, and summed, according to the National Eye Institute scale) [19];
- (d)
- One drop of proparacaine (Sandoz, Princeton, NJ, USA) instilled into each eye and anesthetized Schirmer’s test performed to quantify tear production at 5 min;
- (e)
- Eyelid and Meibomian gland parameters assessed [19,20]. Specifically, eyelid vascularity was graded on a scale of 0 to 3 (0 = none; 1 = mild engorgement; 2 = moderate engorgement; 3 = severe engorgement) and meibum quality on a scale of 0 to 4 (0 = clear; 1 = cloudy; 2 = granular; 3 = toothpaste; 4 = no meibum extracted). Inferior Meibomian gland (MG) dropout was graded to the Meiboscale based on Lipiscan images (Johnson & Johnson, New Brunswick, NJ, USA).
3. Results
3.1. Study Population
3.2. Dry Eye Symptoms and Signs
3.3. Fundus Examination and Ocular Coherence Tomography Measures, Grouped by Exposure Status
3.4. GWI Symptoms, Grouped by Exposure Status
3.5. Multivariable Modeling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maule, A.L.; Janulewicz, P.A.; Sullivan, K.A.; Krengel, M.H.; Yee, M.K.; McClean, M.; White, R.F. Meta-analysis of self-reported health symptoms in 1990-1991 Gulf War and Gulf War-era veterans. BMJ Open 2018, 8, e016086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fappiano, C.M.; Baraniuk, J.N. Gulf War Illness Symptom Severity and Onset: A Cross-Sectional Survey. Mil. Med. 2020, 185, e1120–e1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, L. Prevalence and Patterns of Gulf War Illness in Kansas Veterans: Association of Symptoms with Characteristics of Person, Place, and Time of Military Service. Am. J. Epidemiol. 2000, 152, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Kaimal, G.; Dieterich-Hartwell, R. Grappling with Gulf War Illness: Perspectives of Gulf War Providers. Int. J. Environ. Res. Public Health 2020, 17, 8574. [Google Scholar] [CrossRef] [PubMed]
- Committee on the Development of a Consensus Case Definition for Chronic Multisymptom Illness in Gulf War Veterans; Board on the Health of Select Populations; Institute of Medicine. Chronic Multisymptom Illness in Gulf War Veterans: Case Definitions Reexamined; National Academies Press (US): Washington, DC, USA, 2014. [Google Scholar]
- Binns, J.H.; Barlow, C.; Bloom, F.E.; Clauw, D.J.; Golomb, B.A.; Graves, J.C.; Hardie, A.; Knox, M.L.; Meggs, W.J.; Nettleman, M.D. Gulf War Illness and the Health of Gulf War Veterans; Department of Veterans Affairs Research Committee on Gulf War Veterans: Washington, DC, USA, 2008. [Google Scholar]
- Dickey, B.; Madhu, L.N.; Shetty, A.K. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol. Ther. 2021, 220, 107716. [Google Scholar] [CrossRef] [PubMed]
- Alshelh, Z.; Albrecht, D.S.; Bergan, C.; Akeju, O.; Clauw, D.J.; Conboy, L.; Edwards, R.R.; Kim, M.; Lee, Y.C.; Protsenko, E.; et al. In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav. Immun. 2020, 87, 498–507. [Google Scholar] [CrossRef]
- White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2016, 74, 449–475. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.T.; Steele, L.; Richardson, P.; Nadkarni, S.; Bandi, S.; Rowneki, M.; Sims, K.J.; Vahey, J.; Gifford, E.J.; Boyle, S.H.; et al. Association of Gulf War Illness-Related Symptoms with Military Exposures among 1990-1991 Gulf War Veterans Evaluated at the War-Related Illness and Injury Study Center (WRIISC). Brain Sci. 2022, 12, 321. [Google Scholar] [CrossRef]
- Steele, L.; Sastre, A.; Gerkovich, M.M.; Cook, M.R. Complex factors in the etiology of Gulf War illness: Wartime exposures and risk factors in veteran subgroups. Environ. Health Perspect 2012, 120, 112–118. [Google Scholar] [CrossRef]
- Yee, M.K.; Zundel, C.G.; Maule, A.L.; Heeren, T.; Proctor, S.P.; Sullivan, K.A.; Krengel, M.H. Longitudinal Assessment of Health Symptoms in Relation to Neurotoxicant Exposures in 1991 Gulf War Veterans: The Ft. Devens Cohort. J. Occup. Environ. Med. 2020, 62, 663–668. [Google Scholar] [CrossRef]
- Sanchez, V.; Baksh, B.S.; Cabrera, K.; Choudhury, A.; Jensen, K.; Klimas, N.; Galor, A. Dry Eye Symptoms and Signs in US Veterans With Gulf War Illness. Am. J. Ophthalmol. 2022, 237, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Baksh, B.S.; Zayan, K.L.; Goldhardt, R.; Felix, E.R.; Klimas, N.; Galor, A. Ocular manifestations and biomarkers of Gulf War Illness in US veterans. Sci. Rep. 2021, 11, 6548. [Google Scholar] [CrossRef]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.L.; Begley, C.G.; Caffery, B. Validation of the 5-Item Dry Eye Questionnaire (DEQ-5): Discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses. Cont. Lens. Anterior Eye 2010, 33, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, M.; Feuer, W.; Galor, A.; Bouhassira, D.; Levitt, R.C.; Sarantopoulos, C.D.; Felix, E.R. Modification of the Neuropathic Pain Symptom Inventory for use in eye pain (NPSI-Eye). Pain 2019, 160, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Rouse, M.; Borsting, E.; Mitchell, G.L.; Cotter, S.A.; Kulp, M.; Scheiman, M.; Barnhardt, C.; Bade, A.; Yamada, T. Validity of the convergence insufficiency symptom survey: A confirmatory study. Optom. Vis. Sci. 2009, 86, 357–363. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Lanza, N.L.; Valenzuela, F.; Perez, V.L.; Galor, A. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye. Ocul. Surf. 2016, 14, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Ong, E.S.; Felix, E.R.; Levitt, R.C.; Feuer, W.J.; Sarantopoulos, C.D.; Galor, A. Epidemiology of discordance between symptoms and signs of dry eye. Br. J. Ophthalmol. 2018, 102, 674–679. [Google Scholar] [CrossRef]
- Institute of Medicine; Board on the Health of Select Populations; Committee on Gulf War and Health. Health Effects of Serving in the Gulf War Update 2009. In Gulf War and Health: Volume 8: Update of Health Effects of Serving in the Gulf War; National Academies Press (US): Washington, DC, USA, 2010. [Google Scholar]
- Figueiredo, T.H.; Apland, J.P.; Braga, M.F.M.; Marini, A.M. Acute and long-term consequences of exposure to organophosphate nerve agents in humans. Epilepsia 2018, 59 (Suppl. 2), 92–99. [Google Scholar] [CrossRef] [Green Version]
- Lott, E.L.; Jones, E.B. Cholinergic Toxicity. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Institute of Medicine (US) Committee on Health Effects Associated with Exposures During the Gulf War. Pyridostigmine Bromide. In Gulf War and Health: Volume 1. Depleted Uranium, Sarin, Pyridostigmine Bromide, Vaccines; Fulco, C.E., Liverman, C.T., Sox, H.C., Eds.; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Beekman, R.; Kuks, J.B.; Oosterhuis, H.J. Myasthenia gravis: Diagnosis and follow-up of 100 consecutive patients. J. Neurol. 1997, 244, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Fricker, R.D.; Reardon, E.; Spektor, D.M.; Cotton, S.K.; Hawes-Dawson, J.; Pace, J.E.; Hosek, S.D. Pesticide Use During the Gulf War: A Survey of Gulf War Veterans; RAND Corporation: Santa Monica, CA, USA, 2000. [Google Scholar] [CrossRef]
- Sullivan, K.; Krengel, M.; Bradford, W.; Stone, C.; Thompson, T.A.; Heeren, T.; White, R.F. Neuropsychological functioning in military pesticide applicators from the Gulf War: Effects on information processing speed, attention and visual memory. Neurotoxicol. Teratol. 2018, 65, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Remijn-Nelissen, L.; Verschuuren, J.; Tannemaat, M.R. The effectiveness and side effects of pyridostigmine in the treatment of myasthenia gravis: A cross-sectional study. Neuromuscul. Disord. 2022, 32, 790–799. [Google Scholar] [CrossRef]
- Carreras, I.; Aytan, N.; Mellott, T.; Choi, J.K.; Lehar, M.; Crabtree, L.; Leite-Morris, K.; Jenkins, B.G.; Blusztajn, J.K.; Dedeoglu, A. Anxiety, neuroinflammation, cholinergic and GABAergic abnormalities are early markers of Gulf War illness in a mouse model of the disease. Brain Res. 2018, 1681, 34–43. [Google Scholar] [CrossRef]
- Macht, V.A.; Woodruff, J.L.; Burzynski, H.E.; Grillo, C.A.; Reagan, L.P.; Fadel, J.R. Interactions between pyridostigmine bromide and stress on glutamatergic neurochemistry: Insights from a rat model of Gulf War Illness. Neurobiol. Stress 2020, 12, 100210. [Google Scholar] [CrossRef]
- Parihar, V.K.; Hattiangady, B.; Shuai, B.; Shetty, A.K. Mood and memory deficits in a model of Gulf War illness are linked with reduced neurogenesis, partial neuron loss, and mild inflammation in the hippocampus. Neuropsychopharmacology 2013, 38, 2348–2362. [Google Scholar] [CrossRef] [PubMed]
- Galor, A.; Moein, H.R.; Lee, C.; Rodriguez, A.; Felix, E.R.; Sarantopoulos, K.D.; Levitt, R.C. Neuropathic pain and dry eye. Ocul. Surf. 2018, 16, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shou, Y.; Borowitz, J.L.; Isom, G.E. Reactive oxygen species mediate pyridostigmine-induced neuronal apoptosis: Involvement of muscarinic and NMDA receptors. Toxicol. Appl. Pharmacol. 2001, 177, 17–25. [Google Scholar] [CrossRef]
- Madhu, L.N.; Attaluri, S.; Kodali, M.; Shuai, B.; Upadhya, R.; Gitai, D.; Shetty, A.K. Neuroinflammation in Gulf War Illness is linked with HMGB1 and complement activation, which can be discerned from brain-derived extracellular vesicles in the blood. Brain Behav. Immun. 2019, 81, 430–443. [Google Scholar] [CrossRef]
- Ashbrook, D.G.; Hing, B.; Michalovicz, L.T.; Kelly, K.A.; Miller, J.V.; de Vega, W.C.; Miller, D.B.; Broderick, G.; O’Callaghan, J.P.; McGowan, P.O. Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: A model of Gulf War illness. J. Neuroinflamm. 2018, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Werry, E.L.; Bright, F.M.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kril, J.J.; Kassiou, M. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int. J. Mol. Sci. 2019, 20, 3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumert, B.O.; Carnes, M.U.; Hoppin, J.A.; Jackson, C.L.; Sandler, D.P.; Freeman, L.B.; Henneberger, P.K.; Umbach, D.M.; Shrestha, S.; Long, S.; et al. Sleep apnea and pesticide exposure in a study of US farmers. Sleep Health 2018, 4, 20–26. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD or Percent Frequency | PB Pills Exposed (n = 44) | PB Pills Control (n = 64) | PB Pills p-Value | Pesticides Exposed (n = 45) | Pesticides Control (n = 63) | Pesticides p-Value |
---|---|---|---|---|---|---|
Demographics | ||||||
Age | 55.5 ± 4.9 | 56.0 ± 4.7 | 0.65 | 55.4 ± 4.6 | 56.0 ± 4.9 | 0.52 |
Male Gender | 90.9% | 84.4% | 0.32 | 88.9% | 85.7% | 0.63 |
White | 59.1% | 57.8% | 0.77 | 57.8% | 57.1% | 0.95 |
Hispanic | 36.4% | 32.8% | 0.70 | 37.8% | 31.7% | 0.52 |
Comorbidities | ||||||
Diabetes | 13.6% | 21.9% | 0.28 | 20.0% | 17.5% | 0.74 |
Hypertension | 34.1% | 41.3% | 0.45 | 42.2% | 35.5% | 0.48 |
Hyperlipidemia | 39.5% | 50.0% | 0.29 | 43.2% | 47.6% | 0.65 |
Sleep Apnea | 75.0% | 52.4% | 0.02 * | 73.3% | 53.2% | 0.04 * |
Depression | 50.0% | 38.1% | 0.22 | 44.4% | 41.9% | 0.80 |
PTSD | 41.9% | 30.2% | 0.22 | 43.2% | 29.0% | 0.13 |
Arthritis | 42.9% | 27.4% | 0.10 | 37.2% | 31.1% | 0.52 |
BPH | 9.3% | 17.5% | 0.24 | 15.9% | 12.9% | 0.66 |
Medication use | ||||||
Fish oil | 29.5% | 21.0% | 0.31 | 34.1% | 17.7% | 0.05 |
Multivitamin | 38.6% | 34.9% | 0.69 | 40.9% | 33.3% | 0.42 |
NSAID | 38.6% | 38.7% | 0.99 | 45.5% | 33.9% | 0.23 |
Gabapentin | 20.5% | 9.7% | 0.12 | 15.9% | 12.9% | 0.66 |
Aspirin | 20.5% | 21.0% | 0.95 | 29.5% | 14.5% | 0.06 |
Statin | 47.7% | 48.4% | 0.95 | 52.3% | 45.2% | 0.47 |
Betablocker | 13.6% | 17.7% | 0.57 | 13.6% | 17.7% | 0.57 |
Antidepressant | 34.1% | 22.6% | 0.19 | 38.6% | 19.4% | 0.03 * |
Antianxiety | 20.5% | 16.1% | 0.57 | 22.7% | 14.5% | 0.28 |
Antihistamine | 31.8% | 25.8% | 0.50 | 38.6% | 21.0% | 0.047 * |
GWI symptoms | 47.7% | 29.7% | 0.06 | 30.2% | 46.7% | 0.08 |
Deployment | 91.0% | 45.3% | <0.001 * | 75.6% | 55.6% | 0.03 * |
Mean ± SD | PB Pills Exposed (n = 44) | PB Pills Control (n = 64) | PB Pills p-Value | Pesticides Exposed (n = 45) | Pesticides Control (n = 63) | Pesticides p-Value |
---|---|---|---|---|---|---|
Symptoms | ||||||
DEQ-5, range 0–22 | 9.3 ± 5.3 | 7.3 ± 4.6 | 0.04 * | 8.2 ± 5.2 | 8.1 ± 4.8 | 0.90 |
OSDI, range 0–100 | 39.4 ± 26.0 | 28.7 ± 21.7 | 0.03 * | 35.2 ± 25.6 | 31.6 ± 23.0 | 0.50 |
NRS right now, range 0–10 | 2.2 ± 2.8 | 1.0 ± 1.6 | 0.01 * | 1.5 ± 2.3 | 1.5 ± 2.2 | 0.96 |
NRS average over past week, range 0–10 | 2.4 ± 2.6 | 1.5 ± 1.8 | 0.03 * | 1.6 ± 2.1 | 2.0 ± 2.3 | 0.45 |
NRS worse over past week, range 0–10 | 3.1 ± 3.3 | 1.6 ± 2.0 | 0.01 * | 2.1 ± 2.9 | 2.2 ± 2.6 | 0.79 |
NPSI-E total, range 0–100 | 18.2 ± 20.0 | 10.8 ± 13.8 | 0.03 * | 17.1 ± 21.1 | 11.6 ± 12.9 | 0.049 * |
CISS | 23.2 ± 14.7 | 18.4 ± 12.3 | 0.08 | 20.6 ± 14.6 | 20.1 ± 12.7 | 0.84 |
Signs | ||||||
MMP9, range 0–3 | 1.3 ± 1.6 | 1.1 ± 1.0 | 0.65 | 1.3 ± 1.7 | 1.1 ± 0.9 | 0.53 |
TBUT, seconds | 8.4 ± 4.0 | 9.2 ± 4.6 | 0.32 | 8.4 ± 4.8 | 9.2 ± 4.1 | 0.39 |
Corneal staining, range 0–15 | 1.6 ± 2.3 | 1.0 ± 1.6 | 0.08 | 1.4 ± 2.6 | 1.1 ± 1.4 | 0.40 |
Schirmer test, mm wetting at 5 min | 11.8 ± 7.1 | 14.8 ± 9.6 | 0.09 | 14.3 ± 8.5 | 13.0 ± 9.0 | 0.45 |
Eyelid vascularity, range 0–3 | 0.6 ± 0.8 | 0.5 ± 0.7 | 0.56 | 0.7 ± 0.8 | 0.5 ± 0.7 | 0.32 |
Meibum quality, range 0–4 | 1.5 ± 1.2 | 1.2 ± 1.0 | 0.17 | 1.5 ± 1.1 | 1.2 ± 1.0 | 0.15 |
Meibomian gland dropout, range 0–4 | 2.0 ± 1.4 | 1.9 ± 1.2 | 0.75 | 2.1 ± 1.1 | 1.8 ± 1.4 | 0.24 |
Predictor | Standardized Coefficients β | p-Value |
---|---|---|
DEQ-5 | ||
PB pills | 0.201 | 0.04 * |
Pesticides ** | -- | 0.78 |
OSDI | ||
PB pills | 0.218 | 0.03 * |
Pesticides ** | -- | 0.85 |
NRS average pain intensity over one week recall | ||
PB pills | 0.228 | 0.02 * |
Pesticides ** | -- | 0.21 |
NPSI-E | ||
PB pills | 0.219 | 0.03 * |
Pesticides ** | -- | 0.22 |
Macular outer temporal OCT measurement, left eye | ||
PB pills | 0.207 | 0.03 * |
Pesticides ** | -- | 0.15 |
Predictor | β | SE | Wald Statistic | p-Value | OR | OR 95% CI |
---|---|---|---|---|---|---|
Deployment | 1.02 | 0.46 | 4.96 | 0.03 * | 2.79 | 1.13–6.86 |
Race | 0.87 | 0.43 | 4.08 | 0.04 * | 2.40 | 1.02–5.60 |
PB pills ** | -- | -- | -- | 0.42 | -- | -- |
Pesticides ** | -- | -- | -- | 0.21 | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truax, L.E.; Huang, J.J.; Jensen, K.; Locatelli, E.V.T.; Cabrera, K.; Peterson, H.O.; Cohen, N.K.; Mangwani-Mordani, S.; Jensen, A.; Goldhardt, R.; et al. Pyridostigmine Bromide Pills and Pesticides Exposure as Risk Factors for Eye Disease in Gulf War Veterans. J. Clin. Med. 2023, 12, 2407. https://doi.org/10.3390/jcm12062407
Truax LE, Huang JJ, Jensen K, Locatelli EVT, Cabrera K, Peterson HO, Cohen NK, Mangwani-Mordani S, Jensen A, Goldhardt R, et al. Pyridostigmine Bromide Pills and Pesticides Exposure as Risk Factors for Eye Disease in Gulf War Veterans. Journal of Clinical Medicine. 2023; 12(6):2407. https://doi.org/10.3390/jcm12062407
Chicago/Turabian StyleTruax, Lauren E., Jaxon J. Huang, Katherine Jensen, Elyana V. T. Locatelli, Kimberly Cabrera, Haley O. Peterson, Noah K. Cohen, Simran Mangwani-Mordani, Andrew Jensen, Raquel Goldhardt, and et al. 2023. "Pyridostigmine Bromide Pills and Pesticides Exposure as Risk Factors for Eye Disease in Gulf War Veterans" Journal of Clinical Medicine 12, no. 6: 2407. https://doi.org/10.3390/jcm12062407
APA StyleTruax, L. E., Huang, J. J., Jensen, K., Locatelli, E. V. T., Cabrera, K., Peterson, H. O., Cohen, N. K., Mangwani-Mordani, S., Jensen, A., Goldhardt, R., & Galor, A. (2023). Pyridostigmine Bromide Pills and Pesticides Exposure as Risk Factors for Eye Disease in Gulf War Veterans. Journal of Clinical Medicine, 12(6), 2407. https://doi.org/10.3390/jcm12062407