Fusionless All-Pedicle Screws for Posterior Deformity Correction in AIS Immature Patients Permit the Restoration of Normal Vertebral Morphology and Removal of the Instrumentation Once Bone Maturity Is Reached
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Intervention
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Data
3.2. Radiological Outcomes
3.3. Sagittal ROM of the Thoracolumbar Transition and Lumbar Spine
3.4. Vertebral Modulation
3.5. Quality of Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, V.; Lykissas, M.; Trobisch, P.; Wall, E.J.; Newton, P.O.; Sturm, P.F.; Cahill, P.J.; Bylski-Austrow, D.I. Surgical aspects of spinal growth modulation in scoliosis correction. Instr. Course. Lect. 2014, 63, 335–344. [Google Scholar] [PubMed]
- Hueter, C. Anatomische studien an den extremitaetengelenken neugeborener und erwachsener. Virchows. Arch. Pathol. Anat. Physiol. 1862, 25, 572–599. [Google Scholar] [CrossRef]
- Mehlman, C.T.; Araghi, A.; Roy, D.R. Hyphenated history: The Hueter-Volkmann law. Am. J. Orthop. 1997, 26, 798–800. [Google Scholar] [PubMed]
- Stokes, I.A.; Spence, H.; Aronsson, D.D.; Kilmer, N. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine 1996, 21, 1162–1167. [Google Scholar] [CrossRef]
- Betz, R.R.; Kim, J.; D’Andrea, L.P.; Mulcahey, M.J.; Balsara, R.K.; Clements, D.H. An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis: A feasibility, safety, and utility study. Spine 2003, 28, S255–S265. [Google Scholar] [CrossRef]
- Samdani, A.F.; Ames, R.J.; Kimball, J.S.; Pahys, J.M.; Grewal, H.; Pelletier, G.J.; Betz, R.R. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: One-year results on the first 32 patients. Eur. Spine J. 2015, 24, 1533–1539. [Google Scholar] [CrossRef]
- Lowe, T.G.; Wilson, L.; Chien, J.T.; Line, B.G.; Klopp, L.; Wheeler, D.; Molz, F. A posterior tether for fusionless modulation of sagittal plane growth in a sheep model. Spine 2005, 30 (Suppl. 17), S69–S74. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Z.; Shen, J.; Xue, X. Spinal growth modulation with posterior unilateral elastic tether in immature swine model. Spine J. 2015, 15, 138–145. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Li, Q.Y.; Wu, Z.H.; Zhao, Y.; Qiu, G.X. Lumbar Scoliosis Induction in Juvenile Dogs by Three-dimensional Modulation of Spinal Growth Using Nickel-Titanium Coil Springs. Chin. Med. J. 2017, 130, 2579–2584. [Google Scholar] [CrossRef]
- Floman, Y.; El-Hawary, R.; Lonner, B.S.; Betz, R.R.; Arnin, U. Vertebral growth modulation by posterior dynamic deformity correction device in skeletally immature patients with moderate adolescent idiopathic scoliosis. Spine Deform. 2021, 9, 149–153. [Google Scholar] [CrossRef]
- Burgos, J.; Barrios, C.; Hevia, E.; Antón-Rodrigálvarez, L.M. Abolition of Sagittal T7-T10 Dynamics During Forced Ventilation in Lenke 1A AIS Patients as Compared to Healthy Subjects. An Underlying Factor of the Respiratory Limitation in AIS. In Proceedings of the 53rd SRS Annual Meeting & Course, Bologna, Italy, 10–13 October 2018. [Google Scholar]
- Lenke, L.G.; Betz, R.R.; Harms, J.; Bridwell, K.H.; Clements, D.H.; Lowe, T.G.; Blanke, K. Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J. Bone. Joint. Surg. Am. 2001, 83, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Kepler, C.K.; Meredith, D.S.; Green, D.W.; Widmann, R.F. Long-term outcomes after posterior spine fusion for adolescent idiopathic scoliosis. Opin. Pediatr. 2012, 24, 68–75. [Google Scholar] [CrossRef]
- del Rio, J.; Beguiristain, J.; Duart, J. Metal levels in corrosion of spinal implants. Eur. Spine J. 2007, 16, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.E.; Xie, Y.; Bagheri, L.; Claton, L.E.; Chu, L.; Badreldin, A.; Abdel, M.P.; van Wijnen, A.J.; Haft, G.F.; Milbrandt, T.A.; et al. Serum Ion Levels Elevated in Pediatric Patients With Metal Implants? J. Pediatr. Orthop. 2022, 42, 162–168. [Google Scholar] [CrossRef]
- Lorente, A.; Barrios, C.; Burgos, J.; Hevia, E.; Fernández-Pineda, L.; Lorente, R.; Rosa, B.; Pérez-Encinas, C. Cardiorespiratory Function Does Not Improve 2 Years After Posterior Surgical Correction of Adolescent Idiopathic Scoliosis. Spine 2017, 42, 1391–1397. [Google Scholar] [CrossRef]
- Burgos, J.; Barrios, C.; Mariscal, G.; Lorente, A.; Lorente, R. Non-uniform Segmental Range of Motion of the Thoracic Spine During Maximal Inspiration and Exhalation in Healthy Subjects. Front. Med. 2021, 8, 699357. [Google Scholar] [CrossRef] [PubMed]
- Namboothiri, S.; Kumar, R.; Menon, K.V. Early changes in pulmonary function following thoracotomy for scoliosis correction: The effect of size of incision. Eur. Spine J. 2005, 14, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Lonner, B.S.; Auerbach, J.D.; Estreicher, M.B.; Betz, R.R.; Crawford, A.H.; Lenke, L.G.; Newton, P.O. Pulmonary function changes after various anterior approaches in the treatment of adolescent idiopathic scoliosis. J. Spinal. Disord. Tech. 2009, 22, 551–558. [Google Scholar] [CrossRef]
- Ritzman, T.F.; Upasani, V.V.; Bastrom, T.P.; Betz, R.R.; Lonner, B.S.; Newton, P.O. Comparison of compensatory curve spontaneous derotation after selective thoracic or lumbar fusions in adolescent idiopathic scoliosis. Spine 2008, 33, 2643–2647. [Google Scholar] [CrossRef]
- Sarwahi, V.; Horn, J.J.; Kulkarni, P.M.; Wollowick, A.L.; Lo, Y.; Gambassi, M.; Amaral, T.D. Minimally Invasive Surgery in Patients With Adolescent Idiopathic Scoliosis: Is it Better than the Standard Approach? A 2-Year Follow-up Study. Clin. Spine Surg. 2016, 29, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Si, G.; Li, T.; Wang, Y.; Liu, X.; Li, C.; Yu, M. Minimally invasive surgery versus standard posterior approach for Lenke Type 1–4 adolescent idiopathic scoliosis: A multicenter, retrospective study. Eur. Spine J. 2021, 30, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, Y.; Matsumoto, T.; Kollor, H.; Minamide, A.; Hashizume, H.; Yamada, H.; Kato, F. Local Sagittal Alignment of the Lumbar Spine and Range of Motion in 627 Asymptomatic Subjects: Age-Related Changes and Sex-Based Differences. Asian Spine J. 2019, 13, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.J.; Lee, S.; Park, M.S.; Sung, K.H. Rebound phenomenon and its risk factors after hemiepiphysiodesis using tension band plate in children with coronal angular deformity. BMC Musculoskelet. Disord. 2022, 23, 339. [Google Scholar] [CrossRef] [PubMed]
Whole Sample n = 36 Mean ± SD (95%IC) | Lenke 1,2,3 n = 26 Mean ± SD (95%IC) | Lenke 5,6 n = 10 Mean ± SD (95%IC) | Z (p) | |
---|---|---|---|---|
Age (yr.) | 13.5 ± 1.3 | 13.5 ± 2.0 | 13.5 ± 1.0 | 0.398 (0.690) |
(13.0–14.0) | (13.1–14.0) | (11.6–15.4) | ||
Weight (kg) | 47.8 ± 9.4 | 47.3 ± 9.9 | 49.5 ± 7.6 | 1.274 (0.203) |
(44.2–51.4) | (42.7–51.8) | (42.4–56.5) | ||
Stature (cm) | 158.1 ± 8.6 | 158.4 ± 7.6 | 157.1 ± 11.7 | 0.345 (0.730) |
(154.7–161.4) | (154.9–161.8) | (146.3–167.9) | ||
Tanner | 2.4 ± 0.8 | 2.4 ± 0.7 | 2.3 ± 0.9 | 0.268 (0.789) |
(2.1–2.7) | (2.1–2.8) | (1.4–3.1) | ||
Risser | 1.2 ± 1.3 | 1.2 ± 1.6 | 1.2 ± 1.2 | 0.028 (0.978) |
(0.7–1.7) | (0.1–2.7) | (0.7–1.8) | ||
Main curve (Cobb°) | 53.7 ± 7.5 | 54.3 ± 6.7 | 52.0 ± 10.1 | 1.595 (0.111) |
(50.7–56.6) | (51.2–57.3) | (42.6–61.3) | ||
Compensatory curve (Cobb°) | 20.4 ± 8.6 | 18.6 ± 6.6 | 25.8 ± 11.8 | 0.051 |
(17.1–23.7) | (15.6–21.6) | (14.9–36.7) | ||
Apex (thoracic level) | 9.2 ± 2.9 | 7.7 ± 1.5 | 13.7 ± 0.9 | 4.176 (0.000) |
(8.1–10.4) | (7.1–8.4) | (12.8–14.6) | ||
Axial rotation (°) | 20.4 ± 8.6 | 18.6 ± 6.6 | 25.8–11.8 | 1.569 (0.117) |
(17.1–23.7) | (15.6–21.6) | (14.9–36.7) | ||
Coronal disequilibrium (mm) | 5.8 ± 19.1 | 2.3 ± 14.5 | 18.0 ± 28.6 | 1.832 (0.067) |
(−1.7–13.4) | (−4.9–8.9) | (−11.9–47.9) | ||
Lateral disequilibrium (mm) | 25.6 ± 29.5 | 30.0 ± 32.9 | 25.6 ± 29.4 | 0.234 (0.815) |
(−5.27–56.6) | (15.0–45.0) | (−5.27–56.6) |
Level | Thoracic (n = 26) | Thoracolumbar/Lumbar (n = 10) | |
---|---|---|---|
Superior | T1 | 1 | 3 |
T2 | 13 | 5 | |
T3 | 10 | - | |
T4 | 2 | - | |
T6 | - | 1 | |
T10 | - | 1 | |
Inferior | L3 | 10 | - |
L4 | 16 | 3 | |
L5 | - | 2 |
Whole Sample Mean ± SD (95%IC) | Lenke 1, 2, 3 (Thoracic) Mean ± SD (95%IC) | Lenke 5, 6 (Lumbar) Mean ± SD (95%IC) | Z (p) | |
---|---|---|---|---|
Main Curve (Cobb) | ||||
Initial | 53.7 ± 7.5 (50.7–56.6) | 54.3 ± 6.7 (51.2–57.3 | 52.0 ± 10.1 (42.6–61.3) | 1.595 (0.111) |
Postop | 5.5 ± 3.7 (4.1–6.9) | 4.7 ± 3.5 (3.1–6.3) | 7.8 ± 3.6 (4.5–11.2) | 2.232 (0.026) |
Before removal | 8.9 ± 2.7 (7.1–9.4) | 8.3 ± 2.6 (7.1–9.5) | 10.7 ± 2.1(8.7–12.7) | 1.199 (0.046) |
After removal | 11.1 ± 2.5 (10.1–12.1) | 10.3 ± 2.3 (12.1–11.4) | 13.2 ± 1.2 (12.1–14.4) | 2.934 (0.003) |
Final (2 years post-removal) | 13.1 ± 2.9 (11.9–14.2) | 12.2 ± 2.8 (10.9–13.4) | 15.8 ± 1.3 (14.6–17.1) | 3.485 (0.000) |
T2-T12 Kyphosis (Cobb) | ||||
Initial | 19.0 ± 13.1 (13.8–24.2) | 18.5 ± 13.8 (12.3–24.9) | 20.5 ± 10.9 (9.0–31.9) | 0.554 (0.579) |
Postop | 26.1 ± 4.7 (22.2–27.9) | 26.5 ± 4.7 (24.3–28.7) | 24.8 ± 4.8 (20.4–29.3) | 0.306 (0.760) |
Before removal | 25.7 ± 3.3 (24.5–27.1) | 25.7 ± 2.6 (24.5–26.9) | 26.0 ± 5.2 (21.2–30.8) | 0.214 (0.831) |
After removal | 26.9 ± 3.5 (25.5–28.3) | 26.8 ± 3.6 (25.2–28.5) | 27.1 ± 3.5 (23.9–30.4) | 0.346 (0.729) |
Final (2 years post-removal) | 27.1 ± 3.8 (11.9–14.2) | 27.0 ± 3.8 (25.3–28.8) | 27.4 ± 3.6 (24.0–30.8) | 0.640 (0.522) |
Lumbar lordosis T12-S1(Cobb) | ||||
Initial | 55.5 ± 10.3 (51.5–59.6) | 56.6 ± 10.8 (51.7–61.5) | 51.8 ± 8.1 (43.3–60.4) | 0.906 (0.365) |
Postop | 55.2 ± 7.8 (52.2–58.2) | 56.4 ± 8.5 (52.5–60.2) | 51.7 ± 3.8 (48.2–55.2) | 0.586 (0.558) |
Before removal | 56.0 ± 6.8 (53.4–58.7) | 56.9 ± 7.6 (53.4–60.3) | 53.4 ± 3.0 (50.6–56.2) | 0.267 (0.790) |
After removal | 56.7 ± 5.6 (54.5–58.9) | 57.4 ± 6.1 (54.6–60.1) | 54.7 ± 3.8 (51.2–58.2) | 0.748 (0.455) |
Final (2 years post-removal) | 56.9 ± 6.0 (54.6–59.3) | 57.5 ± 6.6 (54.5–60.5) | 55.3 ± 3.8 (51.8–58.8) | 0.426 (0.670) |
Initial | Final | Z (p) | |
---|---|---|---|
Whole series | 0.70 ± 0.05 (0.67–0.74) | 0,98 ± 0.08 (0.94–1.03) | 3.408 (0.001) |
Type of curve | |||
Thoracic | 0.70 ± 0.07 (0.65–0.75) | 0.95 ± 0.05 (0.91–0.99) | 2.666 (0.008) |
Thoracolumbar/Lumbar | 0.70 ± 0.04 (0.66–0.75) | 1.03 ± 0.10 (0.92–1.14) | 2.201 (0.028) |
Skeletal maturity | |||
Risser 0–1 | 0.70 ± 0.06 (0.65–0.75) | 1.00 ± 0.09 (0.93–1.07) | 2.666 (0.008) |
Risser 2–3 | 0.72 ± 0.06 (0.66–0.78) | 0.95 ± 0.06 (0.89–1.01) | 2.201 (0.028) |
Change in SRS-22 | ||||
---|---|---|---|---|
Function | Pain | Self-Image | Mental Health | |
Thoracic | ||||
Mean ± SD | 0.26 ± 0.29 | 0.18 ± 0.37 | 0.41 ± 0.44 | 0.58 ± 0.18 |
Z (p) | 2.691 (0.007) | 1.876 (0.061) | 3.025 (0.002) | 3.573 (0.000) |
Thoracolumbar | ||||
Mean ± SD | 0.20 ± 0.31 | 0.40 ± 0.31 | 0.56 ± 0.48 | 0.50 ± 0.17 |
Z (p) | 1.289 (0.197) | 1.826 (0.068) | 1.826 (0.068) | 2.060 (0.039) |
Risser 0–1 | ||||
Mean ± SD | 0.33 ± 0.35 | 0.22 ± 0.34 | 0.54 ± 0.50 | 0.36 ± 0.38 |
Z (p) | 2.099 (0.036) | 1.706 (0.088) | 2.530 (0.011) | 2.448 (0.014) |
Risser 2–3 | ||||
Mean ± SD | 0.17 ± 0.20 | 0.25 ± 0.40 | 0.56 ± 0.25 | 0.57 ± 0.07 |
Z (p) | 2.201 (0.028) | 1.841 (0.066) | 2.829 (0.005) | 2.980 (0.003) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos, J.; Mariscal, G.; Antón-Rodrigálvarez, L.M.; Sanpera, I.; Hevia, E.; García, V.; Barrios, C. Fusionless All-Pedicle Screws for Posterior Deformity Correction in AIS Immature Patients Permit the Restoration of Normal Vertebral Morphology and Removal of the Instrumentation Once Bone Maturity Is Reached. J. Clin. Med. 2023, 12, 2408. https://doi.org/10.3390/jcm12062408
Burgos J, Mariscal G, Antón-Rodrigálvarez LM, Sanpera I, Hevia E, García V, Barrios C. Fusionless All-Pedicle Screws for Posterior Deformity Correction in AIS Immature Patients Permit the Restoration of Normal Vertebral Morphology and Removal of the Instrumentation Once Bone Maturity Is Reached. Journal of Clinical Medicine. 2023; 12(6):2408. https://doi.org/10.3390/jcm12062408
Chicago/Turabian StyleBurgos, Jesús, Gonzalo Mariscal, Luis Miguel Antón-Rodrigálvarez, Ignacio Sanpera, Eduardo Hevia, Vicente García, and Carlos Barrios. 2023. "Fusionless All-Pedicle Screws for Posterior Deformity Correction in AIS Immature Patients Permit the Restoration of Normal Vertebral Morphology and Removal of the Instrumentation Once Bone Maturity Is Reached" Journal of Clinical Medicine 12, no. 6: 2408. https://doi.org/10.3390/jcm12062408
APA StyleBurgos, J., Mariscal, G., Antón-Rodrigálvarez, L. M., Sanpera, I., Hevia, E., García, V., & Barrios, C. (2023). Fusionless All-Pedicle Screws for Posterior Deformity Correction in AIS Immature Patients Permit the Restoration of Normal Vertebral Morphology and Removal of the Instrumentation Once Bone Maturity Is Reached. Journal of Clinical Medicine, 12(6), 2408. https://doi.org/10.3390/jcm12062408