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1. Introduction

Looking at the extremely large amount of literature, as summarized in two recent
reviews on applications of Artificial Intelligence in Cardiology, both in the adult and
pediatric age groups, published in the Journal of Clinical Medicine [1,2], we can easily affirm
that the future of AI in this field should be bright and extremely helpful and fruitful, both
for cardiologists and patients. We can then expect that the implementation of AI to different
aspects of cardiology discipline will induce great advantages, improvements, and important
innovations, which could have a great impact on daily practice. All this would include
multi-modality imaging improvements, better digital infrastructures, fundamental support
to diagnostic, therapeutic, and prognostic techniques and clinical approaches, and to the
clinical decision-making process, leading to optimized organizations and procedures [1,2].
Integrating AI into cardiology practice is a change that the profession will embrace. In fact,
AI has the potential to support physicians’ knowledge and decisions, towards a precision
cardiology and to a more efficient, and hopefully also more efficacious, health care [1,2].
Despite this apparent tremendous potential, the impact of AI in current clinical cardiology
practice is still limited [1,2]. In recent years, the Journal of Clinical Medicine has published
several contributions in this field, which are the subject of this Editorial and could help to
better understand the increased interest of the scientific community in the application of AI
in cardiology, but also the difficulties and obstacles to be overcome.

2. AI in Cardiovascular Imaging

Artificial intelligence has been widely applied in the field of cardiovascular imaging,
including echocardiography, cardiac computed tomography, cardiac magnetic resonance,
and nuclear imaging [1,2].

In the echocardiographic field, AI may improve imaging quality, guiding scanning, and
assisting in segmentation, processing, and analysis [1–5]. AI can help in view interpretation
and classification, in the quantification of both cardiovascular structure and function, and
in detecting wall motion abnormalities [1–5]. AI can also help differentiating physiological
hypertrophy in athletes from hypertrophic cardiomyopathy, and in the identification and
assessment of amyloidosis, pulmonary artery hypertension, and valvular heart disease, as
mitral regurgitation and aortic stenosis [1–5].

Concerning stress echocardiography, a complex protocol has been reported where one
project will be devoted to cardiac strain and artificial intelligence to establish the transition
from the qualitative naked eye to the quantitative automated assessment of regional wall
motion in order to solve the current limitation of strain inter-vendor variability and to con-
sider segmental heterogeneity during stress. In particular, artificial intelligence potentially
provides a solution for the automated and in-depth handling of imaging information, by
making measurement objective [6,7].

In the field of cardiovascular magnetic resonance, AI has been shown to be helpful
in reducing the time of image acquisition and analysis and in the automatic correction
of artifacts [1,2,8]. The use of AI techniques in image segmentation has allowed also an

J. Clin. Med. 2023, 12, 2734. https://doi.org/10.3390/jcm12072734 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12072734
https://doi.org/10.3390/jcm12072734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-2218-2808
https://doi.org/10.3390/jcm12072734
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12072734?type=check_update&version=1


J. Clin. Med. 2023, 12, 2734 2 of 5

automatic and accurate quantification of the volumes and masses of the left and right
ventricles, with an occasional need for a manual correction. Furthermore, AI can be a useful
tool for assessing myocardial tissue characterization and to directly help the clinician in the
diagnosis and derivation of the prognostic information of cardiovascular diseases [1,2,8].

3. AI Support in Electrophysiology

An AI-based algorithm has been developed and validated, using a neural network, to
identify the location of the accessory pathway (AP) in 357 consecutive Wolff–Parkinson–
White (WPW) syndrome patients, based on the delta-wave polarity in the 12-lead ECG [9].
AI identified the correct AP location with an accuracy of 85.7% (95% CI 79.6–90.5,
p < 0.0001) [9]. This was better than the predictive accuracy of the established ECG-
based algorithms by Arruda, Milstein, and Fitzpatrick, which yielded a predictive accuracy
of 53.2%, 65.6%, and 44.7%, respectively [9].

AI could also be useful for identifying atrial fibrillation mechanisms at genetic, cel-
lular, organ, and patient levels, involving clinical, demographic, metabolic, and genomic
aspects [10]. Future tailored approaches may integrate mechanistic markers at all these
biological levels, using machine learning and the AI approach, to develop individualized
models of AF onset, progression, and response to therapy [10]. This is in order to achieve a
real precision and personalized medicine in atrial fibrillation patients [10].

4. AI Support in Clinical Care

A frequent monitoring approach, using a remote wearable wireless patient monitoring
system and advanced bioinformatic tools, showed early cardiovascular changes among
492 hospitalized COVID-19 patients [11]. Big data analysis was conducted using advanced
AI and bioinformatics tools [11]. This may serve to improve the early detection of the
clinical deterioration of COVID-19 patients [11].

Artificial Intelligence can also be of great value in both cardio and cerebrovascular dis-
eases in several important fields of interest, as in disease diagnosis and patient monitoring,
in preventive care by scanning through images and reports, in risk stratification for pri-
mary or secondary prevention, and in resource and workflow optimization by leveraging
administrative data [12].

5. AI Support in Disease Diagnosis and Risk Prediction

A Feasible Artificial Intelligence with Simple Trajectories for Predicting Adverse Catas-
trophic Events (FAST-PACE) solution for preparing immediate intervention in emergency
situations was introduced [13]. FAST-PACE utilizes a concise set of collected features to
construct an AI model that predicts the onset of cardiac arrest or acute respiratory fail-
ure from 1 h to 6 h prior to its occurrence. Data from the trajectory of 29,181 patients in
intensive care units of two hospitals included periodic vital signs, a history of treatment,
current health status, and recent surgery [13]. Only simple clinical traits obtained from 1 h
to 6 h prior to adverse events were utilized to accurately predict acute cardiac arrest or
respiratory failure. This suggests that a monitoring alert system and life-saving strategy
can be implemented shortly before an adverse event [13].

Machine learning makes it possible to utilize basic laboratory parameters to gen-
erate a distinct cardiac-amyloidosis-related heart failure profile compared with cardiac-
amyloidosis-unrelated heart failure patients [14]. This proof-of-concept study opens a
potential new avenue in the diagnostic workup of cardiac amyloidosis and may assist
physicians in clinical reasoning and decision making [14].

A study proved the feasibility of a deep-learning-based approach of a fully automated
adipose tissue analysis in clinical cardiac CT and confirmed, in a large clinical cohort of
966 patients with intermediate Framingham risk scores for coronary artery disease, referred
for coronary calcium scans, that the volume and attenuation of epicardial and paracardial
adipose tissues are not correlated with coronary artery calcium score [15]. Broadly available
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deep-learning-based rapid and reliable tissue quantification should thus be discussed as a
method to assess supplementary risk predictors in cardiac CT [15].

The clinical management of dilated cardiomyopathy patients is challenging given the
large heterogeneity in disease phenotype, genetic background, and progression of disease.
Interoperable big data infrastructures comprising electronic health records, registries,
and other patient databases can now be used with new techniques, such as deep and
machine learning, in order to identify phenotype clusters, assess new features that classify
dilated cardiomyopathy phenotypes, and predict disease outcome and validate them across
different international cohorts [16]. As technology advances, in this context, wearable
devices provide exciting new opportunities to personalize care and move towards patient-
tailored predictive and preventive medicine [16].

Using the database of the Korean National Health Insurance Service, 2,037,027 par-
ticipants with hypertension were identified [17]. A deep learning model could accurately
predict cardiovascular-disease-related hospitalization and death within a year in these
patients [17]. The findings of this study could allow for prevention and monitoring by
allocating resources to high-risk patients [17].

The performance of machine learning algorithms (MLA) and physicians in predicting
left ventricular systolic dysfunction (LVSD) from a standard 12-lead ECG were compared
by utilizing a dataset of 13,820 pairs of ECGs and echocardiography [18]. A deep residual
convolutional neural network was trained for predicting LVSD (ejection fraction (EF) < 50%)
from ECG. The ECGs of the test set (n = 850) were assessed for LVSD by the MLA and six
physicians [18]. The inter-observer agreement between the physicians for the prediction of
LVSD was moderate (κ = 0.50), with an average sensitivity and specificity of 70% [18]. The
C-statistic of the MLA was 0.85. Repeating this analysis with LVSD defined as EF < 35%
resulted in an improvement in the physicians’ average sensitivity to 84%, but their specificity
decreased to 57% [18]. The MLA C-statistic was 0.88 with this threshold [18]. However, the
performance of MLA does not seem too strong in this study and further research is needed
to identify the unknown parameters used by MLA for the classification of ECGs due to the
inherent “black box” feature of MLA.

A novel investigation of deep learning (DL) solutions for predicting cardiovascular
disease (CVD) and stroke risk in diabetic foot infection (DFI) patients has been reported [19].
The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search
strategy was used for the selection of 207 studies [19]. This review focused on how a DFI
may contribute to the already complex nature of CVD and stroke. An artificial-intelligence-
based model for predicting the risk of CVD and stroke in DFI patients was described using
the AI framework [19].

6. Why Still a Limited Clinical Impact of AI in Cardiology? Difficulties and Obstacles
to Be Overcome

Some difficulties seem to derive from the apparent relative “isolation” of several AI
experiences. In fact, some AI projects appear as mainly driven by relatively few dedicated
specialists, both from the computer/engineer and the medical sides, who are deeply in-
volved in their own scientific design. The many difficulties for the development and the
implementation of AI projects are then easily inducing such specialists, to be successful, to
concentrate their efforts to specifically identified limited and focused goals, to be devel-
oped inside the borders of their own or of few other selected institutions, or to a single
department or a single hospital. This can carry the risk of producing published scientific
literature, with a sometimes limited subsequent implementation in clinical practice and in
different environments.

On the other hand, generalizable results of any AI approach and the possibility of a
subsequent more universal implementation and the acceptance of AI algorithms depend
probably on a methodology of early involvement, possibly through a developed and
organized dedicated digital infrastructure, of a network of several institutions and hospitals
with a different complexity and type of referrals. Given the initial development of the
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AI project, this could allow a consideration of all the different concurrent scientific needs
and different point of views of involved professionals, and even possibly of patients. The
results could have then a higher probability to be accepted as useful, and then utilized,
implemented and continuously updated by all the professional people involved and inside
the entire network of involved institutions, and even peripheral hospitals. A large and
close collaboration and training among computer scientists, clinical investigators, clinicians,
other healthcare professionals, regulatory authorities, health providers, and possibly even
patients and the general public, could also allow the identification more easily of the most
relevant problems to be solved along each AI project [1,2].

Some of these problems are related to the certification of AI products as medical
devices, to the privacy protection, to legislative and legal and responsibility issues in
the case of derived wrong medical decisions, to the transparency and the physiological
plausibility of AI results [1,2].

Some other risks and problems can derive also from the relatively small size or limited
and too homogeneous training dataset (developing the model), which is not representative
of the greater heterogeneity of the real world, running the risk of over-fitting. The training
dataset should be different from the testing dataset, while the AI algorithm should hope-
fully continue to improve its behavior and performances during implementation, to be
more universally trusted, accepted, and integrated as a routine helpful support in clinical
practice [1,2].

AI algorithms should probably also be considering the potential heterogeneity of the
real-world input structured and unstructured dataset of a different quality and different
presentation and storage support, either analogical and/or digital, with sometimes variable
and unexpected missing or incomplete data, deriving from professional and medically
certified machines but also from wearable sensors and different devices. Natural language
processing for the autonomous input of data, starting from free texts and unstructured
reports, should also be considered. The important issues of open free access AI algorithms
and cyber security should also be examined. Unbalanced involvement and responsibilities
(intellectual properties, patented products, conflicts of interest) among engineers and
physicians of different institutions should be avoided, or at least clarified. Adequate budget
and investments should be planned to help to overcome the limited vision and limited
goals in AI projects.

A clear differential classification of the complexity of AI algorithms and products
should help to recognize and overcome specific difficulties and problems. Implementation
should be then easier for focused AI products, as for supporting image quality, scanning,
recognition, classification, and assessment in multimodality imaging, while it could be
more complex, requiring more steps, for algorithms supporting clinical care and decision,
risk assessment, and diagnosis.

The results of AI algorithms should be always compared with the more traditional
statistical and usual approach and usual care, through a cost efficiency, but also a cost
efficacy analysis, in order to avoid the overestimation of AI results. In effect, some AI
results could appear, as only marginally superior and with marginal gain and not fully
competitive, as compared with the results of other current usual approaches. On the other
hand, these same results could be mostly helpful for the clinical and decision support
of physicians and health personnel operating in small institutions, even those which are
peripherally located, with a low complexity of referral and less easy access to more complex
diagnostic facilities.

A final problem and difficulty could also derive from an underestimation or superficial
and quick analysis of the limitations and possible drawbacks of some AI approaches. This
should be solved by accepting to continuously analyze and discuss, widely and in deep
detail, all the difficulties and obstacles which can be encountered in each AI project. On the
other hand, it should be taken into account that the acceptance of this opportunity of a free
and open thorough discussion and comparison with all the professionals interested, and
also potentially involved in the project, could help to design an organized cooperative plan
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for the further continuous development of AI projects and to overcome inherent difficulties
and obstacles.

Conflicts of Interest: The author declares no conflict of interest.
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