Impact of Two Types of Exercise Interventions on Leptin and Omentin Concentrations and Indicators of Lipid and Carbohydrate Metabolism in Males with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- the experimental group (EG1) of men with MetS (n = 21) realizing aerobic training (age: 34.21 ± 6.06; body mass index, BMI: 34.57 ± 4.58; waist circumference, WC: 114.7 ± 10.93; waist to height ratio, WHtR: 63.37 ± 6.22);
- the experimental group (EG2) of men with MetS (n = 21) realizing combined aerobic-resistance training (age: 37.37 ± 7.08; BMI: 33.14 ± 4.32; WC: 114.8 ± 11.64; WHtR: 63.90 ± 5.97);
- the control group (CG) of men with MetS (n = 20) not realizing any training (age: 38.26 ± 7.43; BMI: 33.20 ± 4.31; WC: 115.3 ± 10.54; WHtR: 63.72 ± 4.99). There were no differences between age and basic anthropological parameters before the interventions.
2.2. Methods
2.2.1. Anthropometry
2.2.2. Body Composition
2.2.3. Hormonal Blood Indexes
2.2.4. Biochemical Blood Indexes
2.2.5. Evaluation of Energy Expenditure and Energy Value of Diet
2.3. Exercise Interventions
2.3.1. Aerobic Training
2.3.2. Combined Aerobic-Resistance Training
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swarup, S.; Goyal, A.; Grigorova, Y.; Zeltser, R. Metabolic Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Wolin, K.Y.; Carson, K.; Colditz, G.A. Obesity and cancer. Oncologist 2010, 15, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Shibata, R.; Murohara, T.; Ouchi, N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol. Metab. 2014, 25, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Unger, R.H.; Scherer, P.E. Gluttony, sloth and the metabolic syndrome: A roadmap to lipotoxicity. Trends Endocrinol. Metab. 2010, 21, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Vaspin in obesity and diabetes: Pathophysiological and clinical significance. Endocrine 2012, 41, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Fève, B.; Bastard, C.; Fellahi, S.; Bastard, J.-P.; Capeau, J. New adipokines. In Annales D’endocrinologie; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef] [Green Version]
- Sahin-Efe, A.; Katsikeris, F.; Mantzoros, C.S. Advances in adipokines. Metab. Clin. Exp. 2012, 61, 1659–1665. [Google Scholar] [CrossRef]
- Suder, A. Socioeconomic and lifestyle determinants of body fat distribution in young working males from Cracow, Poland. Am. J. Hum. Biol. 2008, 20, 100–109. [Google Scholar] [CrossRef]
- Rodríguez, A.; Becerril, S.; Hernández-Pardos, A.W.; Frühbeck, G. Adipose tissue depot differences in adipokines and effects on skeletal and cardiac muscle. Curr. Opin. Pharmacol. 2020, 52, 1–8. [Google Scholar] [CrossRef]
- Owecki, M.; Nikisch, E.; Miczke, A.; Pupek-Musialik, D.; Sowinski, J. Leptin, soluble leptin receptors, free leptin index, and their relationship with insulin resistance and BMI: High normal BMI is the threshold for serum leptin increase in humans. Horm. Metab. Res. 2010, 42, 585–589. [Google Scholar] [CrossRef]
- Bremer, A.A.; Devaraj, S.; Afify, A.; Jialal, I. Adipose tissue dysregulation in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E1782–E1788. [Google Scholar] [CrossRef] [Green Version]
- de Souza Batista, C.M.; Yang, R.Z.; Lee, M.J.; Glynn, N.M.; Yu, D.Z.; Pray, J.; Ndubuizu, K.; Patil, S.; Schwartz, A.; Kligman, M.; et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes 2007, 56, 1655–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.L.; Heist, K.; DePaoli, A.M.; Veldhuis, J.D.; Mantzoros, C.S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Investig. 2003, 111, 1409–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppari, R.; Ramadori, G.; Elmquist, J.K. The role of transcriptional regulators in central control of appetite and body weight. Nat. Rev. Endocrinol. 2009, 5, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Malli, F.; Papaioannou, A.I.; Gourgoulianis, K.I.; Daniil, Z. The role of leptin in the respiratory system: An overview. Respir. Res. 2010, 11, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veniant, M.M.; LeBel, C.P. Leptin: From animals to humans. Curr. Pharm. Des. 2003, 9, 811–818. [Google Scholar] [CrossRef]
- Wabitsch, M.; Ballauff, A.; Holl, R.; Blum, W.F.; Heinze, E.; Remschmidt, H.; Hebebrand, J. Serum leptin, gonadotropin, and testosterone concentrations in male patients with anorexia nervosa during weight gain. J. Clin. Endocrinol. Metab. 2001, 86, 2982–2988. [Google Scholar] [CrossRef]
- Suder, A.; Płonka, M.; Jagielski, P.; Piórecka, B.; Głodzik, J. Physiological and environmental factors associated with central fat distribution in pubertal girls. J. Physiol. Pharmacol. 2015, 66, 463–470. [Google Scholar]
- Martin, S.S.; Qasim, A.; Reilly, M.P. Leptin resistance: A possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J. Am. Coll. Cardiol. 2008, 52, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Tabak, A.G.; Brunner, E.J.; Miller, M.A.; Karanam, S.; McTernan, P.G.; Cappuccio, F.P.; Witte, D.R. Low serum adiponectin predicts 10-year risk of type 2diabetes and HbA1c independently of obesity, lipids, and inflammation: Whitehall II study. Horm. Metab. Res. 2009, 41, 626–629. [Google Scholar] [CrossRef] [Green Version]
- Mattu, H.S.; Randeva, H.S. Role of adipokines in cardiovascular disease. J. Endocrinol. 2013, 216, T17–T36. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.M.; Schwartz, K.; Pollak, M.; Graubard, B.I.; Li, Z.; Ruterbusch, J.; Rothman, N.; Davis, F.; Wacholder, S.; Colt, J.; et al. Serum Leptin and Adiponectin Levels and Risk of Renal Cell Carcinoma. Obesity 2013, 21, 1478–1485. [Google Scholar] [CrossRef] [Green Version]
- Arditi, J.D.; Venihaki, M.; Karalis, K.P.; Chrousos, G.P. Antiproliferative effect of adiponectin on MCF7 breast cancer cells: A potential hormonal link between obesity and cancer. Horm. Metab. Res. 2007, 39, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.Z.; Lee, M.J.; Hu, H.; Pray, J.; Wu, H.B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1253–E1261. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Zhao, D.; Xia, C.J.; Wang, T.N.; Liu, Y.P.; Zhang, Y.; Wang, B.J. Decreased synovial fluid omentin-1 concentrations reflect symptomatic severity in patients with knee osteoarthritis. Scand. J. Clin. Lab. Investig. 2012, 72, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Gong, D.W.; Damcott, C.; Sabra, M.; Yang, R.; Pollin, T. Systematic analysis of omentin 1 and omentin 2 on 1q23 as candidate genes for type 2 diabetes in the old order amish. Diabetes 2004, 53, 59. [Google Scholar]
- Tan, B.K.; Pua, S.; Syed, F.; Lewandowski, K.C.; O’Hare, J.P.; Randeva, H.S. Decreased plasma omentin-1 levels in Type 1 diabetes mellitus. Diabet. Med. 2008, 25, 1254–1255. [Google Scholar] [CrossRef]
- Yan, P.; Liu, D.; Long, M.; Ren, Y.; Pang, J.; Li, R. Changes of Serum Omentin Levels and Relationship between Omentin and Adiponectin Concentrations in Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2011, 119, 257–263. [Google Scholar] [CrossRef]
- Wilms, B.; Ernst, B.; Gerig, R.; Schultes, B. Plasma omentin-1 levels are related to exercise performance in obese women and increase upon aerobic endurance training. Exp. Clin. Endocrinol. Diabetes 2015, 123, 187–192. [Google Scholar] [CrossRef]
- Suder, A. Body fatness and its social and lifestyle determinants in young working males from Cracow, Poland. J. Biosoc. Sci. 2009, 41, 139–154. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef]
- Dieli-Conwright, C.M.; Courneya, K.S.; Demark-Wahnefried, W.; Sami, N.; Lee, K.; Buchanan, T.A.; Spicer, D.V.; Tripathy, D.; Bernstein, L.; Mortimer, J.E. Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The science of obesity management: An endocrine society scientific statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golbidi, S.; Laher, I. Exercise induced adipokine changes and the metabolic syndrome. J. Diabetes Res. 2014, 2014, 726861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, T.; Nicklas, B.J.; Ding, J.; Penninx, B.W.J.H.; Goodpaster, B.H.; Bauer, D.C.; Tylavsky, F.A.; Harris, T.B.; Kritchevsky., S.B. The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Parameshwar, A.; Maiya, G.A.; Kamath, S.U.; Shastry, B.A. Lifestyle Modification with Physical Activity Promotion on Leptin Resistance and Quality of Life in Metabolic Syndrome—A Systematic Review with Meta-Analysis. Curr. Diabetes Rev. 2021, 17, 345–355. [Google Scholar] [CrossRef]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Effect of exercise interventions on irisin and interleukin-6 concentrations and indicators of carbohydrate metabolism in males with metabolic syndrome. J. Clin. Med. 2023, 12, 369. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Levinger, I.; Goodman, C.; Hare, D.L.; Jerums, G.; Toia, D.; Selig, S. The reliability of the 1RM strength test for untrained middle-aged individuals. J. Sci. Med. Sport 2009, 12, 310–316. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Ruan, Y.; Gao, X.; Sun, J. Systematic Review and Meta-Analysis of Randomized, Controlled Trials on the Effect of Exercise on Serum Leptin and Adiponectin in Overweight and Obese Individuals. Horm. Metab. Res. 2017, 49, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Klempel, M.C.; Varady, K.A. Reliability of leptin, but not adiponectin, as a biomarker for diet-induced weight loss in humans. Nutr. Rev. 2011, 69, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Venojärvi, M.; Wasenius, N.; Manderoos, S.; Heinonen, O.J.; Hernelahti, M.; Lindholm, H.; Surakka, J.; Lindström, J.; Aunola, S.; Atalay, M.; et al. Nordic walking decreased circulating chemerin and leptin concentrations in middle-aged men with impaired glucose regulation. Ann. Med. 2013, 45, 162–170. [Google Scholar] [CrossRef]
- Cénat, J.M.; Blais-Rochette, C.; Kokou-Kpolou, C.K.; Noorishad, P.G.; Mukunzi, J.N.; McIntee, S.E.; Dalexis, R.D.; Goulet, M.A.; Labelle, P.R. Prevalence of symptoms of depression, anxiety, insomnia, posttraumatic stress disorder, and psychological distress among populations affected by the COVID-19 pandemic: A systematic review and meta-analysis. Psychiatry Res. 2021, 295, 113599. [Google Scholar] [CrossRef]
- Lin, J.; Jiang, Y.; Wang, G.; Meng, M.; Zhu, Q.; Mei, H.; Liu, S.; Jiang, F. Associations of short sleep duration with appetite-regulating hormones and adipokines: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13051. [Google Scholar] [CrossRef]
- Bouillon-Minois, J.B.; Trousselard, M.; Thivel, D.; Benson, A.C.; Schmidt, J.; Moustafa, F.; Bouvier, D.; Dutheil, F. Leptin as a Biomarker of Stress: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3350. [Google Scholar] [CrossRef]
- Klimcakova, E.; Polak, J.; Moro, C.; Hejnova, J.; Majercik, M.; Viguerie, N.; Berlan, M.; Langin, D.; Stich, V. Dynamic strength training improves insulin sensitivity without altering plasma levels and gene expression of adipokines in subcutaneous adipose tissue in obese men. J. Clin. Endocrinol. Metab. 2006, 91, 5107–5112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monzillo, L.U.; Hamdy, O.; Horton, E.S.; Ledbury, S.; Mullooly, C.; Jarema, C.; Porter, S.; Ovalle, K.; Moussa, A.; Mantzoros, C.S. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes. Res. 2003, 11, 1048–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casuso, R.A.; Plaza-Díaz, J.; Ruiz-Ojeda, F.J.; Aragón-Vela, J.; Robles-Sanchez, C.; Nordsborg, N.B.; Hebberecht, M.; Salmeron, L.M.; Huertas, J.R. High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii. PLoS ONE 2017, 12, e0185494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.H.; Lee, B.H.; Pan, T.M. Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation. Int. J. Obes. 2015, 39, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.W.; Scott, M.M.; Elmquist, J.K. From observation to experimentation: Leptin action in the mediobasal hypothalamus. Am. J. Clin. Nutr. 2009, 89, 985S–990S. [Google Scholar] [CrossRef] [Green Version]
- Van Harmelen, V.; Reynisdottir, S.; Eriksson, P.; Thörne, A.; Hoffstedt, J.; Lönnqvist, F.; Arner, P. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes 1998, 47, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Gannagé-Yared, M.H.; Khalife, S.; Semaan, M.; Fares, F.; Jambart, S.; Halaby, G. Serum adiponectin and leptin levels in relation to the metabolic syndrome, androgenic profile and somatotropic axis in healthy non-diabetic elderly men. Eur. J. Endocrinol. 2006, 155, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients 2019, 8, 2704. [Google Scholar] [CrossRef] [Green Version]
- Saremi, A.; Asghari, M.; Ghorbani, A. Effects of aerobic training on serum omentin-1 and cardiometabolic risk factors in overweight and obese men. J. Sports Sci. 2010, 28, 993–998. [Google Scholar] [CrossRef]
- Puglisi, M.J.; Fernandez, M.L. Modulation of C-reactive protein, tumor necrosis factor-alpha, and adiponectin by diet, exercise, and weight loss. J. Nutr. 2008, 138, 2293–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belza, A.; Toubro, S.; Stender, S.; Astrup, A. Effect of diet-induced energy deficit and body fat reduction on high-sensitive CRP and other inflammatory markers in obese subjects. Int. J. Obes. 2009, 33, 456–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Navarrete, J.M.; Catalán, V.; Ortega, F.; Gómez-Ambrosi, J.; Ricart, W.; Frühbeck, G.; Fernández-Real, J.M. Circulating omentin concentration increases after weight loss. Nutr. Metab. 2010, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Endukuru, C.K.; Gaur, G.S.; Yerrabelli, D.; Sahoo, J.; Vairappan, B. Cut-off Values and Clinical Utility of Surrogate Markers for Insulin Resistance and Beta-Cell Function to Identify Metabolic Syndrome and Its Components among Southern Indian Adults. J. Obes. Metab. Syndr. 2020, 29, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Tambalis, K.; Panagiotakos, D.B.; Kavouras, S.A.; Sidossis, L.S. Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: A systematic review of current evidence. Angiology 2009, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S. Impact of progressive resistance training on lipids and lipoproteins in adults: A meta-analysis of randomized controlled trials. Prev. Med. 2009, 48, 9–19. [Google Scholar] [CrossRef]
- Zając-Gawlak, I.; Pelclová, J.; Groffik, D.; Přidalová, M.; Nawrat-Szołtysik, A.; Kroemeke, A.; Gába, A.; Sadowska-Krępa, E. Does physical activity lower the risk for metabolic syndrome: A longitudinal study of physically active older women. BMC Geriatr. 2021, 21, 11. [Google Scholar] [CrossRef]
- Gordon, B.; Chen, S.; Durstine, J.L. The effects of exercise training on the traditional lipid profile and beyond. Curr. Sports Med. Rep. 2014, 13, 253–259. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Dance 1993, 64, 88–90. [Google Scholar] [CrossRef]
Group | Week 1 Baseline | Week 6 Intervention | Week 12 Intervention | Week 16 Follow up | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
± SD | ± SD | ± SD | ± SD | Test ANOVA (ES) | d 6-1 (ES) | d 12-1 (ES) | d 16-1 (ES) | ||
MET [min/week] | EG1 | 2214.40 ± 681.75 | 3127.22 ± 578.50 | 3134.06 ± 639.22 | 3204.26 ± 1507.68 | 0.04 (0.17) | <0.001 (−5.09) | <0.001 (−1.99) | 0.03 (−0.66) |
EG2 | 2225.22 ± 522.06 | 2899.62 ± 412.91 | 3246.25 ± 1726.13 | 3264.50 ± 1740.83 | <0.001 (0.12) | <0.001 (−2.18) | <0.001 (−0.63) | 0.04 (−0.57) | |
CG | 2423.69 ± 705.72 | 2379.42 ± 693.42 | 2428.00 ± 674.38 | 2533.33 ± 724.75 | 0.67 (0.00) | 0.70 (0.79) | 0.84 (0.85) | 0.23 (0.23) | |
p-value | 0.60 | 0.00 * | 0.13 | 0.34 | |||||
Energy value of diet [kJ/day] | EG1 | 11,286.50 ± 1376.01 | 12,124.84 ± 1386.59 | 12,184.03 ± 1701.68 | 12,203.01 ± 1858.68 | 0.02 (0.55) | 0.68 (0.13) | 0.24 (−0.33) | 0.01 (−0.77) |
EG2 | 10,732.99 ± 872.50 | 11,486.72 ± 1194.02 | 11,671.27 ± 1760.909 | 11,867.81 ± 1706.025 | <0.001 (0.06) | 0.02 (−0.77) | <0.001 (−1.13) | <0.001 (−1.56) | |
CG | 11,158.80 ± 1565.82 | 11,248.34 ± 1444.98 | 11,462.44 ± 1372.21 | 11,695.18 ± 1442.73 | 0.12 (0.05) | 0.90 (−0.04) | 0.38 (−0.26) | 0.05 (−0.65) | |
p-value | 0.79 | 0.57 | 0.92 | 0.97 |
Group | Week 1 Baseline | Week 6 Intervention | Week 12 Intervention | Week 16 Follow up | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
± SD | ± SD | ± SD | ± SD | Test ANOVA (ES) | d 6-1 (ES) | d 12-1 (ES) | d 16-1 (ES) | ||
BM [kg] | EG1 | 113.6 ± 16.8 | 111.0 ± 16.85 | 111.3 ± 17.47 | 111.4 ± 18.09 | <0.001 (0.36) | <0.001 (1.07) | 0.01 (0.88) | 0.03 (0.71) |
EG2 | 107.2 ± 17.36 | 107.1 ± 16.41 | 105.2 ± 16.68 | 107.3 ± 17.19 | 0.29 (0.00) | 0.50 (0.30) | 0.37 (0.24) | 0.32 (0.41) | |
CG | 109.0 ± 17.78 | 111.5 ± 19.09 | 113.7 ± 9.12 | 115.3 ± 19.33 | 0.25 (0.00) | 0.67 (0.66) | 0.13 (0.26) | 0.22 (0.11) | |
p-value | 0.34 | 0.60 | 0.29 | 0.54 | |||||
ANDR [%] | EG1 | 48.56 ± 5.97 | 47.32 ± 6.09 | 46.87 ± 6.67 | 46.71 ± 5.43 | 0.04 (0.02) | 0.05 (0.61) | 0.03 (0.67) | 0.02 (0.72) |
EG2 | 46.23 ± 6.35 | 45.10 ± 5.92 | 43.82 ± 6.41 | 44.70 ± 6.47 | 0.22 (0.01) | 0.27 (0.37) | 0.10 (0.58) | 0.69 (0.13) | |
CG | 47.54 ± 6.64 | 48.00 ± 6.36 | 48.80 ± 6.85 | 48.52 ± 8.35 | 0.75 (0.00) | 0.41 (0.29) | 0.41 (0.29) | 0.61 (0.18) | |
p-value | 0.60 | 0.40 | 0.16 | 0.41 | |||||
BF [kg] | EG1 | 42.48 ± 11.05 | 41.01 ± 11.12 | 40.96 ± 11.56 | 40.67 ± 11.26 | 0.01 (0.01) | <0.001 (1.05) | 0.01 (0.77) | 0.01 (0.84) |
EG2 | 39.52 ± 10.95 | 39.10 ± 10.34 | 37.32 ± 9.73 | 37.28 ± 10.31 | <0.001 (0.01) | 0.02 (0.92) | 0.01 (1.07) | <0.001 (1.36) | |
CG | 39.82 ± 10.00 | 41.24 ± 11.67 | 42.77 ± 11.67 | 43.92 ± 11.68 | 0.33 (0.00) | 0.76 (0.11) | 0.10 (−0.62) | 0.90 (−0.05) | |
p-value | 0.72 | 0.86 | 0.44 | 0.37 |
Group | Week 1 Baseline | Week 6 Intervention | Week 12 Intervention | Week 16 Follow up | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
± SD | ± SD | ± SD | ± SD | Test ANOVA (ES) | d 6-1 (ES) | d 12-1 (ES) | d 16-1 (ES) | ||
QUICKI | EG1 | 0.32 ± 0.03 | 0.33 ± 0.04 | 0.32 ± 0.03 | 0.34 ± 0.03 | 0.02 (0.03) | 0.04 (−0.78) | 0.04 (−0.77) | 0.01 (−0.98) |
EG2 | 0.32 ± 0.03 | 0.315 ± 0.04 | 0.34 ± 0.03 | 0.34 ± 0.03 | <0.001 (0.05) | 0.04 (0.77) | 0.24 (−0.40) | 0.09 (−0.61) | |
CG | 0.31 ± 0.04 | 0.31 ± 0.02 | 0.31 ± 0.03 | 0.32 ± 0.04 | 0.13 (0.08) | 0.19 (0.34) | 0.21 (0.49) | 0.50 (0.30) | |
p-value | 0.60 | 0.07 | 0.06 | 0.12 | |||||
nonHDL-C [mmol/l] | EG1 | 3.88 ± 1.34 | 3.53 ± 1.34 | 3.40 ± 1.28 | 4.01 ± 1.55 | 0.05 (0.02) | 0.14 (0.51) | 0.10 (0.58) | 0.83 (−0.07) |
EG2 | 4.05 ± 0.79 | 3.80 ± 0.64 | 3.92 ± 0.87 | 4.06 ± 0.76 | 0.70 (0.01) | 0.19 (0.45) | 0.37 (0.30) | 0.60 (0.17) | |
CG | 4.56 ± 0.80 | 4.54 ± 0.97 | 4.58 ± 1.10 | 4.50 ± 0.97 | 0.71 (0.01) | 0.62 (0.06) | 0.53 (0.14) | 0.49 (0.14) | |
p-value | 0.17 | 0.03 * | 0.03 ** | 0.52 | |||||
HDL-C [mmol/l] | EG1 | 1.20 ± 0.29 | 1.15 ± 0.19 | 1.22 ± 0.36 | 1.27 ± 0.34 | 0.07 (0.04) | 0.03 (0.83) | 0.78 (−0.09) | 0.75 (−0.11) |
EG2 | 1.09 ± 0.22 | 1.14 ± 0.26 | 1.15 ± 0.26 | 1.18 ± 0.32 | 0.57 (0.01) | 0.59 (−0.18) | 0.63 (−0.16) | 0.30 (−0.35) | |
CG | 1.15 ± 0.19 | 1.16 ± 0.19 | 1.13 ± 0.23 | 1.18 ± 0.27 | 0.38 (0.03) | 0.86 (0.06) | 0.70 (0.14) | 0.15 (−0.53) | |
p-value | 0.47 | 0.96 | 0.98 | 0.72 |
Group | Week 1 Baseline | Week 6 Intervention | Week 12 Intervention | Week 16 Follow up | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
± SD | ± SD | ± SD | ± SD | Test ANOVA (ES) | d 6-1 (ES) | d 12-1 (ES) | d 16-1 (ES) | ||
LEP [ng/ml] | EG1 | 4.96 ± 4.63 | 13.41 ± 8.35 | 4.80 ± 4.58 | 15.03 ± 9.6 | <0.001 (0.32) | 0.01 (0.70) | 0.92 (0.08) | <0.001 (0.76) |
EG2 | 9.89 ± 5.93± | 7.93 ± 4.48 | 7.36 ± 4.06 | 7.53 ± 5.14 | 0.01 (0.06) | 0.01 (0.70) | 0.02 (0.67) | 0.05 (0.56) | |
CG | 7.54 ± 5.77 | 16.18 ± 11.53 | 8.35 ± 6.07 | 8.54 ± 6.15 | 0.01 (0.21) | 0.03 (0.52) | 0.79 (0.02) | 0.87 (0.20) | |
p-value | 0.06 | 0.03 * | 0.16 | 0.03 ** | |||||
OMEN [ng/ml] | EG1 | 276.03 ± 108.72 | 316.24 ± 132.97 | 334.76 ± 153.53 | 339.05 ± 123.09 | 0.53 (0.04) | 0.33 (0.13) | 0.32 (0.29) | 0.19 (0.34) |
EG2 | 303.93 ± 248.13 | 362.77 ± 262.40 | 345.86 ± 291.12 | 282.00 ± 248.14 | 0.24 (0.03) | 0.14 (−0.51) | 0.26 (−0.38) | 0.54 (0.20) | |
CG | 340.92 ± 176.91 | 322.88 ± 177.32 | 381.32 ± 240.40 | 269.07 ± 172.61 | 0.92 (0.01) | 0.83 (0.08) | 0.90 (0.14) | 0.61 (0.27) | |
p-value | 0.65 | 0.79 | 0.86 | 0.58 |
MET 1 [min/week] | Energy Value of Diet 1 [kJ/day] | BM 1 [kg] | BF 1 [kg] | ANDR 1 [%] | QUICKI 1 | nonHDL-C 1 [mmol/l] | HDL-C 1 [mmol/l] | LEP 1 [ng/ml] | OMEN 1 [ng/ml] | |
---|---|---|---|---|---|---|---|---|---|---|
LEP EG1 [ng/ml] | −0.37 * | 0.28 * | 0.28 * | 0.39 * | 0.39 * | −0.45 * | 0.50 * | −0.43 * | 1.00 | 0.16 |
LEP EG2 [ng/ml] | −0.21 | 0.09 | 0.73 * | 0.88 * | 0.87 * | −0.53 * | −0.28 | −0.09 | 1.00 | 0.03 |
LEP CG [ng/ml] | −0.25 | 0.26 | 0.42 * | 0.51 * | 0.47 * | −0.20 | −0.09 | −0.02 | 1.00 | −0.01 |
OMEN EG1 [ng/ml] | −0.14 | 0.14 | 0.09 | 0.14 | 0.13 | −0.07 | 0.25 | −0.06 | 0.16 | 1.00 |
OMEN EG2 [ng/ml] | 0.27 | 0.32 | 0.19 | 0.08 | 0.18 | −0.27 | −0.39 * | 0.15 | 0.03 | 1.00 |
OMEN CG [ng/ml] | −0.15 | −0.03 | −0.39 * | −0.36 | −0.25 | 0.27 | −0.34 | 0.31 * | −0.01 | 1.00 |
QUICKI EG1 | 0.29 * | −0.35 * | −0.67 * | −0.61 * | −0.56 * | 1.00 | −0.30 | 0.72 * | −0.45 * | −0.07 |
QUICKI EG2 | 0.20 | −0.22 | −0.64 * | −0.55 * | −0.44 * | 1.00 | 0.44 | 0.27 | −0.53 * | −0.27 |
QUICKI CG | 0.10 | 0.04 | −0.41 * | −0.33* | −0.25 | 1.00 | −0.24 | 0.28* | −0.20 | 0.27 |
Dependent Variable | Parameter Assessment | Standard Error | t Value | p-Value |
---|---|---|---|---|
Free parameter | 5.98 | 6.42 | 0.93 | 0.35 |
BF [kg] | 0.31 | 0.06 | 4.98 | <0.001 |
QUICKI | −28.05 | 14.88 | −1.89 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Kozioł-Kozakowska, A.; Haim, A. Impact of Two Types of Exercise Interventions on Leptin and Omentin Concentrations and Indicators of Lipid and Carbohydrate Metabolism in Males with Metabolic Syndrome. J. Clin. Med. 2023, 12, 2822. https://doi.org/10.3390/jcm12082822
Makiel K, Suder A, Targosz A, Maciejczyk M, Kozioł-Kozakowska A, Haim A. Impact of Two Types of Exercise Interventions on Leptin and Omentin Concentrations and Indicators of Lipid and Carbohydrate Metabolism in Males with Metabolic Syndrome. Journal of Clinical Medicine. 2023; 12(8):2822. https://doi.org/10.3390/jcm12082822
Chicago/Turabian StyleMakiel, Karol, Agnieszka Suder, Aneta Targosz, Marcin Maciejczyk, Agnieszka Kozioł-Kozakowska, and Alon Haim. 2023. "Impact of Two Types of Exercise Interventions on Leptin and Omentin Concentrations and Indicators of Lipid and Carbohydrate Metabolism in Males with Metabolic Syndrome" Journal of Clinical Medicine 12, no. 8: 2822. https://doi.org/10.3390/jcm12082822
APA StyleMakiel, K., Suder, A., Targosz, A., Maciejczyk, M., Kozioł-Kozakowska, A., & Haim, A. (2023). Impact of Two Types of Exercise Interventions on Leptin and Omentin Concentrations and Indicators of Lipid and Carbohydrate Metabolism in Males with Metabolic Syndrome. Journal of Clinical Medicine, 12(8), 2822. https://doi.org/10.3390/jcm12082822