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Abstract: Background: Prostate cancer, which is associated with gland biology and also with environ-
mental risks, is a serious clinical problem in the male population worldwide. Important progress has
been made in the diagnostic and clinical setups designed for the detection of prostate cancer, with
a multiparametric magnetic resonance diagnostic process based on the PIRADS protocol playing a
key role. This method relies on image evaluation by an imaging specialist. The medical community
has expressed its desire for image analysis techniques that can detect important image features that
may indicate cancer risk. Methods: Anonymized scans of 41 patients with laboratory diagnosed
PSA levels who were routinely scanned for prostate cancer were used. The peripheral and central
zones of the prostate were depicted manually with demarcation of suspected tumor foci under
medical supervision. More than 7000 textural features in the marked regions were calculated using
MaZda software. Then, these 7000 features were used to perform region parameterization. Statistical
analyses were performed to find correlations with PSA-level-based diagnosis that might be used
to distinguish suspected (different) lesions. Further multiparametrical analysis using MIL-SVM
machine learning was used to obtain greater accuracy. Results: Multiparametric classification using
MIL-SVM allowed us to reach 92% accuracy. Conclusions: There is an important correlation between
the textural parameters of MRI prostate images made using the PIRADS MR protocol with PSA levels
> 4 mg/mL. The correlations found express dependence between image features with high cancer
markers and hence the cancer risk.

Keywords: prostate cancer; MRI; PSA; textural analysis; multiple-instance learning; support
vector machine

1. Introduction

Prostate cancer is the second most frequently diagnosed cancer in men, with approxi-
mately 1.4 million diagnoses worldwide in 2020 [1,2]. The basic methods used in the early
diagnosis of prostate cancer are laboratory tests, and, in particular, the determination of the
PSA tumor marker. Since its discovery in 1979 and through its clinical use in the 1980s and
1990s, the prostate-specific antigen (PSA) has evolved into an invaluable tool for the discovery,
assessment, and monitoring of prostate cancer in men. Increased serum PSA levels are likely
a product of disturbed cellular architecture in the prostate gland [3]. PSA is believed to
correlate highly with prostate disease; it is produced by many glands but is also associated
with non-malignant diseases [4]. Moreover, the influence of hormonal therapy influences the
detection of prostate cancer [5]. After the introduction of MR scanners to medical practice, the
first attempt to diagnose prostate glands was made by Damadian in the early 1970s; ten years
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later, it was recognized as a valuable tool for the process of diagnosing prostate diseases [6,7].
However, the cost of these examinations has raised some doubts [8] as to overdiagnosis [9];
the role of MR is well established in the process of diagnosing prostate diseases [10], especially
after the introduction of diffusion-weighted techniques and contrast enhancement to the
protocol [11,12]. The experience gained over the years of using of MRI techniques in prostate
imaging, especially where correlated with biopsies [13], resulted in the formation of imaging
standards, PIRADS 1 and PIRADS 2, where the PIRADS 4 and PIRADS 5 stages are linked to
a high probability of the presence of cancer and associated with high PSA levels [14]. MRI has
taken on an increasingly significant role in the diagnostic process with the development of
computed systems for image segmentation and analysis, and algorithms for prostate tumor
detection have been proposed [15].

However, manual analysis is laborious and dependent on well-trained specialists in the
field of diagnostic imaging. Therefore, efforts have been made to develop a computer-aided
diagnosis (CAD) tool. It has been proven that automatic approaches improve the speci-
ficity, as compared to moderately experienced radiologists, for more difficult tumors [16]
and allow for global standardization across radiological centers [17]. The described
CAD systems use various modalities, from T2-weighted MRI (T2W-MRI) [18] to prostate
biomarkers, and diffusion-weighted MRI (dw-MRI) supported with level-sets methods for
prostate delineation [19].

Grayscale MR images are the sum of pixels of different brightness and grayscale
levels. Patterns formed by sub-sets of similar pixels can be differentiated with the use of
texture maps where pixel distribution changes can be characterized with the application of
mathematical formulas [20–22]. A plethora of textural features that cannot be recognized
by the human eye can be characterized on the basis of mathematical analyses. This encoded
information can be revealed by texture feature maps [22].

Magnetic resonance imaging (MRI) is a non-invasive method of inspecting internal bodily
structures. The high quality of the gathered data allows specialists to determine whether the
observed tissue corresponds to clinically significant or non-significant prostate cancer [23,24].

Over time, the use of artificial intelligence (AI) methods to enable the creation of a
CAD system has been widely investigated. In their review, Booven et al. [25] focus on
artificial neural networks (ANNs) as a method of analyzing a variety of data connected
with prostate cancer detection.

Starting with prostate-specific antigen (PSA) value analysis, rather than other med-
ical markers, and developing an understanding of MRI images, biomarker diagnosis,
histopathological data utilization, etc., the authors conclude that deriving textural features
is the most promising approach for prostate cancer description.

Several other reviews support this claim. For instance, Harmon et al. [26] show that AI
enables a correlation between pathological and radiological information about the patient
when multiparameter MRI (mp-MRI) is considered. Describing the mp-MRI with radiomics
(quantitative imaging of features that are poorly recognized by the human eye, but are
understandable for computers) supported with AI algorithms allows for the prediction
of cancer aggressiveness [27] or general prostate cancer analysis [28]. The influence of
deep learning models, which have recently gained popularity, on healthcare professionals
working with MRI has been investigated by Liu et al. [29]; meanwhile, Wildeboer et al. [30]
concentrated on building a CAD system with this technology.

A significant amount of research addresses the problem of determining the Gleason
score using the textural features calculated for various modalities of MRI. Wibmer et al. [31]
build a binary classifier using Haralick textural features [32] for the determination of
cancerous and non-cancerous prostate images. A similar approach shows that textural
features derived from T2W-MRI, dw-MRI, and dynamic contrast-enhanced MRI (DCE)
effectively distinguish the Gleason scores [33–35]. More recent research that is still based
on first- and second-order histogram features distinguishes up to five grades in the Gleason
Grade Group [36,37].
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Radiomics features are used to determine the aggressiveness of prostate tumors [38,39].
When calculated for types of mp-MRI including T2W-MRI, dw-MRI, apparent diffusion
coefficient imaging (ADC), and DCE, its performance is comparable with the Prostate-
Imaging Reporting and Data System (PIRADS) [40–42]. On the other hand, when radiomics
features are supported by additional medical risk factors, a model based on multivariate
logistic regression allows for the classification of clinically significant and non-significant
prostate cancers [43,44]. Using mp-MRI data for feature calculation is justified in previous
research where support vector machine (SVM) models based on mp-MRI outperformed
those constructed using T2W-MRI or ADC data only.

Recently, deep learning approaches have become a popular method of designing
models for building a CAD system [45], detecting and grading prostate cancer [46], and
differentiating clinically significant and non-significant prostate cancers [47,48]. In the last
case, the performance was comparable to that of the PIRADS system.

There are also methods for automated cancer detection based on T2W-MRI data
only [49,50], which perform the automatic grading of prostate biopsy specimens in cor-
relation with Gleason grades based on SVM models [51]. There are also solutions based
on textural features derived from mp-MRI for detecting transition zones in prostate tu-
mors [52], and models that use bi-parametric MRI texture analysis for detecting and
evaluating high-grade prostate cancer [53].

2. Materials and Methods
2.1. Method Overview

The study protocol was developed according to the Declaration of Helsinki and the
Declaration of Good Clinical Practice [54]. All images were anonymized prior to processing
to ensure the security of personal data. In addition, written consent from the Local Ethics
Committee was obtained to conduct this study, 1072.6120.21.22 (23 February 2022). The
study used data from 125 patients aged 27 to 87 years. MRI images were acquired (1.5 T
Siemens Avanto, Enlargen, Germany) during normal diagnostic procedures, which met
the standard of the PIRADS protocol with the presence of T2-weighted axial sequences
with 2 mm slices and a distance factor of 0 and diffusion-weighted sequences with the
use of a single shot echo planar sequence (EPI) made with b value equal to 0–800–1500
and a distance factor of 0. Finally, T1-weighted sequences were designed for post-contrast
evaluation. The parameters of the T2-weighted sequence utilized in the present study are
summarized in Table 1. Images were converted from 12 bits to 8 bits by linearly scaling
from min to a range of 0–255. Then, images that met the stable (repeatable) conditions were
selected for the analysis of the texture features. After analyzing clinical data, information
on PSA value was obtained for 41 patients (values 0.39–19 ng/mL) (see Appendix A).

Table 1. Applied MR protocol in line with PIRADS guidance.

TE TR FA MX VOX FOV CON AV PAT DF T

T2 (axial) 105 3320 160 256 × 320 0.6 × 0.6 × 2 200 2 4 2 0 300

TE—time echo, TR—relaxation time, FA—flip angle, MX—imaging matrix, VOX—voxel, FOV—field of view,
CON—concentrations, AV—averages, PAT—Parallel acquisition, DF—distance factor, T—overall sequence time.

In the present work, we aimed to verify whether it is possible to distinguish with a
high probability between patients with prostate cancer and healthy patients. The content
of T2W-MRI scans was analyzed, while the PSA was the reference. For the MRI scans,
the textural features were calculated using the MaZda software. For the data processing,
manually annotated masks were used. As a result, the texture features were calculated for
three different regions: the inner prostate only, the outer prostate only, and the inner and
outer prostate regions treated as a whole. In order to create a binary classification model,
multiple-instance learning (MIL) with a support vector machine (SVM) was adopted. This
approach corresponds well with the characteristics of the collected dataset, where one
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PSA value is known for a patient described with several MRI scans. At the same time,
the cancerous tissue may be visible only in one part. It was assumed that PSA = 1, 2, 3
correspond to a healthy person (label = 0) and PSA ≥ 4 is for an ill one (label 1). Finally, the
leave-one-out methodology was applied.

2.2. Prostate MRI Dataset

From the initial dataset, 326 MRI images of prostates collected from 41 patients were
selected, in which the images were free of imaging artefacts and segmentation and visual-
ization of the lesions were possible despite the rigorous PIRADS protocol. The number of
projections per patient, which include the prostate, varies between 4 and 11 scans. Figure 1
shows the histogram of the number of MRI scans per patient. Each scan is supported with
a manual annotation marking the inner (blue) and outer (orange) regions of the prostate, as
depicted in Figure 2. For one patient, the outer prostate region was not annotated because
this anatomical structure was absent. The mean age was 64.6 ± 9.8 with median age 65.
The mean level of PSA in the cohort was 6.1 ± 3.9 with the median at 5.14. More detailed
information on the cohort is given in Appendix A.
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analyzed images—slices from different patients varied due to gland size and zone margins. Figure
presents groups of patients with different number of slices considered in the study.

The image data with the corresponding segmentations are all publicly available on the
website Zenodo [55].

2.3. Textural Features

The MaZda software was used to calculate the textural features for the annotated
regions in the MRI scans. This approach was chosen due to the ease of setting the number
of significant bits per image as a method parameter. This approach is not straightforward,
necessitating the implementation of the radiomics Python library, which is also often used for
textural feature determination. As we had access to several methods for texture description
that may be preprocessed and parameterized in several ways, around 7000 features were
calculated to describe a region. A brief overview of the applied methods is presented in
this section. Since those methods are well known in the domain of image analysis and are
also frequently used as MRI scan descriptors, we refer the reader to the MaZda manual for
more details and formulas.
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Figure 2. Visualization of the manual annotations prepared for each prostate MRI scan. The inner
regions are depicted in blue, while orange shows the outer prostate region.

Before the textural features were calculated, the image color space was converted to
YUV. Next, data normalization and quantization were undertaken if necessary. This step
diminishes the brightness differences between the analyzed images, which could arise due
to differences in the acquisition hardware. The system supports several normalization
techniques, the details of which are given in Table 1, and also enables gray-level coding to a
chosen number of bits. The preprocessed images were normalized in the region of interest
(ROI) according to the methods shown in Table 2; the textural features were calculated
using the following methods. The descriptors are derived only for the selected region: the
inner prostate, outer prostate, or inner and outer prostate.

Table 2. Normalization methods accessible in MaZda software.

Normalization Method Description

D No normalization applied.

S Gray levels normalized in the range <µ ± 3σ>,
where µ—mean gray level value, σ—standard deviation.

M Linear rescaling of the range to the minimal and maximal values.

N Linear rescaling of the range defined by the 1st and 99th
percentiles of the gray-level histogram.

An image brightness histogram (Hist) is the simplest statistical description of the image
content. It allows for the calculation of the following textural features: area, mean, variance,
skewness, kurtosis, and percentiles. The gradient map features (Grad) describe the rapid
illumination changes in small neighborhoods. This feature map is then transformed into a
histogram, allowing us to obtain the following textural features: mean, variance, skewness,
kurtosis, and non-zero elements. An autoregressive model (Arm) investigates the influence of
neighboring pixels on each other. The method searches for the optimal solution by returning
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information about directional influence described by four theta parameters and an additional
sigma parameter that conveys information about the error standard deviation.

The gray-level co-occurrence matrix method [32] is a more complex approach that
concentrates on local neighborhoods. This matrix holds information about the counts of
co-occurrence of pixel gray levels next to each other. Then, from this information, several
textural features are computed: the angular second moment, contrast, correlation, sum
of squares, invariance deformation moment, sum of averages, sum variance, entropy,
difference of variance, and difference of entropy. The method acronym is GLCM followed
by one letter indicating the direction of runs supplied by the value indicating the distance
between pixels considered as neighbors: H—horizontal, V—vertical, Z—diagonal, as
shown by the middle part of the letter, N—the other diagonal.

Unlike previously used approaches, the gray-level run-length matrix [56] describes
the content by considering a larger region. Here, the image analysis approach reflects the
way humans perceive images. The high-quality images have rapid color changes (short
runs), while keeping the same colors next to each other (long runs) is characteristic of
images of low quality. In this work, the GRLM acronym followed by one letter indicating
the direction of runs (H, V, Z, or N) is given. The information about the run length for
pixel gray values creates a base matrix from which several textural features are derived:
area, short-run emphasis, long-run emphasis, gray-level non-uniformity, mean gray-level
non-uniformity, run-length non-uniformity, mean run-length non-uniformity, and fraction.

In local binary patterns (LBPs) [57], the neighborhood of each pixel also influences
its understanding. The pixel information is coded considering a circular neighborhood
of 4, 8, or 12 pixels. A histogram is prepared from the generated codes, and each of
its bins becomes a textural feature described by the LBP or circularity analysis method:
over-complete, transition, center-symmetric. This is followed by the number of neighbors.

Another popular method for image description uses histograms of oriented gradients
(HOGs) [58]. This technique divides the image into small blocks, for which the gradients are
calculated. Their orientations are binned into histograms. For cells (regions composed of
several blocks), the histograms are concatenated and normalized to become a feature vector.
Using the MaZda software, the HOG method is calculated for the following numbers of
bins: 4, 8, 16, and 32.

The frequency components in a local neighborhood are also analyzed using a Gabor
transform (Gab). This method is parameterized with the Gaussian envelope, orientation,
the period of the sinewave, and the magnitude. On the other hand, the discrete wavelet
transform application is also used to derive image information. In this case, the Haar
wavelet is used and its energies in the sub-bands become features.

Considering both the large number of methods that can be used to describe the content
of MRI prostate scans and the ease of its parameterization, a set of around 7000 features was
calculated for each image. Please see the feature naming convention given in Appendix B.

2.4. Multiple-Instance Learning with a Support Vector Machine

In the present problem, several scans are described by one label. Therefore, multiple-
instance learning seems to be the best approach to classification. This is a type of supervised
learning; however, instead of having a separate label for each sample, all samples with
one label are analyzed together and referred to as a bag. Then, the classifier decides that a
bag of samples is negative when all samples are negative, and that it is positive when at
least one sample within a bag is positive. When applying this method to our problem, the
MIL approach returns a “healthy” label if all the MRI scans in the bag are negative, while it
returns an “ill” label when at least one MRI scan depicts cancerous tissue. This approach
reflects the fact that cancer might be noticed only in one scan, while the other parts are
not infected. This approach works with the support vector machine as a binary classifier.
For our purposes, the “mil” Python library was used. Figure 3 shows an overview of the
presented approach.
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3. Results

In this study, three sets of experiments were performed. Each of them was concerned
with textural features calculated for different prostate regions annotated on the MRI scans,
namely, the inner, outer, and inner and outer regions. Some of the textural features could
not be calculated for all scans and have therefore been disregarded. For the rest of the
scans, the procedure was as follows. First, the Pearson correlation between pairs of textural
features was evaluated. Since the number of features is large (6678 features for the prostate
inner region, 4898 for the prostate outer region, and 6718 for the total prostate region)
in comparison to the number of samples (41, 40, and 40, respectively), it was decided
to prepare the MIL-SVM models using only a pair of non-correlated features. Using
a smaller number of representative features is also beneficial because it improves the
SVM convergence. We assumed that pairs of features with a correlation higher than 50%
should be disregarded (around 10% of all possible combinations). Then, the leave-one-out
procedure was adopted to verify the model’s generality for each pair of textural features
(giving around 60,000/54,000/64,000 possible pairs). This methodology assumes that the
model is trained with n-1 samples, using one sample for testing, and that the experiment is
repeated n times. The performance of the model was evaluated according to its accuracy,
specificity, recall, and F1 score metrics. Both the leave-one-out procedure and SVM had a
weight-balanced flag set, since there were 28 positive and 13 negative samples. For SVM,
the linear kernel was applied with the regularization factor c = 10.

Tables 3–5 gather the 20 best results recorded for each type of experiment; the outcomes
for the remaining pairs of features are attached as Supplementary Materials (Table S1). The
highest scores are reached when the inner prostate region is considered (Table 3), with slightly
worse outcomes for the whole prostate (Table 2); meanwhile, the outer region of the prostate
seems to be slightly less significant (Table 4). However, these differences are very small. It is
interesting to note that, depending on the region, different textural features play significant
roles. This effect might be induced by the shape of the region of interest, as it is circular in
the case of the inner prostate and whole prostate and elongated when only the outer part is
analyzed. The elongation with a slight rotation of objects on MRI scans must have influenced
the calculation of descriptors, as the computation of many of them depends on the chosen
angle. Despite these differences and obstacles, very high F1 scores were recorded: 92.86%,
91.23%, and 89.80% for the inner, whole, and outer prostate regions, respectively.
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Table 3. The best 20 pairs of features when the whole prostate region is used to calculate features.

Accuracy Precision Recall F1 Score Feature 1 Feature 2

0.878049 0.928571 0.896552 0.912281 YN6Gab16H8Mag YM8HistPerc01
0.878049 0.928571 0.896552 0.912281 YN5Gab16H8Mag YM8HistPerc01
0.878049 0.928571 0.896552 0.912281 YN8Gab16H8Mag YM8HistPerc01
0.878049 0.928571 0.896552 0.912281 YN7Gab16H8Mag YM8HistPerc01
0.878049 0.928571 0.896552 0.912281 YN4Gab16H8Mag YM8HistPerc01
0.878049 0.892857 0.925926 0.909091 YN6Gab8N4Mag YS8Gab24N12Mag
0.878049 0.892857 0.925926 0.909091 YS4ArmTeta2 YD8Gab24N12Mag
0.853659 0.857143 0.923077 0.888889 YLbpCs8n15 YM8HistPerc01
0.853659 0.892857 0.892857 0.892857 YM8HistPerc01 YS8Gab12Z6Mag
0.853659 0.892857 0.892857 0.892857 YN5ArmTeta4 YD8GradSkewness
0.853659 0.892857 0.892857 0.892857 YN7ArmTeta4 YD8GradSkewness
0.853659 0.892857 0.892857 0.892857 YN8ArmTeta4 YD8GradSkewness
0.853659 0.928571 0.866667 0.896552 YM4DwtHaarS2HL YS8HistKurtosis
0.853659 0.857143 0.923077 0.888889 YN5Gab8N4Mag YS8Gab24N12Mag
0.853659 0.892857 0.892857 0.892857 YS8GlcmZ4SumEntrp YD8GradSkewness
0.853659 0.892857 0.892857 0.892857 YN8Gab8N4Mag YS8Gab24N12Mag
0.853659 0.892857 0.892857 0.892857 YN7Gab8N4Mag YS8Gab24N12Mag
0.853659 0.821429 0.958333 0.884615 YS8ArmTeta2 YD8Gab24N12Mag
0.853659 0.857143 0.923077 0.888889 YS6ArmTeta2 YD8Gab24N12Mag
0.853659 0.857143 0.923077 0.888889 YS5ArmTeta2 YD8Gab24N12Mag

Table 4. The best 20 pairs of features when the inner prostate region is used to calculate features.

Accuracy Precision Recall F1 Score Feature1 Feature2

0.902439 0.928571 0.928571 0.928571 YM6GlcmH5SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YN7Gab12N6Mag YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM5GlcmZ4SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM4GlcmZ4SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM7GlcmZ4SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM6GlcmZ4SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM8GlcmZ4SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM4GlcmH5SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM5GlcmH5SumVarnc YD8Gab24H12Mag
0.878049 0.892857 0.925926 0.909091 YM7GlcmH5SumVarnc YD8Gab24H12Mag
0.853659 0.785714 1.000000 0.880000 YM8Gab12H6Mag YS8HistDomn01
0.853659 0.857143 0.923077 0.888889 YN8Gab12N6Mag YD8Gab24H12Mag
0.853659 0.857143 0.923077 0.888889 YM8GlcmZ5InvDfMom YD8Gab24Z12Mag
0.853659 0.821429 0.958333 0.884615 YM4GlcmZ5SumVarnc YD8Gab24H12Mag
0.853659 0.892857 0.892857 0.892857 YM4GlcmN2SumVarnc YD8Gab24H12Mag
0.853659 0.857143 0.923077 0.888889 YM4GlcmH4SumVarnc YD8Gab24H12Mag
0.853659 0.857143 0.923077 0.888889 YM5GlcmH4SumVarnc YD8Gab24H12Mag
0.853659 0.857143 0.923077 0.888889 YM7GlcmH4SumVarnc YD8Gab24H12Mag
0.853659 0.857143 0.923077 0.888889 YM6GlcmH4SumVarnc YD8Gab24H12Mag
0.853659 0.857143 0.923077 0.888889 YM8GlcmH4SumVarnc YD8Gab24H12Mag

As we can see from Table 3, the best differentiation between clinically significant
and non-significant prostate cancers is achieved when the gray-level co-occurrence matrix
summed variance feature is used along with Gabor wavelet magnitude. For the first textural
feature, slightly better outcomes (92.86%) are attained when the image is preprocessed with
min–max normalization (M) using only six significant bits to calculate the matrix in the hor-
izontal direction (H) with stride equal to five. Changing the direction to diagonal (Z) with a
slightly varying stride (4, 5), as well as using a different number of bits (4–8), diminishes the
performance to 90.91%, while recall is maintained at the same level (92%) and the precision
deteriorates from 92% to 89%. In all cases, the second textural feature is calculated for the
original image using the Gabor wavelet with constant Gaussian envelope (24) in the hori-
zontal direction and a sinewave period equal to 12. Since the dataset is highly imbalanced,
the AUC was not calculated, as it works well only with balanced data and is too optimistic
in other cases. Applying two textural features and concentrating on Gabor frequencies
(YN7Gab12N6Mag and YD8Gab24H12Mag or YN8Gab12N6Mag and YD8Gab24H12Mag)
also give very high F1 scores: 91% and 89%, respectively. The combination of the Gabor
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magnitude feature (YM8Gab12H6Mag) with histogram parameters (YS8HistDomn01) and
other metrics calculated from the gray-level co-occurrence matrix (YM8GlcmZ5InvDfMom)
also performs very well, with an F1 score around 88%.

Table 5. The best 20 pairs of features when the outer prostate region is used to calculate features.

Accuracy Precision Recall F1 Score Feature1 Feature2

0.875000 0.814815 1.000000 0.897959 YM7GlcmN2Correlat YS8Gab24Z12Mag
0.875000 0.814815 1.000000 0.897959 YM8GlcmN2Correlat YS8Gab24Z12Mag
0.875000 0.814815 1.000000 0.897959 YM6GlcmN2Correlat YS8Gab24Z12Mag
0.875000 0.814815 1.000000 0.897959 YM5GlcmN2Correlat YS8Gab24Z12Mag
0.850000 0.888889 0.888889 0.888889 YS7HogO8b2 YD8GradNonZeros
0.850000 0.888889 0.888889 0.888889 YN6Gab24N12Mag YD8GradSkewness
0.850000 0.888889 0.888889 0.888889 YN7Gab24N12Mag YD8GradSkewness
0.850000 0.888889 0.888889 0.888889 YN8Gab24N12Mag YD8GradSkewness
0.850000 0.888889 0.888889 0.888889 YS4Gab24Z12Mag YD8Gab16Z8Mag
0.850000 0.888889 0.888889 0.888889 YS6Gab24Z12Mag YD8Gab16Z8Mag
0.850000 0.888889 0.888889 0.888889 YS7Gab24Z12Mag YD8Gab16Z8Mag
0.850000 0.888889 0.888889 0.888889 YS8Gab24Z12Mag YD8Gab16Z8Mag
0.850000 0.888889 0.888889 0.888889 YN7HistMaxm01 YS8Gab12Z6Mag
0.850000 0.777778 1.000000 0.875000 YM4GlcmN2Correlat YS8Gab24Z12Mag
0.850000 0.814815 0.956522 0.880000 YM6GlcmH4InvDfMom YD8Gab24N12Mag
0.850000 0.777778 1.000000 0.875000 YM7GlcmH4InvDfMom YD8Gab24N12Mag
0.850000 0.888889 0.888889 0.888889 YN6GradNonZeros YS8Gab16H8Mag
0.850000 0.814815 0.956522 0.880000 YN5GlcmV2Entropy YD8HistKurtosis
0.825000 0.888889 0.857143 0.872727 YS8HogO8b2 YD8GradNonZeros
0.825000 0.814815 0.916667 0.862745 YN4Gab24V12Mag YS8Gab12Z6Mag

When analyzing the whole prostate region, the best performance was recorded when
combining Gabor frequency features with histogram percentiles, reaching an F1 score of
91.12% with recall of 89.66% and precision of 92.86%. Since there are similar outcomes,
we can assume that using quantization (diminishing the number of input bits) in the case
of Gabor wavelet calculation does not influence the performance, as similar results are
achieved for data using from 4 up to 8 bits. Here, the horizontal orientation of a sinewave
with period equal to 8 and Gaussian envelope equal to 16 was applied. The data were
normalized using min–max transformation to calculate the histogram percentile using 8-bit
data. The following results are derived mostly for pairs of features that focus on the image
frequency description and not on some textural features, in an effort to express the human
perception of the visual information.

The best outcomes for the outer prostate region are recorded when the correlation
feature from the gray-level co-occurrence matrix is supported with the Gabor wavelet
feature. Next, the combination of two features is used to describe the following texture
frequencies. In the best case, the GLCM method is applied to min–max-normalized images;
again, changing the number of significant bits (from 5 to 8) does not influence the F1
score—89.80%—with recall of 100% and precision of 81.48%. The second textural feature is
derived from a normalized 8-bit image transformed with a Gabor filter with a Gaussian
envelope of 24 radios, calculated in a diagonal orientation (Z) with a sinewave amplitude
equal to 12.

4. Discussion

Also known as human kallikrein peptidase 3 (hK3), PSA is a member of the kallikrein
gene family [59]. Ectopic PSA expression has been found at lower concentrations in
malignant breast tissue, normal breast tissue, breast milk, and adrenal and kidney cancer.
PSA is highly organ specific, as it is mainly produced by prostate epithelial cells. As
evidenced by its imperfect performance as a diagnostic biomarker, PSA is not cancer specific
and its values can be elevated in men with benign and malignant prostate diseases [60].
An increase in PSA is secondary to the loss of the barrier provided by the basal layer and
the basal membranes of the prostate, which is a mandatory condition for the hormone to
enter the circulation. However, loss of the barrier may occur in the case of different prostate
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diseases (BPH, prostatitis, prostate cancer) and in connection with prostate manipulation
of the prostate (prostate massage, prostate biopsy) [61].

Screening for prostate cancer with the use of multiparametric MRI (mp-MRI) is still
one of the most controversial topics in the urological literature [62]. Screening results
reveal a significantly increased diagnosis of prostate cancer with the use of mp-MRI with
detection of less advanced prostate cancer, however, with no overall survival benefit was
observed [63]. National USA recommendations against PSA-based screening resulted in
a reduction in the use of PSA for early detection and were associated with higher rates
of advanced disease [64]. The inclusion of mp-MRI can improve a screening protocol,
as it reduces the number of men who undergo biopsies while detecting more high- and
intermediate-grade prostate cancer [65,66]. The IP1-PROSTAGRAM study (PSA > 3 ng/mL;
MRI Prostate Imaging Reporting and Data System (PIRADS) > 2) showed the highest detec-
tion of prostate cancer by MRI compared to transrectal ultrasound-guided prostate biopsy
(TRUS) in a population screening setting [65]. Moreover, standard TRUS is not reliable
in detecting prostate cancer and the diagnostic yield of additional biopsies performed on
hypoechoic lesions is negligible [67]. New sonographic modalities such as micro-Doppler,
sonoelastography, or contrast-enhanced US provided promising preliminary findings, alone
or combined into the so-called “multiparametric US” [68,69]. In the multiparametric US
vs. multiparametric MRI to diagnose prostate cancer (CADMUS) trial, multiparametric
US detected 4.3% fewer prostate cancer cases while submitting 11.1% more patients to
biopsy than MRI [70]. The 68 m labeled prostate-specific antigen (PSA) positron emission
tomography (PET PSMA) method is gaining increasing attention in the medical community
as a method with increasing clinical potential [71,72]. It was proven that the diagnostic
performance of PET PSMA is better than multiparametric magnetic resonance (mp-MRI)
presented in clinical studies of intermediate-risk cancer, with diagnostic confidence reach-
ing 80% in comparison to 60% for mp-MRI [73]. For advanced cancer, reported confidence
was up to 99% in comparison to 87–97% reported for mp-MRI [74]. As PET PSMA gains
increasing attention and influences treatment change in patients previously diagnosed with
MR [75,76], there is a need to improve diagnostic techniques based on mp-MRI, especially
in regard to the performance of 1.5 T scanners, as obtained results are less significant
compared to those presented by 3T scanners [77,78].

Therefore, in asymptomatic patients with PSA values of 2–10 ng/mL, additional
methods should be used to decide whether to refer the patient for a prostate biopsy, the
result of which determines the treatment when cancer is diagnosed. These methods include
cancer risk calculators as well as imaging-based diagnostics [79]. If PSA level is sufficiently
high in correlation with the clinical picture (especially palpation methods), the margin for
misleading diagnoses is very narrow [80]. However, in the many cases with intermediate
levels of PSA, other diagnostic techniques, including diagnostic imaging, are needed to
provide further support.

Magnetic resonance imaging (MRI) has been used for the non-invasive evaluation of
the prostate and surrounding tissues since the 1980s. Advances in technology (both in soft-
ware and hardware) have led to the development of multiparameter MRI (mp-MRI), which
combines T2W anatomical imaging with functional and physiological assessments, includ-
ing diffusion-based imaging (DWI) and its derivatives diffusion coefficient map (ADC) and
dynamic MRI with contrast enhancement (DCE), and sometimes other techniques, such as
in vivo MR proton spectroscopy [81].

MRI is currently a highly important step in the process of diagnosing suspected
prostate cancer [23]. On the basis of over 30 years of experience gained in MR prostate
studies, classification systems were created and are constantly updated [82]. However, it
is widely acknowledged that a great deal of training is required to determine the image
patterns behind prostate cancer, and there are still unclear images where diagnosis is not
certain [83]. Therefore, clinical correlation is highly important, especially in relation to
levels of PSA antigens [84].
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Applying a pair of textural features to create an artificial intelligence model for the
automatic detection of patients with high (≥4) scores of PSA as a cutoff value for deter-
mination of possible malignancy of the lesion is a promising approach, with an F1 score
equal to 92%. In our experiments, we verified whether increasing the number of features
could improve the outcome. In order to decrease the number of search possibilities, we
concentrated on features that participated in generating models with F1 scores higher than
80%. For this approach, all those features were used as input, but principal component
analysis was applied to select the most discriminative data. Nonetheless, these results did
not outperform the presented ones, so are not discussed in detail.

5. Conclusions

The results presented are very promising, as the analysis of the MR images has shown
a correlation with the biochemical levels of the cancer marker. This is an important step
towards making the diagnostic imaging process more objective. The results obtained will
be used in the future to develop the analysis in a larger group of patients. This could
serve as a solid basis for the development of protocols for automated analysis of prostate
magnetic resonance imaging to improve the assessment of prostate cancer in daily clinical
practice and to reduce possible diagnostic errors.

5.1. Study Strengths

• Finding the correlation between MR image textural features (in accordance with
PIRADS guidance) with proven levels of PSA and hence the risk of prostate cancer.

• Using a novel and unique approach in comparison to formerly applied methods of
image analysis, with possible usefulness for automatic, computer-based systems of
lesion detection.

• Evaluating magnetic resonance imaging of the prostate with the use of textural analysis;
this constitutes another step towards the creation of fully automated protocols for a
fast and effective diagnostic path for prostate cancer.

5.2. Study Weakness

• Some limitations of the present work concern the relatively small group of patients
analyzed and incomplete data; resolving these issues would allow us to draw even
more conclusions.

There is a correlation between the presence of increased PSA level and probability
of cancer being identified with the aid of the results of diagnostic imaging analyses. Low
PSA in patients with changes in the prostate image was found and the recognized findings
in the MR images with no reflection in the increased PSA level might be misleading in
practical settings.
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Abbreviations

ADC Apparent diffusion coefficient imaging
AI Artificial intelligence
ANN Artificial neural network
Arm Autoregressive model
AUC Area under curve
AV Averages
BW Bandwidth
CAD Computer-aided diagnosis
CON Concentrations
DCE Dynamic contrast-enhanced MRI
DWI Diffusion-based imaging
dw-MRI Diffusion-weighted MRI
FA Flip angle
FOV Field of view
TF Turbo factor
PAT Parallel acquisition
DF Distance factor
Gab Gabor transform
GLCM Grey-level co-occurrence matrix
Grad Gradient map features
Hist Brightness histogram
HOG Histogram of oriented gradients
LBP Local binary pattern
MIL Multiple-instance learning
mp-MRI Multiparameter MRI
MR Magnetic resonance
MRI Magnetic resonance imaging
MX Imaging matrix
PIRADS Prostate Imaging Reporting and Data System
PSA Prostate-specific antigen
ROI Region of interest
SVM Support vector machine
T Time
TE Time echo
TF Turbo factor
TR Relaxation time
T2W-MRI T2-weighted MRI
VOX Voxel
YUV Color model, Y—luminance, U—blue projection, V—red projection
TRUS Transrectal ultrasound
US Ultrasonography
CADMUS Cancer Detection by Multiparametric Ultrasound of the Prostate
PET PSMA PSA labeled positron emission tomography

Appendix A. Dataset Detailed Description

Table A1 presents the basic information about the statistics of the patients’ age, PSA
level, etc. in the dataset, while Table A1 gives detailed information for each patient.

https://doi.org/10.5281/zenodo.7676958
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Table A1. Basic dataset characteristics.

Patient count 41

Age (in years)
Average 64.6 ± 9.8
Median 65
Range 39–85

PSA level
Average 6.1 ± 3.9
Median 5.14
Range 0.39–19
Side
Left 9 patients (22%)

Right 13 patients (32%)
Both 19 patients (46%)

Prostatitis 8 patients (20%)
BPH 23 patients (56%)

Table A2. Detailed description of the medical parameters of the examined cohort.

Patient No Age PSA Level Side Prostatitis BPH

1 61 3.50 Left Yes Yes
2 62 1.75 Both Yes Yes
3 85 5.20 Right No Yes
4 63 7.50 Right No Yes
5 63 5.60 Right No Yes
6 69 6.70 Right No Yes
7 67 5.14 Right No No
8 78 19.00 Both No No
9 68 2.40 Left Yes Yes
10 44 3.15 Both Yes No
11 62 8.00 Both No No
12 62 8.10 Both No Yes
13 57 8.60 Both No Yes
14 61 8.80 Right No No
15 67 4.30 Both No No
16 51 9.90 Both No No
17 66 17.00 Left No No
18 70 5.90 Both No Yes
19 65 4.8 Right No No
20 70 4.9 Right No Yes
21 48 3.3 Both No No
22 64 3.4 Left No No
23 58 4.5 Both Yes No
24 66 2.7 Left No No
25 81 4.45 Left No Yes
26 62 17.00 Right Yes Yes
27 74 5.30 Both No Yes
28 58 0.39 Both Yes Yes
29 70 6.7 Right No Yes
30 77 8.1 Both No Yes
31 77 7 Both No Yes
32 64 5.2 Left No Yes
33 65 6.95 Both No Yes
34 55 3.9 Right Yes No
35 69 9.00 Both No Yes

Table A2. Cont.

Patient No Age PSA Level Side Prostatitis BPH

36 62 3.60 Right No Yes
37 39 3.16 Both No No
38 50 3.85 Right No No
39 73 3.3 Left No Yes
40 81 4.5 Left No No
41 66 4 Both No No

Appendix B. Feature-Naming Conventions

The textural feature names follow a convention whereby the description contains all of
the information about the applied method and its parameters and preprocessing steps; the
convention also ensures that the names are unique. The unique textural feature identities
comprise the following:
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• color component—Y always stands for the brightness component from the YUV color
space;

• information on normalization, see Table 1;
• the number of bits used for quantization purposes;
• sliding window shape and size (if applied);
• the applied texture feature method;
• an acronym of the parameter;
• and the feature name abbreviation.

For instance, the feature name YM6GlcmH5SumVariance refers to an image converted
to the YUV color space where the brightness component is analyzed. It is normalized using
the minimum and maximum range of gray-scale pixel values (M) and coded on 6 bits. The
gray-level co-occurrence matrix (GLCM) was applied to calculate the matrix in a horizontal
(H) fashion, with the distance between adjoining pixels set to 5; finally, the sum of variance
is the final feature in the acronym.
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