Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms
Abstract
:1. Introduction
2. Modulating the Host Response to Sepsis
2.1. The Complement System
2.2. Coagulation and Endothelial Activation
2.3. Immunoparalysis
2.4. Cell Apoptosis
2.5. Antigen Presentation
2.6. Inhibitory Immune Checkpoints
2.7. Cell Metabolism and Intracellular Signaling Pathways
2.8. Gut Dysbiosis
2.9. Cellular Therapies
3. The COVID-19 Example: A Viral Sepsis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Monneret, G. Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.-L. Sepsis and Septic Shock. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegboro, B.A.; Imran, J.; Abayomi, S.A.; Sanni, E.O.; Biliaminu, S.A. Recent Advances in the Pathophysiology and Management of Sepsis: A Review. Afr. J. Clin. Exp. Microbiol. 2021, 22, 133–145. [Google Scholar] [CrossRef]
- Gilbert, J.A. Sepsis Care Bundles: A Work in Progress. Lancet Respir. Med. 2018, 6, 821–823. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosupression in Sepsis: A Novel Understanding of the Disorder and a New Therapeutic Approach. Lancet Infect Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Rahmel, T.; Schmitz, S.; Nowak, H.; Schepanek, K.; Bergmann, L.; Halberstadt, P.; Hörter, S.; Peters, J.; Adamzik, M. Long-Term Mortality and Outcome in Hospital Survivors of Septic Shock, Sepsis, and Severe Infections: The Importance of Aftercare. PLoS ONE 2020, 15, e0228952. [Google Scholar] [CrossRef] [Green Version]
- Prescott, H.C.; Costa, D.K. Improving Long-Term Outcomes After Sepsis. Crit. Care Clin. 2018, 34, 175–188. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Barichello, T.; Generoso, J.S.; Collodel, A.; Petronilho, F.; Dal-Pizzol, F. The Blood-Brain Barrier Dysfunction in Sepsis. Tissue Barriers 2021, 9, 1840912. [Google Scholar] [CrossRef]
- Mostel, Z.; Perl, A.; Marck, M.; Mehdi, S.F.; Lowell, B.; Bathija, S.; Santosh, R.; Pavlov, V.A.; Chavan, S.S.; Roth, J. Post-Sepsis Syndrome- A n Evolving Entity That Afflicts Survivors of Sepsis. Mol. Med. 2019, 26, 6. [Google Scholar] [CrossRef] [Green Version]
- Prescott, H.C.; Angus, D.C. Enhancing Recovery From Sepsis. JAMA 2018, 319, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Delano, M.J.; Ward, P.A. Sepsis-Induced Immune Dysfunction: Can Immune Therapies Reduce Mortality? J. Clin. Investig. 2016, 126, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, G.S.; Mannino, D.M.; Moss, M. The Effect of Age on the Development and Outcome of Adult Sepsis. Crit. Care Med. 2006, 34, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Weis, S.; Carlos, A.R.; Moita, M.R.; Singh, S.; Blankenhaus, B.; Cardoso, S.; Larsen, R.; Rebelo, S.; Schäuble, S.; Del Barrio, L.; et al. Metabolic Adaptation Establishes Disease Tolerance to Sepsis. Cell 2017, 169, 1263–1275.e4. [Google Scholar] [CrossRef] [Green Version]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D.; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- Rondovic, G.; Djordjevic, D.; Udovicic, I.; Stanojevic, I.; Zeba, S.; Abazovic, T.; Vojvodic, D.; Abazovic, D.; Khan, W.; Surbatovic, M. From Cytokine Storm to Cytokine Breeze: Did Lessons Learned from Immunopathogenesis Improve Immunomodulatory Treatment of Moderate-to-Severe COVID-19? Biomedicines 2022, 10, 2620. [Google Scholar] [CrossRef]
- Tufan, Z.K.; Kayaaslan, B.; Mer, M. COVID-19 and Sepsis. Turk. J. Med. Sci. 2021, 51, 3301–3311. [Google Scholar] [CrossRef]
- Lilly Announces Withdrawal of Xigris® Following Recent Clinical Trial Results. Available online: https://investor.lilly.com/news-releases/news-release-details/lilly-announces-withdrawal-xigrisr-following-recent-clinical (accessed on 6 March 2023).
- Lai, P.S.; Thompson, B.T. Why Activated Protein C Was Not Successful in Severe Sepsis and Septic Shock: Are We Still Tilting at Windmills? Curr. Infect. Dis. Rep. 2013, 15, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Davies, R.; O’Dea, K.; Gordon, A. Immune Therapy in Sepsis: Are We Ready to Try Again? J. Intensive Care Soc. 2018, 19, 326–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, E.E.; Burnham, K.L.; Radhakrishnan, J.; Humburg, P.; Hutton, P.; Mills, T.C.; Rautanen, A.; Gordon, A.C.; Garrard, C.; Hill, A.V.S.; et al. Genomic Landscape of the Individual Host Response and Outcomes in Sepsis: A Prospective Cohort Study. Lancet Respir. Med. 2016, 4, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gloss, B.; Tang, B.; Dervish, S.; Santner-Nanan, B.; Whitehead, C.; Masters, K.; Skarratt, K.; Teoh, S.; Schibeci, S.; et al. Immunophenotyping of Peripheral Blood Mononuclear Cells in Septic Shock Patients With High-Dimensional Flow Cytometry Analysis Reveals Two Subgroups With Differential Responses to Immunostimulant Drugs. Front. Immunol. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, G.; Shen, J.; Kong, H.; Wu, D.; Huang, J.; Li, X. Long Non-Coding RNAs as Biomarkers and Therapeutic Targets in Sepsis. Front. Immunol. 2021, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.; Vincent, J.-L. Biomarkers of Sepsis: Time for a Reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic Review or Scoping Review? Guidance for Authors When Choosing between a Systematic or Scoping Review Approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Westphaln, K.K.; Regoeczi, W.; Masotya, M.; Vazquez-Westphaln, B.; Lounsbury, K.; McDavid, L.; Lee, H.; Johnson, J.; Ronis, S.D. From Arksey and O’Malley and Beyond: Customizations to Enhance a Team-Based, Mixed Approach to Scoping Review Methodology. MethodsX 2021, 8, 101375. [Google Scholar] [CrossRef]
- Denstaedt, S.J.; Singer, B.H.; Standiford, T.J. Sepsis and Nosocomial Infection: Patient Characteristics, Mechanisms, and Modulation. Front. Immunol. 2018, 9, 2446. [Google Scholar] [CrossRef] [Green Version]
- Mira, J.C.; Brakenridge, S.C.; Moldawer, L.L.; Moore, F.A. Persistent Inflammation, Immunosuppression and Catabolism Syndrome. Crit. Care Clin. 2017, 33, 245–258. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Studying Complement Inhibition in Early, Newly Developing Septic Organ Dysfunction (SCIENS) (NCT02246595). Available online: https://clinicaltrials.gov/ct2/show/NCT02246595?term=inflarx&cond=sepsis&draw=2&rank=1 (accessed on 19 February 2022).
- ClinicalTrials.gov. In Vivo Effects of C1-Esterease Inhibitor on the Innate Immune Response During Human Endotoxemia (NCT01766414). Available online: https://clinicaltrials.gov/ct2/show/record/NCT01766414?term=vector-II&draw=2&rank=1 (accessed on 5 April 2023).
- ClinicalTrials.gov. Vorapaxar in the Human Endotoxemia Model (NCT02875028). Available online: https://clinicaltrials.gov/ct2/show/NCT02875028?type=Intr&cond=Sepsis&intr=vorapaxar&draw=2&rank=1 (accessed on 10 December 2022).
- ClinicalTrials.gov. A Trial of Validation and Restoration of Immune Dysfunction in Severe Infections and Sepsis (NCT03332225). Available online: https://clinicaltrials.gov/ct2/show/NCT03332225?type=Intr&cond=Sepsis&intr=Interferon+gamma&draw=2&rank=2 (accessed on 10 December 2022).
- ClinicalTrials.gov. A Study of IL-7 to Restore Absolute Lymphocyte Counts in Sepsis Patients (NCT02640807). Available online: https://clinicaltrials.gov/ct2/show/NCT02640807?cond=Sepsis&intr=Interleukin-7&draw=2&rank=2 (accessed on 10 December 2022).
- ClinicalTrials.gov. GM-CSF to Decrease ICU Acquired Infections (GRID) (NCT02361528). Available online: https://clinicaltrials.gov/ct2/show/NCT02361528?term=nct02361528&draw=2&rank=1 (accessed on 5 March 2022).
- ClinicalTrials.gov. Efficacy of Thymosin Alpha 1 on Improving Monocyte Function in Sepsis (NCT02883595). Available online: https://clinicaltrials.gov/ct2/show/NCT02883595?type=Intr&cond=Sepsis&intr=Thymosin+Alpha1&draw=2&rank=1 (accessed on 5 March 2022).
- ClinicalTrials.gov. The Efficacy and Safety of Ta1 for Sepsis (NCT02867267). Available online: https://clinicaltrials.gov/ct2/show/NCT02867267?type=Intr&cond=Sepsis&intr=Thymosin+Alpha1&draw=2&rank=2 (accessed on 5 March 2022).
- International Clinical Trials Registry Platform Effects of Shengmai Injection Combined with Thymosin on Cellular Immune Function in Patients with Sepsis and Low Immune Function: A Prospective, Randomized, Controlled Trial (ChiCTR2100043911). Available online: https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2100043911 (accessed on 5 April 2023).
- ClinicalTrials.gov. Ulinastatin Treatment in Adult Patients With Sepsis and Septic Shock in China (NCT02647554). Available online: https://clinicaltrials.gov/ct2/show/NCT02647554?type=Intr&cond=Sepsis&intr=Ulinastatin&draw=2&rank=1 (accessed on 10 December 2022).
- ClinicalTrials.gov. A Study of Nivolumab Safety and Pharmacokinetics in Patients With Severe Sepsis or Septic Shock (NCT02960854). Available online: https://clinicaltrials.gov/ct2/show/NCT02960854?type=Intr&cond=Sepsis&intr=Checkpoint+Inhibitor%2C+Immune&draw=2&rank=1 (accessed on 10 December 2022).
- ClinicalTrials.gov. Effect of Mesenchymal Stromal Cells on Sepsis and Sepsis and Septic Shock (NCT05283317). Available online: https://clinicaltrials.gov/ct2/show/NCT05283317?type=Intr&cond=Sepsis&intr=mesenchymal+stem+cells&draw=2&rank=1 (accessed on 10 December 2022).
- ClinicalTrials.gov. Randomized, Parallel Group, Placebo Control, Unicentric, Interventional Study to Assess the Effect of Expanded Human Allogeneic Adipose-Derived Mesenchymal Adult Stem Cells on the Human Response to Lipopolysaccharyde in Human Volunteers (NCT02328612). Available online: https://clinicaltrials.gov/ct2/show/NCT02328612?type=Intr&cond=Sepsis&intr=mesenchymal+stem+cells&draw=2&rank=6 (accessed on 10 December 2022).
- ClinicalTrials.gov. Cellular Immunotherapy for Septic Shock: A Phase I Trial (NCT02421484). Available online: https://clinicaltrials.gov/ct2/show/NCT02421484?type=Intr&cond=Sepsis&intr=mesenchymal+stem+cells&draw=2&rank=8 (accessed on 10 December 2022).
- ClinicalTrials.gov. Pharmacokinetics of XueBiJing in Patients With Sepsis (NCT03475732). Available online: https://clinicaltrials.gov/ct2/show/NCT03475732?id=NCT02655133+OR+NCT03475732+OR+NCT02025660+OR+NCT04182737+OR+NCT03013322+OR+NCT03085758+OR+NCT02442440+OR+NCT05469347+OR+NCT04123444+OR+NCT04055909&draw=2&rank=5&load=cart (accessed on 5 January 2023).
- ClinicalTrials.gov. Treatment of Patients With Early Septic Shock and Bio-Adrenomedullin(ADM) Concentration > 70 Pg/Ml With ADRECIZUMAB (NCT03085758). Available online: https://clinicaltrials.gov/ct2/show/NCT03085758?id=NCT02655133+OR+NCT03475732+OR+NCT02025660+OR+NCT04182737+OR+NCT03013322+OR+NCT03085758+OR+NCT02442440+OR+NCT05469347+OR+NCT04123444+OR+NCT04055909&draw=2&rank=6&load=cart (accessed on 5 January 2023).
- ClinicalTrials.gov. Effects on Microcirculation of IgGAM in Severe Septic/Septic Shock Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT02655133?id=NCT02655133+OR+NCT03475732+OR+NCT02025660+OR+NCT04182737+OR+NCT03013322+OR+NCT03085758+OR+NCT02442440+OR+NCT05469347+OR+NCT04123444+OR+NCT04055909&draw=2&rank=8&load=cart (accessed on 5 January 2023).
- ClinicalTrials.gov. Efficacy of Mw Vaccine in Treatment of Severe Sepsis (NCT02025660). Available online: https://clinicaltrials.gov/ct2/show/NCT02025660?id=NCT02655133+OR+NCT03475732+OR+NCT02025660+OR+NCT04182737+OR+NCT03013322+OR+NCT03085758+OR+NCT02442440+OR+NCT05469347+OR+NCT04123444+OR+NCT04055909&draw=2&rank=10&load=cart (accessed on 5 January 2023).
- ClinicalTrials.gov. Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of 3 Doses of MOTREM in Patients With Septic Shock (NCT03158948). Available online: https://clinicaltrials.gov/ct2/show/study/NCT03158948 (accessed on 5 April 2023).
- ClinicalTrials.gov. Safety and Efficacy of Interferon-Gamma 1b in Patients with Candidemia (NCT04979052). Available online: https://clinicaltrials.gov/ct2/show/NCT04979052?type=Intr&cond=Sepsis&intr=Interferon+gamma&draw=2&rank=4 (accessed on 10 December 2022).
- ClinicalTrials.gov. GM-CSF for Reversal of Immunoparalysis in Pediatric Sepsis-Induced MODS Study (NCT03769844). Available online: https://clinicaltrials.gov/ct2/show/NCT03769844?cond=Sepsis&intr=GM-CSF&draw=2&rank=1 (accessed on 10 December 2022).
- ClinicalTrials.gov. GM-CSF for Reversal of Immunoparalysis in Pediatric Sepsis-Induced MODS Study 2 (NCT05266001). Available online: https://clinicaltrials.gov/ct2/show/NCT05266001?cond=Sepsis&intr=GM-CSF&draw=2&rank=3 (accessed on 10 December 2022).
- International Clinical Trials Registry Platform. A Prospective, Double-Blind, Randomized Controlled Trial Study of the Effect of Immune Modulation on the Prognosis of Sepsis (ChiCTR2200060069). Available online: https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2200060069 (accessed on 5 April 2023).
- International Clinical Trials Registry Platform. Application of Immune Cell-Oriented Clinical Phenotypic Guides the Treatment of Sepsis (ChiCTR2100048326). Available online: https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2100048326 (accessed on 5 April 2023).
- ClinicalTrials.gov. Clinical Efficacy of Ulinastatin for Treatment of Sepsis With Systemic Inflammatory Response Syndrome (NCT05391789). Available online: https://clinicaltrials.gov/ct2/show/NCT05391789?type=Intr&cond=Sepsis&intr=Ulinastatin&draw=2&rank=2 (accessed on 10 December 2022).
- International Clinical Trials Registry Platform. Clinical Research of Fecal Microbiota Transplantation and Probiotics Regulating Intestinal Flora Diversity on the Systemic Immune Function in Septic Patients (ChiCTR-INR-17011642). Available online: https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR-INR-17011642 (accessed on 5 April 2023).
- ClinicalTrials.gov. Advanced Mesenchymal Enhanced Cell Therapy for Septic Patients (NCT04961658). Available online: https://clinicaltrials.gov/ct2/show/NCT04961658?type=Intr&cond=Sepsis&intr=mesenchymal+stem+cells&draw=2&rank=10 (accessed on 10 December 2022).
- ClinicalTrials.gov. Personalized Immunotherapy in Sepsis (NCT04990232). Available online: https://clinicaltrials.gov/ct2/show/NCT04990232?term=NCT04990232&draw=2&rank=1 (accessed on 9 January 2023).
- ClinicalTrials.gov. Efficacy and Safety of Therapy With IgM-Enriched Immunoglobulin With a Personalized Dose vs Standard Dose in Patients With Septic Shock (NCT04182737). Available online: https://clinicaltrials.gov/ct2/show/NCT04182737?id=NCT02655133+OR+NCT03475732+OR+NCT02025660+OR+NCT04182737+OR+NCT03013322+OR+NCT03085758+OR+NCT02442440+OR+NCT05469347+OR+NCT04123444+OR+NCT04055909&draw=2&rank=2&load=cart (accessed on 5 January 2023).
- ClinicalTrials.gov. Efficacy, Safety and Tolerability of Nangibotide in Patients With Septic Shock (NCT04055909). Available online: https://clinicaltrials.gov/ct2/show/NCT04055909?id=NCT02655133+OR+NCT03475732+OR+NCT02025660+OR+NCT04182737+OR+NCT03013322+OR+NCT03085758+OR+NCT02442440+OR+NCT05469347+OR+NCT04123444+OR+NCT04055909&draw=2&rank=4&load=cart (accessed on 5 January 2023).
- Guo, R.F.; Ward, P.A. Role of C5a in Inflammatory Responses. Annu. Rev. Immunol. 2005, 23, 821–852. [Google Scholar] [CrossRef]
- Ward, P.A.; Guo, R.F.; Riedemann, N.C. Manipulation of the Complement System for Benefit in Sepsis. Crit. Care Res. Pract. 2012, 2012, 427607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattahi, F.; Zetoune, F.S.; Ward, P.A. Complement as a Major Inducer of Harmful Events in Infectious Sepsis. Shock 2020, 54, 595–605. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Clinical Assessment of Safety and Tolerability of the New Monoclonal Humanized Antibody CaCP29 (NCT01319903). Available online: https://clinicaltrials.gov/ct2/show/NCT01319903?term=inflarx&cond=sepsis&draw=2&rank=2 (accessed on 19 February 2022).
- Van Der Poll, T.; Van De Veerdonk, F.L.; Scicluna, B.P.; Netea, M.G. The Immunopathology of Sepsis and Potential Therapeutic Targets. Nat. Rev. Immunol. 2017, 17, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Silasi-Mansat, R.; Zhu, H.; Popescu, N.I.; Peer, G.; Sfyroera, G.; Magotti, P.; Ivanciu, L.; Lupu, C.; Mollnes, T.E.; Taylor, F.B.; et al. Complement Inhibition Decreases the Procoagulant Response and Confers Organ Protection in a Baboon Model of Escherichia Coli Sepsis. Blood 2010, 116, 1002–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoergenhofer, C.; Schwameis, M.; Gelbenegger, G.; Buchtele, N.; Thaler, B.; Mussbacher, M.; Schabbauer, G.; Wojta, J.; Jilma-Stohlawetz, P.; Jilma, B. Inhibition of Protease-Activated Receptor (PAR1) Reduces Activation of the Endothelium, Coagulation, Fibrinolysis and Inflammation during Human Endotoxemia. Thromb. Haemost. 2018, 118, 1176–1184. [Google Scholar] [CrossRef]
- Chiche, L.; Forel, J.M.; Thomas, G.; Farnarier, C.; Cognet, C.; Guervilly, C.; Zandotti, C.; Vély, F.; Roch, A.; Vivier, E.; et al. Interferon-γ Production by Natural Killer Cells and Cytomegalovirus in Critically Ill Patients. Crit. Care Med. 2012, 40, 3162–3169. [Google Scholar] [CrossRef]
- Leentjens, J.; Kox, M.; Koch, R.M.; Preijers, F.; Joosten, L.A.B.; Van Der Hoeven, J.G.; Netea, M.G.; Pickkers, P. Reversal of Immunoparalysis in Humans in Vivo: A Double-Blind, Placebo-Controlled, Randomized Pilot Study. Am. J. Respir. Crit. Care Med. 2012, 186, 838–845. [Google Scholar] [CrossRef]
- Döcke, W.D.; Randow, F.; Syrbe, U.; Krausch, D.; Asadullah, K.; Reinke, P.; Volk, H.D.; Kox, W. Monocyte Deactivation in Septic Patients: Restoration by IFN-Gamma Treatment. Nat. Med. 1997, 3, 678–681. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. The Effects of Interferon-Gamma on Sepsis-Induced Immunoparalysis (NCT01649921). Available online: https://clinicaltrials.gov/ct2/show/NCT01649921?term=NCT01649921&draw=2&rank=1 (accessed on 13 March 2022).
- Mackall, C.L.; Fry, T.J.; Gress, R.E. Harnessing the Biology of IL-7 for Therapeutic Application. Nat. Rev. Immunol. 2011, 11, 330–342. [Google Scholar] [CrossRef]
- Unsinger, J.; McGlynn, M.; Kasten, K.R.; Hoekzema, A.S.; Watanabe, E.; Muenzer, J.T.; McDonough, J.S.; Tschoep, J.; Ferguson, T.A.; McDunn, J.E.; et al. IL-7 Promotes T Cell Viability, Trafficking, and Functionality and Improves Survival in Sepsis. J. Immunol. 2010, 184, 3768–3779. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.A.; Sportès, C.; Ahmadzadeh, M.; Fry, T.J.; Ngo, L.T.; Schwarz, S.L.; Stetler-Stevenson, M.; Morton, K.E.; Mavroukakis, S.A.; Morre, M.; et al. IL-7 Administration to Humans Leads to Expansion of CD8+ and CD4+ Cells but a Relative Decrease of CD4+ T-Regulatory Cells. J. Immunother. 2006, 29, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 Restores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight 2018, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lundström, W.; Fewkes, N.M.; Mackall, C.L. IL-7 in Human Health and Disease. Semin. Immunol. 2012, 24, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyman, O.; Ramsey, C.; Kim, D.M.; Sprent, J.; Surh, C.D. IL-7/Anti-IL-7 MAb Complexes Restore T Cell Development and Induce Homeostatic T Cell Expansion without Lymphopenia. J. Immunol. 2008, 180, 7265–7275. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Unsinger, J.; Davis, C.G.; Muenzer, J.T.; Ferguson, T.A.; Chang, K.; Osborne, D.F.; Clark, A.T.; Coopersmith, C.M.; McDunn, J.E.; et al. IL-15 Prevents Apoptosis, Reverses Innate and Adaptive Immune Dysfunction, and Improves Survival in Sepsis. J. Immunol. 2010, 184, 1401–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchins, N.A.; Unsinger, J.; Hotchkiss, R.S.; Ayala, A. The New Normal: Immunomodulatory Agents against Sepsis Immune Suppression. Trends Mol. Med. 2014, 20, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Qi, H.; Zhou, J.; Xu, S.; Gao, Y. Treatment with Recombinant Interleukin-15 (IL-15) Increases the Number of T Cells and Natural Killer (NK) Cells and Levels of Interferon-γ (IFN-γ) in a Rat Model of Sepsis. Med. Sci. Monit. 2019, 25, 4450–4456. [Google Scholar] [CrossRef]
- Bo, L.; Wang, F.; Zhu, J.; Li, J.; Deng, X. Granulocyte-Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) for Sepsis: A Meta-Analysis. Crit. Care 2011, 15, R58. [Google Scholar] [CrossRef] [Green Version]
- Mathias, B.; Szpila, B.E.; Moore, F.A.; Efron, P.A.; Moldawer, L.L. A Review of GM-CSF Therapy in Sepsis. Medicine 2015, 94, e2044. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.W.; Knatz, N.L.; Vetterly, C.; Tomarello, S.; Wewers, M.D.; Volk, H.D.; Carcillo, J.A. Immunoparalysis and Nosocomial Infection in Children with Multiple Organ Dysfunction Syndrome. Intensive Care Med. 2011, 37, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Meisel, C.; Schefold, J.C.; Pschowski, R.; Baumann, T.; Hetzger, K.; Gregor, J.; Weber-Carstens, S.; Hasper, D.; Keh, D.; Zuckermann, H.; et al. Granulocyte-Macrophage Colony-Stimulating Factor to Reverse Sepsis-Associated Immunosuppression: A Double-Blind, Randomized, Placebo-Controlled Multicenter Trial. Am. J. Respir. Crit. Care Med. 2009, 180, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Quadrini, K.J.; Patti-Diaz, L.; Maghsoudlou, J.; Cuomo, J.; Hedrick, M.N.; McCloskey, T.W. A Flow Cytometric Assay for HLA-DR Expression on Monocytes Validated as a Biomarker for Enrollment in Sepsis Clinical Trials. Cytom. Part B Clin. Cytom. 2021, 100, 103–114. [Google Scholar] [CrossRef]
- Zhuang, Y.; Peng, H.; Chen, Y.; Zhou, S.; Chen, Y. Dynamic Monitoring of Monocyte HLA-DR Expression for the Diagnosis, Prognosis, and Prediction of Sepsis. Front. Biosci. Landmark 2017, 22, 1344–1354. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.S.; Rissiek, A.; Priefler, M.; Schwedhelm, E.; Robbe, L.; Bauer, A.; Zahrte, C.; Zoellner, C.; Kluge, S.; Nierhaus, A. Human Leucocyte Antigen (HLA-DR) Gene Expression Is Reduced in Sepsis and Correlates with Impaired TNFα Response: A Diagnostic Tool for Immunosuppression? PLoS ONE 2017, 12, e0182427. [Google Scholar] [CrossRef] [PubMed]
- Zouiouich, M.; Gossez, M.; Venet, F.; Rimmelé, T.; Monneret, G. Automated Bedside Flow Cytometer for MHLA-DR Expression Measurement: A Comparison Study with Reference Protocol. Intensive Care Med. Exp. 2017, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Almansa, R.; Martín, S.; Martin-Fernandez, M.; Heredia-Rodríguez, M.; Gómez-Sánchez, E.; Aragón, M.; Andrés, C.; Calvo, D.; Rico-Feijoo, J.; Esteban-Velasco, M.C.; et al. Combined Quantification of Procalcitonin and HLA-DR Improves Sepsis Detection in Surgical Patients. Sci. Rep. 2018, 8, 11999. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, H.M.; Wang, T.; Zhang, Y.M.; Zhu, X. The Efficacy of Thymosin A1 as Immunomodulatory Treatment for Sepsis: A Systematic Review of Randomized Controlled Trials. BMC Infect. Dis. 2016, 16, 488. [Google Scholar] [CrossRef] [Green Version]
- Romani, L.; Moretti, S.; Fallarino, F.; Bozza, S.; Ruggeri, L.; Casagrande, A.; Aversa, F.; Bistoni, F.; Velardi, A.; Garaci, E. Jack of All Trades: Thymosin A1 and Its Pleiotropy. Ann. N. Y. Acad. Sci. 2012, 1269, 1–6. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef] [Green Version]
- Dominari, A.; III, D.H.; Pandav, K.; Matos, W.; Biswas, S.; Reddy, G.; Thevuthasan, S.; Khan, M.A.; Mathew, A.; Makkar, S.S.; et al. Thymosin Alpha 1: A Comprehensive Review of the Literature. World J. Virol. 2020, 9, 67–78. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, L.; Liu, J.; Ma, G.; Kou, Q.; He, Z.; Chen, J.; Ou-Yang, B.; Chen, M.; Li, Y.; et al. The Efficacy of Thymosin Alpha 1 for Severe Sepsis (ETASS): A Multicenter, Single-Blind, Randomized and Controlled Trial. Crit. Care 2013, 17, R8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, L.; Bistoni, F.; Montagnoli, C.; Gaziano, R.; Bozza, S.; Bonifazi, P.; Zelante, T.; Moretti, S.; Rasi, G.; Garaci, E.; et al. Thymosin A1: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Ann. N. Y. Acad. Sci. 2007, 1112, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Shi, Q.; Fan, Y.; Wang, Q.; Yin, W. Ulinastatin and/or Thymosin A1 for Severe Sepsis: A Systematic Review and Meta-Analysis. J. Trauma Acute Care Surg. 2016, 80, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, B.; Tang, Y.; Chang, P.; Yao, L.; Huang, B.; Lodato, R.F.; Liu, Z. Improvement of Sepsis Prognosis by Ulinastatin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Wysocka, M.; Montaner, L.J.; Karp, C.L. Flt3 Ligand Treatment Reverses Endotoxin Tolerance-Related Immunoparalysis. J. Immunol. 2005, 174, 7398–7402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toliver-Kinsky, T.E.; Lin, C.Y.; Herndon, D.N.; Sherwood, E.R. Stimulation of Hematopoiesis by the Fms-like Tyrosine Kinase 3 Ligand Restores Bacterial Induction of Th1 Cytokines in Thermally Injured Mice. Infect. Immun. 2003, 71, 3058–3067. [Google Scholar] [CrossRef] [Green Version]
- Patil, N.K.; Bohannon, J.K.; Luan, L.; Guo, Y.; Fensterheim, B.; Hernandez, A.; Wang, J.; Sherwood, E.R. Flt3 Ligand Treatment Attenuates T Cell Dysfunction and Improves Survival in a Murine Model of Burn Wound Sepsis. Shock 2017, 47, 40–51. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Z.; Zhu, W.; Yang, T.; Deng, X.; Bao, R. CD155 Blockade Improves Survival in Experimental Sepsis by Reversing Dendritic Cell Dysfunction. Biochem. Biophys. Res. Commun. 2017, 490, 283–289. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, L. PD-1 Signaling Pathway in Sepsis: Does It Have a Future? Clin. Immunol. 2021, 229, 108742. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Lou, J.; Li, J.; Bo, L.; Zhu, K.; Wan, X.; Deng, X.; Cai, Z. PD-L1 Blockade Improves Survival in Experimental Sepsis by Inhibiting Lymphocyte Apoptosis and Reversing Monocyte Dysfunction. Crit. Care 2010, 14, R220. [Google Scholar] [CrossRef] [Green Version]
- Patera, A.C.; Drewry, A.M.; Chang, K.; Beiter, E.R.; Osborne, D.; Hotchkiss, R.S. Frontline Science: Defects in Immune Function in Patients with Sepsis Are Associated with PD-1 or PD-L1 Expression and Can Be Restored by Antibodies Targeting PD-1 or PD-L1. J. Leukoc. Biol. 2016, 100, 1239–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, R.; Fang, Y.; Yu, H.; Zhao, L.; Jiang, Z.; Li, C.S. Monocyte Programmed Death Ligand-1 Expression after 3-4 Days of Sepsis Is Associated with Risk Stratification and Mortality in Septic Patients: A Prospective Cohort Study. Crit. Care 2016, 20, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Qi, Z.; Liu, B.; Li, C.S. Programmed Cell Death-1/Programmed Death-Ligand 1 Blockade Improves Survival of Animals with Sepsis: A Systematic Review and Meta-Analysis. Biomed Res. Int. 2018, 2018, 1969474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotchkiss, R.S.; Colston, E.; Yende, S.; Crouser, E.D.; Martin, G.S.; Albertson, T.; Bartz, R.R.; Brakenridge, S.C.; Delano, M.J.; Park, P.K.; et al. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Nivolumab. Intensive Care Med. 2019, 45, 1360–1371. [Google Scholar] [CrossRef]
- Chang, K.C.; Burnham, C.A.; Compton, S.M.; Rasche, D.P.; Mazuski, R.J.; SMcDonough, J.; Unsinger, J.; Korman, A.J.; Green, J.M.; Hotchkiss, R.S. Blockade of the Negative Co-Stimulatory Molecules PD-1 and CTLA-4 Improves Survival in Primary and Secondary Fungal Sepsis. Crit. Care 2013, 17, R85. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency (EMA). Opdivo (Nivolumab): An Overview of Opdivo and Why It Is Authorised in the EU. Available online: https://www.ema.europa.eu/en/documents/overview/mylotarg-epar-summary-public_en.pdf (accessed on 23 March 2022).
- Shindo, Y.; Unsinger, J.; Burnham, C.-A.; Green, J.M.; Hotchkiss, R.S. Interleukin-7 and Anti–Programmed Cell Death 1 Antibody Have Differing Effects to Reverse Sepsis-Induced Immunosuppression. Shock 2015, 43, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Pauken, K.E.; Sammons, M.A.; Odorizzi, P.M.; Manne, S.; Godec, J.; Khan, O.; Drake, A.M.; Chen, Z.; Sen, D.R.; Kurachi, M.; et al. Epigenetic Stability of Exhausted T Cells Limits Durability of Reinvigoration by PD-1 Blockade. Science 2016, 354, 1160–1165. [Google Scholar] [CrossRef] [Green Version]
- Shindo, Y.; McDonough, J.S.; Chang, K.C.; Ramachandra, M.; Sasikumar, P.G.; Hotchkiss, R.S. Anti-PD-L1 Peptide Improves Survival in Sepsis. J. Surg. Res. 2017, 208, 33–39. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.A.; Patil, T.K.; Bohannon, J.K.; Hernandez, A.; Sherwood, E.R.; Patil, N.K. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Front. Immunol. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Huang, S.W.; Chen, H.; Lu, M.L.; Wang, J.L.; Xie, R.L.; Zhao, B.; Chen, Y.; Xu, Z.W.; Fei, J.; Mao, E.Q.; et al. Mycophenolate Mofetil Protects Septic Mice via the Dual Inhibition of Inflammatory Cytokines and PD-1. Inflammation 2018, 41, 1008–1020. [Google Scholar] [CrossRef]
- Zeng, L.; Kang, R.; Zhu, S.; Wang, X.; Cao, L.; Wang, H.; Billiar, T.R.; Jiang, J.; Tang, D. ALK Is a Therapeutic Target for Lethal Sepsis. Sci. Transl. Med. 2017, 9, eaan5689. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Ning, B. tao Signaling Pathways and Intervention Therapies in Sepsis. Signal Transduct. Target. Ther. 2021, 6, 407. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Hu, Q.; Fang, X.; Liu, J.; Xu, J.; Hu, J.; Liu, X.; Ling, Q.; Wang, Y.; Li, H.; et al. LDK378 Improves Micro- and Macro-Circulation via Alleviating STING-Mediated Inflammatory Injury in a Sepsis Rat Model Induced by Cecal Ligation and Puncture. J. Inflamm. 2019, 16, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vachharajani, V.T.; Liu, T.; Wang, X.; Hoth, J.J.; Yoza, B.K.; McCall, C.E. Sirtuins Link Inflammation and Metabolism. J. Immunol. Res. 2016, 2016, 8167273. [Google Scholar] [CrossRef] [Green Version]
- Opal, S.M.; Ellis, J.L.; Suri, V.; Freudenberg, J.M.; Vlasuk, G.P.; Li, Y.; Chahin, A.B.; Palardy, J.E.; Parejo, N.; Yamamoto, M.; et al. Pharmacological SIRT1 Activation Improves Mortality and Markedly Alters Transcriptional Profiles That Accompany Experimental Sepsis. Shock 2016, 45, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Haak, B.W.; Prescott, H.C.; Wiersinga, W.J. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Front. Immunol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaines, S.; Alverdy, J.C. Fecal Micobiota Transplantation to Treat Sepsis of Unclear Etiology. Crit. Care Med. 2017, 45, 1106–1107. [Google Scholar] [CrossRef]
- Keskey, R.; Cone, J.T.; DeFazio, J.R.; Alverdy, J.C. The Use of Fecal Microbiota Transplant in Sepsis. Transl. Res. 2020, 226, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Tang, C.; He, Q.; Zhao, X.; Li, N.; Li, J. Successful Treatment of Severe Sepsis and Diarrhea after Vagotomy Utilizing Fecal Microbiota Transplantation: A Case Report. Crit. Care 2015, 19, 37. [Google Scholar] [CrossRef] [Green Version]
- Khosrojerdi, A.; Soudi, S.; Hosseini, A.Z.; Eshghi, F.; Shafiee, A.; Hashemi, S.M. Immunomodulatory and Therapeutic Effects of Mesenchymal Stem Cells on Organ Dysfunction in Sepsis. Shock 2021, 55, 423–440. [Google Scholar] [CrossRef]
- Laroye, C.; Gibot, S.; Huselstein, C.; Bensoussan, D. Mesenchymal Stromal Cells for Sepsis and Septic Shock: Lessons for Treatment of COVID-19. Stem Cells Transl. Med. 2020, 9, 1488–1494. [Google Scholar] [CrossRef]
- Keane, C.; Jerkic, M.; Laffey, J.G. Stem Cell–Based Therapies for Sepsis. Anesthesiology 2017, 127, 1017–1034. [Google Scholar] [CrossRef] [PubMed]
- Laroye, C.; Gibot, S.; Reppel, L.; Bensoussan, D. Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock? Stem Cells 2017, 35, 2331–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, A.R.R.; Dahlke, M.H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front. Immunol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messmer, A.S.; Que, Y.A.; Schankin, C.; Banz, Y.; Bacher, U.; Novak, U.; Pabst, T. CAR T-Cell Therapy and Critical Care: A Survival Guide for Medical Emergency Teams. Wien. Klin. Wochenschr. 2021, 133, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Budde, L.E.; Zaia, J.A. CD19 CAR-T Therapy and Sepsis: Dancing with the Devil. Blood 2018, 131, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Zafer, M.M.; El-Mahallawy, H.A.; Ashour, H.M. Severe COVID-19 and Sepsis: Immune Pathogenesis and Laboratory Markers. Microorganisms 2021, 9, 159. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.; Pickkers, P.; Derde, L.; Leavis, H.; van Crevel, R.; Engel, J.J.; Wiersinga, W.J.; Vlaar, A.P.J.; Shankar-Hari, M.; et al. A Guide to Immunotherapy for COVID-19. Nat. Med. 2022, 28, 39–50. [Google Scholar] [CrossRef]
- Vincent, J. COVID-19: It’s All about Sepsis. Future Microbiol. 2021, 16, 131–133. [Google Scholar] [CrossRef]
- Noreen, S.; Maqbool, I.; Madni, A. Dexamethasone: Therapeutic Potential, Risks, and Future Projection during COVID-19 Pandemic. Eur. J. Pharmacol. 2021, 894, 173854. [Google Scholar] [CrossRef]
- Kotsaki, A.; Pickkers, P.; Bauer, M.; Calandra, T.; Lupse, M.; Wiersinga, W.J.; Meylan, S.; Bloos, F.; Van Der Poll, T.; Slim, M.A.; et al. ImmunoSep (Personalised Immunotherapy in Sepsis) International Controlled Randomised Clinical Trial: Study Protocol. BMJ Open 2022, 12, e067251. [Google Scholar] [CrossRef] [PubMed]
- Prescott, H.C.; Kepreos, K.M.; Wiitala, W.L.; Iwashyna, T.J. Temporal Changes in the Influence of Hospitals and Regional Healthcare Networks on Severe Sepsis Mortality. Crit. Care Med. 2015, 43, 1368–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, R.; Kolte, A.; Ahlers, O.; Oswald, M.; Krauss, V.; Roell, D.; Sommerfeld, O.; Dimopoulos, G.; Tsangaris, I.; Antoniadou, E.; et al. Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock. Front. Immunol. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Méndez Hernández, R.; Ramasco Rueda, F. Biomarkers as Prognostic Predictors and Therapeutic Guide in Critically Ill Patients: Clinical Evidence. J. Pers. Med. 2023, 13, 333. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, A.R.; Sloot, P.M.A.; Wiersinga, W.J.; van der Poll, T. Embracing Complexity in Sepsis. Crit. Care 2023, 27, 102. [Google Scholar] [CrossRef] [PubMed]
- Van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The Immunology of Sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef]
- Shukla, P.; Rao, G.M.; Pandey, G.; Sharma, S.; Mittapelly, N.; Shegokar, R.; Mishra, P.R. Therapeutic Interventions in Sepsis: Current and Anticipated Pharmacological Agents. Br. J. Pharmacol. 2014, 171, 5011–5031. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; van der Poll, T.; Marshall, J.C. The End of “One Size Fits All” Sepsis Therapies: Toward an Individualized Approach. Biomedicines 2022, 10, 2260. [Google Scholar] [CrossRef]
- Liao, Y.-E.; Xu, Y.; Arnold, K.; Zhang, F.; Li, J.; Sellers, R.; Yin, C.; Pagadala, V.; Inman, A.M.; Linhardt, R.J.; et al. Using Heparan Sulfate Octadecasaccharide (18-Mer) as a Multi-Target Agent to Protect against Sepsis. Proc. Natl. Acad. Sci. USA 2023, 120, e2209528120. [Google Scholar] [CrossRef]
- Lin, H.Y. The Severe COVID-19: A Sepsis Induced by Viral Infection? And Its Immunomodulatory Therapy. Chin. J. Traumatol. 2020, 23, 190–195. [Google Scholar] [CrossRef]
- ImmunoSep. Personalised Immunotherapy in Sepsis: A Precision Medicine Approach. Available online: https://immunosep.eu/ (accessed on 9 January 2023).
Title | ClinicalTrials.gov Identifier | Intervention | Phase (Participants) | Study Design | Primary Outcome | Study Start Date | Study Progress | Primary Sponsor | Ref. |
---|---|---|---|---|---|---|---|---|---|
Studying Complement Inhibition in Early, Newly Developing Septic Organ Dysfunction | NCT02246595 | CaCP29 | Phase 2 (n = 72) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | 1. Plasma concentration of CaCP29 2. Pharmacodynamic effects of CaCP29 on the change from baseline in plasma concentrations of C5a 3. Safety variables | April 2014 | Completed, No Results Posted | InflaRx GmbH | [31] |
In Vivo Effects of C1-esterase Inhibitor on the Innate Immune Response During Human Endotoxemia | NCT01766414 | C1-esterase inhibitor | Phase 3 (n = 20) | Triple-blinded, randomized, parallel assignment, placebo-controlled trial (unspecified blinding) | Neutrophil phenotype and redistribution | September 2013 | Completed, No Results Posted | Radboud University Medical Center | [32] |
Vorapaxar in the Human Endotoxemia Model | NCT02875028 | Vorapaxar | Phase 4 (n = 16) | Quadruple-blinded, randomized, crossover assignment, placebo-controlled trial | Changes in Prothrombin Fragments F1+2 | June 2016 | Completed | Medical University of Vienna | [33] |
A Trial of Validation and Restoration of Immune Dysfunction in Severe Infections and Sepsis | NCT03332225 | Anakinra; Recombinant human interferon-γ | Phase 2 (n = 36) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | 28-day mortality | December 2017 | Completed, No Results Posted | Hellenic Institute for the Study of Sepsis | [34] |
A Study of IL-7 to Restore Absolute Lymphocyte Counts in Sepsis Patients | NCT02640807 | CYT107: Interleukin-7 | Phase 2 (n = 27) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | Immune reconstitution of lymphocytopenic sepsis patients | January 2016 | Completed | Revimmune | [35] |
GM-CSF to Decrease ICU Acquired Infections | NCT02361528 | GM-CSF | Phase 3 (n = 166) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | Number of patients presenting at least one ICU-acquired infection at D28 or ICU discharge | September 2015 | Completed, No Results Posted | Hospices Civilis de Lyon | [36] |
Efficacy of Thymosin Alpha 1 on Improving Monocyte Function in Sepsis | NCT02883595 | Thymosin Alpha 1 | Phase 4 (n = 20) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | Flow cytometric measuring of phagocytosis (CD11b, CD64), antigen presenting (HLA-DR, CD86, and PD-L1), and apoptosis (active caspase 3) on monocytes | March 2016 | Completed, No Results Posted | Sun Yat-sen University | [37] |
The Efficacy and Safety of Tα1 for Sepsis | NCT02867267 | Thymosin Alpha 1 | Phase 3 (n = 1106) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | 28-day all-cause mortality | September 2016 | Completed, No Results Posted | Sun Yat-sem University | [38] |
Effects of shengmai injection combined with thymosin on cellular immune function in patients with sepsis and low immune function: a prospective, randomized, controlled trial | N/A (ChiCTR identifier: ChiCTR2100043911) | Shengmai injection; Thymosin injection | N/A (n = 90) | Parallel assignment, randomized, placebo-controlled trial | Peripheral blood T-cell subsets | January 2019 | Completed | The Ninth People’s Hospital of Suzhou | [39] |
Ulinastatin Treatment in Adult Patients with Sepsis and Septic Shock in China | NCT02647554 | Ulinastatin | Phase 4 (n = 347) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | 28-day all-cause mortality | December 2016 | Completed, No Results Posted | Peking Union Medical College Hospital | [40] |
A Study of Nivolumab Safety and Pharmacokinetics in Patients with Severe Sepsis or Septic Shock | NCT02960854 | Nivolumab | Phase 1 (n = 38) | Double-blinded, randomized, parallel assignment, placebo-controlled trial | 1. Percentage of Incidence Rates of Serious Adverse Events (SAEs), Adverse Events (AEs), Immune-mediated AEs, AEs Leading to Discontinuation, and Deaths 2. Composite of Vital Signs and Electrocardiogram 3. Peak Nivolumab Serum Concentration 4. Trough Nivolumab Serum Concentration 5. Average Nivolumab Serum Concentration 6. Time of Maximum Observed Concentration 7. Area Under the Serum Concentration–time Curve From Time Zero to Time of Last Quantifiable Concentration 8. Total Clearance 9. Volume of Distribution 10. Half-life | December 2016 | Completed | Bristol-Myers Squibb | [41] |
Effect of Mesenchymal Stromal Cells on Sepsis and Sepsis and Septic Shock | NCT05283317 | Mesenchymal Stem Cells | Phase 1, Phase 2 (n = 30) | Single-blinded, non-randomized, parallel assignment interventional trial | 28-day mortality | March 2018 | Completed, No Results Posted | TC Enciyes University | [42] |
Randomized, Parallel Group, Placebo Control, Unicentric, Interventional Study to Assess the Effect of Expanded Human Allogeneic Adipose-derived Mesenchymal Adult Stem Cells on the Human Response to Lipopolysaccharide in Human Volunteers | NCT02328612 | Intravenous infusion of cells | Phase 1 (n = 32) | Randomized, parallel assignment, open-label trial | Inflammatory response as measured by laboratory measurements and functional assays of innate immunology | October 2014 | Completed, No Results Posted | Tigenix S.A.U. | [43] |
Cellular Immunotherapy for Septic Shock: A Phase I Trial | NCT02421484 | Allogeneic Mesenchymal Stromal Cells | Phase 1 (n = 9) | Single-group assignment, open-label trial | Number of adverse events as a measure of safety and tolerability | May 2015 | Completed, No Results Posted | Ottawa Hospital Research Institute | [44] |
Pharmacokinetics of XueBiJing in Patients with Sepsis | NCT03475732 | XueBiJing injection | N/A (n = 35) | Single-group assignment, open-label trial | Plasma concentrations of XueBiJing injection compounds | March 2018 | Completed, No Results Posted | Southeast University, China | [45] |
Treatment of Patients with Early Septic Shock and Bio-Adrenomedullin (ADM) Concentration > 70 pg/mL with ADRECIZUMAB | NCT03085758 | Adrecizumab | Phase 2 (n = 301) | Double-blinded, randomized, parallel assignment, placebo-controlled trial | 1. 90-day mortality 2. Interruption of infusion due to intolerability of adrecizumab 3. Number of participants with treatment-emergent adverse events per treatment group 4. Number of participants with treatment-emergent adverse events per treatment group with mild severity treatment-emergent events 5. Number of participants with treatment-emergent adverse events per treatment group with moderate severity treatment-emergent events 6. Number of participants with treatment-emergent adverse events per treatment group with severe severity treatment-emergent events | December 2017 | Completed | Adrenomed AG | [46] |
Effects of Microcirculation of IgGAM in Severe Septic/Septic Shock Patients | NCT02655133 | Pentaglobin® | Phase 2 (n = 20) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | Perfused vessel density (PVD) | January 2016 | Completed, No Results Posted | Università Politecnica delle Manche | [47] |
Efficacy of Mw Vaccine in Treatment of Severe Sepsis | NCT02025660 | Mw | Phase 2, Phase 3 (n = 50) | Double-blinded, randomized, parallel assignment, placebo-controlled trial | 4-week mortality | August 2013 | Completed, No Results Posted | Postgraduate Institute of Medical Education and Research | [48] |
Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of 3 Doses of MOTREM in Patients with Septic Shock | NCT03158948 | MOTREM: Nangibotide | Phase 2 (n = 50) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | 1. Vital signs 2. ECG 3. Number of patients with clinically relevant abnormal laboratory values 4. Presence of anti-LR12 antibodies 5. Adverse events | July 2017 | Completed, Results Submitted | Inotrem | [49] |
Title | ClinicalTrials.gov Identifier | Intervention | Phase | Study Design | Primary Outcome | Study Start Date | Study Progress | Primary Sponsor | Ref. |
---|---|---|---|---|---|---|---|---|---|
Safety and Efficacy of Interferon-gamma 1β in Patients with Candidemia | NCT04979052 | Interferon Gamma-1β | Phase 2 (200 estimated participants) | Randomized, parallel assignment, open-label adaptive trial | Time to first negative blood culture | March 2022 | Recruiting | Redboud University Medical Center | [50] |
GM-CSF for Reversal of Immunoparalysis in Pediatric Sepsis-induced MODS Study | NCT03769844 | GM-CSF | Phase 4 (120 estimated participants) | Non-randomized, sequential assignment, open-label trial | TNF-α response | December 2018 | Active, not recruiting | Nationwide Children’s Hospital | [51] |
GM-CSF for Reversal of Immunoparalysis in Pediatric Sepsis-induced MODS Study 2 | NCT05266001 | GM-CSF | Phase 3 (400 estimated participants) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | Cumulative 28-day pediatric logistic organ dysfunction (PELOD)-2 score | June 2022 | Recruiting | Nationwide Children’s Hospital | [52] |
A prospective, double-blind, randomized controlled trial study of the effect of immune regulation on the prognosis of sepsis | N/A (ChiCTR identifier: ChiCTR2200060069) | Thymopentin | Phase 4 (426 estimated participants) | Double-blinded, randomized, parallel assignment, placebo-controlled trial | 28-day mortality rate | June 2022 | Not yet recruiting | The First Affiliated Hospital with Nanjing Medical University | [53] |
Application of Immune Cell-oriented Clinical Phenotypic Guides the Treatment of Sepsis | N/A (ChiCTR identifier: ChiCTR2100048326) | Methylprednisolone; Thymosin α1 | N/A (200 estimated participants) | Parallel assignment randomized trial (blinding unspecified) | 28-day patient mortality rate | July 2021 | Not yet recruiting | Renji Hospital, Shanghai Jiaotong University School of Medicine | [54] |
Clinical Efficacy of Ulinastatin for Treatment of Sepsis with Systemic Inflammatory Response Syndrome | NCT05391789 | Ulinastatin | Phase 3 (120 estimated participants) | Triple-blinded, randomized, parallel assignment, placebo-controlled trial | ΔSOFA | July 2022 | Not yet recruiting | Huashan Hospital | [55] |
Clinical research of fecal microbiota transplantation and probiotics regulating intestinal flora diversity on the systemic immune function in septic patients | N/A (ChiCTR identifier: ChiCTR-INR-17011642) | Fecal microbiota transplantation; Probiotic | N/A (80 estimated participants) | Parallel assignment, randomized trial (blinding unspecified) | 1. Gut microbiota composition 2. Immunoglobulin 3. Lymphocyte immune analysis | July 2017 | Not yet recruiting | Chinese food fermentation industry research institute | [56] |
Advanced Mesenchymal Enhanced Cell Therapy for Septic Patients | NCT04961658 | GEM00220: Enhanced MSCs | Phase 1 (21 estimated participants) | Sequential assignment, non-randomized, open-label, dose-escalation trial | 1. Adverse Events 2. Maximum Feasible Tolerated Dose | August 2021 | Recruiting | Northern Therapeutics | [57] |
Personalized Immunotherapy in Sepsis | NCT04990232 | Anakinra; Recombinant human IFNγ | Phase 2 (280 estimated participants) | Quadruple-blinded, randomized, parallel assignment, double-placebo-controlled trial | Mean total Sequential Organ Failure Assessment score | July 2021 | Recruiting | Hellenic Institute for the Study of Sepsis | [58] |
Efficacy and Safety of Therapy with IgM-enriched Immunoglobulin with a Personalized Dose vs. Standard Dose in Patients with Septic Shock | NCT04182737 | IgM-enriched polyclonal immunoglobulins | Phase 3 (356 estimated participants) | Single-blinded, randomized, parallel assignment | All-cause, 28-day mortality | May 2020 | Recruiting | Massimo Girandis | [59] |
Efficacy, Safety and Tolerability of Nangibotide in Patients with Septic Shock | NCT04055909 | Nangibotide | Phase 2 (355 estimated participants) | Quadruple-blinded, randomized, parallel assignment, placebo-controlled trial | Sequential organ failure assessment (SOFA) score | November 2019 | Active, not recruiting | Inotrem | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, A.; Torre, C.; Pinto, R.; Sepodes, B.; Rocha, J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J. Clin. Med. 2023, 12, 2892. https://doi.org/10.3390/jcm12082892
Marques A, Torre C, Pinto R, Sepodes B, Rocha J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. Journal of Clinical Medicine. 2023; 12(8):2892. https://doi.org/10.3390/jcm12082892
Chicago/Turabian StyleMarques, Adriana, Carla Torre, Rui Pinto, Bruno Sepodes, and João Rocha. 2023. "Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms" Journal of Clinical Medicine 12, no. 8: 2892. https://doi.org/10.3390/jcm12082892
APA StyleMarques, A., Torre, C., Pinto, R., Sepodes, B., & Rocha, J. (2023). Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. Journal of Clinical Medicine, 12(8), 2892. https://doi.org/10.3390/jcm12082892