Breast Reconstruction with DIEP Flap: The Learning Curve at a Breast Reconstruction Center and a Single-Surgeon Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Institution
3.2. Single-Surgeon
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koshima, I.; Soeda, S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br. J. Plast. Surg. 1989, 42, 645–648. [Google Scholar] [CrossRef]
- Allen, R.J.; Treece, P. Deep Inferior Epigastric Perforator Flap for Breast Reconstruction. Ann. Plast. Surg. 1994, 32, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Busic, V.; Das-Gupta, R.; Mesic, H.; Begic, A. The deep inferior epigastric perforator flap for breast reconstruction, the learning curve explored. J. Plast. Reconstr. Aesthetic Surg. 2006, 59, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.O.P.; Damen, T.H.C.; Mureau, M.A.M.; Rakhorst, H.; Roche, N. A Critical Review of Perioperative Complications in 175 Free Deep Inferior Epigastric Perforator Flap Breast Reconstructions. Ann. Plast. Surg. 2007, 59, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lascar, I.; Totir, D.; Cinca, A.; Cortan, S.; Stefanescu, A.; Bratianu, R.; Udrescu, G.; Calcaianu, N.; Zamfirescu, D.G. Training program and learning curve in experimental microsurgery during the residency in plastic surgery. Microsurgery 2007, 27, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.S.; Hunt, J.P.; Guerra, A.B.; Dellacroce, F.J.; Sullivan, S.K.; Boraski, J.; Metzinger, S.E.; Dupin, C.L.; Allen, R.J. A 10-Year Retrospective Review of 758 DIEP Flaps for Breast Reconstruction. Plast. Reconstr. Surg. 2004, 113, 1153–1160. [Google Scholar] [CrossRef]
- Marre, D.; Hontanilla, B. Increments in ischaemia time induces microvascular complications in the DIEP flap for breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2013, 66, 80–86. [Google Scholar] [CrossRef]
- Lee, J.C.; Jang, H.-D.; Shin, B.-J. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: Our experience in 86 consecutive cases. Spine 2012, 37, 1548–1557. [Google Scholar] [CrossRef]
- Morris, S.F.; Pang, C.Y.; Zhong, A.; Boyd, B.; Forrest, C.R. Assessment of Ischemia-Induced Reperfusion Injury in the Pig Latissimus Dorsi Myocutaneous Flap Model. Plast. Reconstr. Surg. 1993, 92, 1162–1172. [Google Scholar] [CrossRef]
- Lee, K.-T.; Lee, J.E.; Nam, S.J.; Mun, G.-H. Ischaemic time and fat necrosis in breast reconstruction with a free deep inferior epigastric perforator flap. J. Plast. Reconstr. Aesthetic Surg. 2013, 66, 174–181. [Google Scholar] [CrossRef]
- Gürlek, A.; Kroll, S.S.; Schusterman, M.A. Ischemic Time and Free Flap Success. Ann. Plast. Surg. 1997, 38, 503–505. [Google Scholar] [CrossRef] [PubMed]
- LaPorta, R.; Longo, B.; Sorotos, M.; Farcomeni, A.; Amorosi, V.; Di Pompeo, F.S. Time-dependent factors in DIEP flap breast reconstruction. Microsurgery 2017, 37, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.M.; Dimopoulou, A.; Liss, A.G.; Zeebregts, C.J.; Kildal, M.; Whitaker, I.S.; Magnusson, A.; Acosta, R. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 1112–1117. [Google Scholar] [CrossRef]
- Casey, W.J.; Chew, R.T.; Rebecca, A.M.; Smith, A.A.; Collins, J.M.; Pockaj, B.A. Advantages of Preoperative Computed Tomography in Deep Inferior Epigastric Artery Perforator Flap Breast Reconstruction. Plast. Reconstr. Surg. 2009, 123, 1148–1155. [Google Scholar] [CrossRef]
- Acosta, R.; Enajat, M.; Rozen, W.M.; Smit, J.M.; Wagstaff, M.J.; Whitaker, I.S.; Audolfsson, T. Performing two DIEP flaps in a working day: An achievable and reproducible practice. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 648–654. [Google Scholar] [CrossRef]
- Di Pompeo, F.S.; Paolini, G.; D’Orsi, G.; Atzeni, M.; Catalano, C.; Cannavale, G.; Cilia, F.; Firmani, G.; Sorotos, M. Free-style technique versus computed tomographic angiography—Guided perforator selection in deep inferior epigastric perforator flap harvest: A prospective clinical study. Microsurgery 2023. published online ahead of print. [Google Scholar] [CrossRef]
- Bodin, F.; Dissaux, C.; Lutz, J.-C.; Hendriks, S.; Fiquet, C.; Bruant-Rodier, C. The DIEP flap breast reconstruction: Starting from scratch in a university hospital. Ann. Chir. Plast. Esthet. 2015, 60, 171–178. [Google Scholar] [CrossRef]
- Cubitt, J.; Barber, Z.; Khan, A.; Tyler, M. Breast reconstruction with deep inferior epigastric perforator flaps. Ind. Mark. Manag. 2012, 94, 552–558. [Google Scholar] [CrossRef]
- Selber, J.C.; Chang, E.I.; Liu, J.; Suami, H.; Adelman, D.M.; Garvey, P.; Hanasono, M.M.; Butler, C.E. Tracking the Learning Curve in Microsurgical Skill Acquisition. Plast. Reconstr. Surg. 2012, 130, 550e–557e. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Yoo, H.-S.; Choi, D.-J.; Hwang, J.-H.; Park, E.J.; Chung, S. Learning Curve and Clinical Outcome of Biportal Endoscopic-Assisted Lumbar Interbody Fusion. BioMed Res. Int. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Nowitzke, A.M. Assessment of the Learning Curve for Lumbar Microendoscopic Discectomy. Neurosurgery 2005, 56, 755–762. [Google Scholar] [CrossRef]
- Silva, P.S.; Pereira, P.; Monteiro, P.; Vaz, R. Learning curve and complications of minimally invasive transforaminal lumbar interbody fusion. Neurosurg. Focus 2013, 35, E7. [Google Scholar] [CrossRef]
- Kwak, H.Y.; Kim, S.H.; Chae, B.J.; Song, B.J.; Jung, S.S.; Bae, J.S. Learning curve for gasless endoscopic thyroidectomy using the trans-axillary approach: CUSUM analysis of a single surgeon’s experience. Int. J. Surg. 2014, 12, 1273–1277. [Google Scholar] [CrossRef]
- Ballantyne, G.H.; Ewing, D.; Capella, R.F.; Capella, J.F.; Davis, D.; Schmidt, H.J.; Wasielewski, A.; Davies, R.J. The Learning Curve Measured by Operating Times for Laparoscopic and Open Gastric Bypass: Roles of Surgeon’s Experience, Institutional Experience, Body Mass Index and Fellowship Training. Obes. Surg. 2005, 15, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, J.S.; Yoon, D.S. True learning curve of laparoscopic spleen-preserving distal pancreatectomy with splenic vessel preservation. Surg. Endosc. 2018, 33, 88–93. [Google Scholar] [CrossRef]
- De Rooij, T.; Cipriani, F.; Rawashdeh, M.; van Dieren, S.; Barbaro, S.; Abuawwad, M.; van Hilst, J.; Fontana, M.; Besselink, M.G.; Abu Hilal, M. Single-Surgeon Learning Curve in 111 Laparoscopic Distal Pancreatectomies: Does Operative Time Tell the Whole Story? J. Am. Coll. Surg. 2017, 224, 826–832e1. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.; Boone, B.A.; Polanco, P.M.; Zenati, M.S.; Hogg, M.E.; Tsung, A.; Choudry, H.A.; Moser, A.J.; Bartlett, D.L.; Zeh, H.J.; et al. The learning curve for robotic distal pancreatectomy: An analysis of outcomes of the first 100 consecutive cases at a high-volume pancreatic centre. HPB 2015, 17, 580–586. [Google Scholar] [CrossRef]
- Kimchi, G.; Orlev, A.; Hadanny, A.; Knoller, N.; Harel, R. Minimally Invasive Spine Surgery: The Learning Curve of a Single Surgeon. Glob. Spine J. 2019, 10, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-W.; Mok, C.W.; Chang, Y.-T.; Chen, D.-R.; Kuo, S.-J.; Chen, S.-T. Endoscopic assisted breast conserving surgery for breast cancer: Clinical outcome, learning curve, and patient reported aesthetic results from preliminary 100 procedures. Eur. J. Surg. Oncol. (EJSO) 2020, 46, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Wen, L.Y.; Park, S.H.; Nam, E.J.; Lee, J.Y.; Kim, S.; Kim, Y.T.; Kim, S.W. Impact of the Learning Curve on the Survival of Abdominal or Minimally Invasive Radical Hysterectomy for Early-Stage Cervical Cancer. Cancer Res. Treat. 2021, 53, 243–251. [Google Scholar] [CrossRef]
- Loh, Z.-J.; Wu, T.-Y.; Cheng, F.T.-F. Evaluation of the Learning Curve in Robotic Nipple-sparing Mastectomy for Breast Cancer. Clin. Breast Cancer 2021, 21, e279–e284. [Google Scholar] [CrossRef] [PubMed]
- De Jong, L.; Klem, T.M.A.L.; Kuijper, T.M.; Roukema, G.R. Factors affecting the rate of surgical site infection in patients after hemiarthroplasty of the hip following a fracture of the neck of the femur. Bone Jt. J. 2017, 99-B, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Santanelli, F.; Longo, B.; Cagli, B.; Pugliese, P.; Sorotos, M.; Paolini, G. Predictive and protective factors for partial necrosis in DIEP flap breast reconstruction: Does nulliparity bias flap viability? Ann. Plast. Surg. 2015, 74, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Acosta, R.; Smit, J.M.; Audolfsson, T.; Darcy, C.M.; Enajat, M.; Kildal, M.; Liss, A.G. A Clinical Review of 9 Years of Free Perforator Flap Breast Reconstructions: An Analysis of 675 Flaps and the Influence of New Techniques on Clinical Practice. J. Reconstr. Microsurg. 2010, 27, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Beudeker, N.; Smits, I.; Spierings, R.; Rijntalder, T.; Verduijn, P.S.; de Wit, T.; Mureau, M.A.; Rakhorst, H.A. Starting an autologous breast reconstruction program after plastic surgical training. Is it as good as it gets? J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.L.; Allen, R.J. Cost-Based Comparison between Perforator Flaps and TRAM Flaps for Breast Reconstruction. Plast. Reconstr. Surg. 2000, 105, 943–948. [Google Scholar] [CrossRef]
- Uppal, R.S.; Casaer, B.; Van Landuyt, K.; Blondeel, P. The efficacy of preoperative mapping of perforators in reducing operative times and complications in perforator flap breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 859–864. [Google Scholar] [CrossRef]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health Care–Associated Infections: A meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 2013, 173, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, B.P.-H.; Soleas, I.M.; Ferko, N.C.; Cameron, C.G.; Hinoul, P. Prolonged Operative Duration Increases Risk of Surgical Site Infections: A Systematic Review. Surg. Infect. 2017, 18, 722–735. [Google Scholar] [CrossRef]
- Gibbons, C.; Bruce, J.; Carpenter, J.; Wilson, A.; Wilson, J.; Pearson, A.; Lamping, D.; Krukowski, Z.; Reeves, B. Identification of risk factors by systematic review and development of risk-adjusted models for surgical site infection. Heal. Technol. Assess. 2011, 15, 1–156. [Google Scholar] [CrossRef]
- Korol, E.; Johnston, K.; Waser, N.; Sifakis, F.; Jafri, H.; Lo, M.; Kyaw, M.H. A Systematic Review of Risk Factors Associated with Surgical Site Infections among Surgical Patients. PLoS ONE 2013, 8, e83743. [Google Scholar] [CrossRef]
- Kurmann, A.; Vorburger, S.A.; Candinas, D.; Beldi, G. Operation time and body mass index are significant risk factors for surgical site infection in laparoscopic sigmoid resection: A multicenter study. Surg. Endosc. 2011, 25, 3531–3534. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Nagamine, Y.; Miyashita, T.; Ito, S.; Iwasawa, Y.; Kawai, M.; Saito, S.; Tamai, T.; Goto, T. Perioperative and anesthetic risk factors of surgical site infection in patients undergoing pancreaticoduodenectomy: A retrospective cohort study. PLoS ONE 2020, 15, e0240490. [Google Scholar] [CrossRef]
- Daley, B.J.; Cecil, W.; Clarke, C.P.; Cofer, J.B.; Guillamondegui, O.D. How Slow Is Too Slow? Correlation of Operative Time to Complications: An Analysis from the Tennessee Surgical Quality Collaborative. J. Am. Coll. Surg. 2015, 220, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.P.; Nelson, J.; Au, A.; Ct, T.; Serletti, J.M.; Wu, L.C. Complications and morbidity following breast reconstruction—A review of 16,063 cases from the 2005–2010 NSQIP datasets. J. Plast. Surg. Hand Surg. 2013, 48, 104–114. [Google Scholar] [CrossRef]
- Thorarinsson, A.; Fröjd, V.; Kölby, L.; Modin, A.; Lewin, R.; Elander, A.; Mark, H. Blood loss and duration of surgery are independent risk factors for complications after breast reconstruction. J. Plast. Surg. Hand Surg. 2017, 51, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Zhang, J.X.; Ding, Y.; Jin, Y.; Bedford, J.; Nagarajan, M.; Bucevska, M.; Courtemanche, D.; Arneja, J.S. High-Risk Plastic Surgery: An Analysis of 108,303 Cases from the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP). Plast. Surg. 2019, 28, 57–66. [Google Scholar] [CrossRef]
- Collins, T.C.; Daley, J.; Henderson, W.H.; Khuri, S.F. Risk Factors for Prolonged Length of Stay After Major Elective Surgery. Ann. Surg. 1999, 230, 251–259. [Google Scholar] [CrossRef]
- Canet, J.; Gallart, L.; Gomar, C.; Paluzie, G.; Vallès, J.; Castillo, J.; Sabaté, S.; Mazo, V.; Briones, Z.; Sanchis, J.; et al. Prediction of Postoperative Pulmonary Complications in a Population-based Surgical Cohort. Anesthesiology 2010, 113, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Di Pompeo, F.S.; Longo, B.; Sorotos, M.; Pagnoni, M.; LaPorta, R. The axillary versus internal mammary recipient vessel sites for breast reconstruction with diep flaps: A retrospective study of 256 consecutive cases. Microsurgery 2014, 35, 34–38. [Google Scholar] [CrossRef]
- Parrett, B.M.; Caterson, S.A.; Tobias, A.M.; Lee, B.T. The Rib-Sparing Technique for Internal Mammary Vessel Exposure in Microsurgical Breast Reconstruction. Ann. Plast. Surg. 2008, 60, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Schwabegger, A.; Gschnitzer, C.; Ninkovic, M. Contour deformity at the internal mammary recipient site. Br. J. Plast. Surg. 1999, 52, 674. [Google Scholar] [CrossRef] [PubMed]
- Kavouni, A.; Shibu, M. Problems associated with the use of internal mammary vessels as recipients for free flap breast reconstruction. Br. J. Plast. Surg. 1999, 52, 597. [Google Scholar] [CrossRef] [PubMed]
Group A (%) | Group B (%) | p | |
---|---|---|---|
No. of flaps | |||
Total | 80 | 81 | |
Unilateral | 38 | 31 | |
Bilateral | 42 | 50 | |
No. of patients | |||
Total | 59 | 56 | |
Unilateral | 38 | 31 | |
Bilateral | 21 | 25 | |
Follow-up (months) | |||
11.6 ± 6.2 | 8.6 ± 4.7 | 0.007 * | |
Age (years) | |||
51.4 ± 10.6 | 49.6 ± 9.8 | 0.352 | |
BMI (Kg/m2) | |||
28.3 ± 4.7 | 26.4 ± 4.5 | 0.029 * | |
Total surgery time (min) | |||
Single DIEP | 276.4 ± 67.4 | 287.8 ± 75.2 | 0.617 |
Double DIEP | 408.4 ± 101.8 | 388.8 ± 102.7 | 0.290 |
Flap ischemia time (min) | |||
54.0 ± 19.8 | 56.6 ± 21.1 | 0.640 | |
Rib preservation | |||
0 (0) | 20 (24.7) | <0.001 * | |
Length of stay (d) | |||
Single DIEP | 7.1 ± 1.8 | 6.3 ± 1.5 | 0.019 * |
Double DIEP | 8.5 ± 3.8 | 6.6 ± 1.4 | 0.043 * |
Anastomosis revision | |||
6 (7.5) | 3 (3.7) | 0.328 | |
Total flap loss | |||
2 (2.5) | 2 (2.5) | 1.000 | |
Partial flap loss | |||
5 (6.3) | 1 (1.2) | 0.117 | |
Fat necrosis | |||
10 (12.5) | 13 (16.0) | 0.654 | |
Donor site complication | |||
10 (16.9) | 12 (21.4) | 0.638 |
Group A (%) | Group B (%) | p | |
---|---|---|---|
No. of flaps | |||
Total | 29 | 28 | |
Unilateral | 11 | 16 | |
Bilateral | 18 | 12 | |
No. of patients | |||
Total | 20 | 22 | |
Unilateral | 11 | 16 | |
Bilateral | 9 | 6 | |
Follow-up (months) | |||
11.2 ± 6.2 | 9.7 ± 5.9 | 0.432 | |
Age (years) | |||
49.9 ± 10.3 | 49.6 ± 12.7 | 0.924 | |
BMI (Kg/m2) | |||
28.8 ± 4.9 | 27.6 ± 4.0 | 0.363 | |
Total surgery time (min) | |||
Single DIEP | 296.0 ± 78.7 | 227.5 ± 54.7 | 0.018 * |
Double DIEP | 448.0 ± 85.6 | 341.2 ± 43.1 | 0.008 * |
Flap ischemia time (min) | |||
53.6 ± 15.1 | 40.9 ± 9.5 | 0.007 * | |
Rib preservation | |||
0 (0) | 1 (3.6) | 0.491 | |
Length of stay (d) | |||
Single DIEP | 7.6 ± 1.8 | 5.8 ± 1.2 | 0.007 * |
Double DIEP | 8.9 ± 5.1 | 7.0 ± 2.1 | 0.438 |
Anastomosis revision | |||
1 (3.4) | 1 (3.6) | 1.000 | |
Total flap loss | |||
1 (3.4) | 1 (3.6) | 1.000 | |
Partial flap loss | |||
1 (3.6) | 1 (3.6) | 1.000 | |
Fat necrosis | |||
3 (10.3) | 2 (7.2) | 0.669 | |
Donor site complication | |||
3 (15.0) | 2 (9.1) | 0.656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnava, C.; Wiebringhaus, P.; Hirsch, T.; Dermietzel, A.; Kueckelhaus, M. Breast Reconstruction with DIEP Flap: The Learning Curve at a Breast Reconstruction Center and a Single-Surgeon Study. J. Clin. Med. 2023, 12, 2894. https://doi.org/10.3390/jcm12082894
Varnava C, Wiebringhaus P, Hirsch T, Dermietzel A, Kueckelhaus M. Breast Reconstruction with DIEP Flap: The Learning Curve at a Breast Reconstruction Center and a Single-Surgeon Study. Journal of Clinical Medicine. 2023; 12(8):2894. https://doi.org/10.3390/jcm12082894
Chicago/Turabian StyleVarnava, Charalampos, Philipp Wiebringhaus, Tobias Hirsch, Alexander Dermietzel, and Maximilian Kueckelhaus. 2023. "Breast Reconstruction with DIEP Flap: The Learning Curve at a Breast Reconstruction Center and a Single-Surgeon Study" Journal of Clinical Medicine 12, no. 8: 2894. https://doi.org/10.3390/jcm12082894
APA StyleVarnava, C., Wiebringhaus, P., Hirsch, T., Dermietzel, A., & Kueckelhaus, M. (2023). Breast Reconstruction with DIEP Flap: The Learning Curve at a Breast Reconstruction Center and a Single-Surgeon Study. Journal of Clinical Medicine, 12(8), 2894. https://doi.org/10.3390/jcm12082894