Stand-Alone Oblique Lumbar Interbody Fusion (OLIF) for the Treatment of Adjacent Segment Disease (ASD) after Previous Posterior Lumbar Fusion: Clinical and Radiological Outcomes and Comparison with Posterior Revision Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Guidelines
2.2. Patient Population
2.3. Surgical Technique
2.3.1. OLIF Group
2.3.2. Posterior Group
2.4. Clinical and Radiological Outcomes
2.5. Statistical Analysis
3. Results
3.1. Demographical and Surgical Data
3.2. Clinical and Radiological Outcomes
3.3. Complications and Reoperation Rate
3.4. Comparision with Posterior Group
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cowan, J.A., Jr.; Dimick, J.B.; Wainess, R.; Upchurch, G.R.; Chandler, W.F.; La Marca, F. Changes in the utilization of spinal fusion in the United States. Neurosurgery 2006, 59, 15–20; discussion 15–20. [Google Scholar] [CrossRef] [PubMed]
- Pannell, W.C.; Savin, D.D.; Scott, T.P.; Wang, J.C.; Daubs, M.D. Trends in the surgical treatment of lumbar spine disease in the United States. Spine J. 2015, 15, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, H.; Yoneoka, D. National trends in the surgical treatment for lumbar degenerative disc disease: United States, 2000 to 2009. Spine J. 2015, 15, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Yavin, D.; Casha, S.; Wiebe, S.; E Feasby, T.; Clark, C.; Isaacs, A.; Holroyd-Leduc, J.; Hurlbert, R.J.; Quan, H.; Nataraj, A.; et al. Lumbar fusion for degenerative disease: A systematic review and meta-analysis. Neurosurgery 2017, 80, 701–715. [Google Scholar] [CrossRef]
- Martin, B.I.; Mirza, S.K.; Spina, N.; Spiker, W.R.; Lawrence, B.; Brodke, D.S. Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015. Spine 2019, 44, 369–376. [Google Scholar] [CrossRef]
- Okuda, S.; Nagamoto, Y.; Matsumoto, T.; Sugiura, T.; Takahashi, Y.; Iwasaki, M. Adjacent Segment Disease After Single Segment Posterior Lumbar Interbody Fusion for Degenerative Spondylolisthesis: Minimum 10 Years Follow-up. Spine 2018, 43, E1384–E1388. [Google Scholar] [CrossRef]
- Lee, C.S.; Hwang, C.J.; Lee, S.-W.; Ahn, Y.-J.; Kim, Y.-T.; Lee, D.-H.; Lee, M.Y. Risk factors for adjacent segment disease after lumbar fusion. Eur. Spine J. 2009, 18, 1637–1643. [Google Scholar] [CrossRef]
- Sears, W.R.; Sergides, I.G.; Kazemi, N.; Smith, M.; White, G.J.; Osburg, B. Incidence and of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J. 2011, 11, 11–20. [Google Scholar] [CrossRef]
- Helgeson, M.D.; Bevevino, A.J.; Hilibrand, A.S. Update on the evidence for adjacent segment degeneration and disease. Spine J. 2013, 13, 342–351. [Google Scholar] [CrossRef]
- Hashimoto, K.; Aizawa, T.; Kanno, H.; Itoi, E. Adjacent segment degeneration after fusion spinal surgery-a systematic review. Int. Orthop. 2019, 43, 987–993. [Google Scholar] [CrossRef]
- Scemama, C.; Magrino, B.; Gillet, P.; Guigui, P. Risk of adjacent-segment disease requiring surgery after short lumbar fusion: Results of the French Spine Surgery Society Series. J. Neurosurg. Spine 2016, 25, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Phillips, F.M.; Carlson, G.D.; Bohlman, H.H.; Hughes, S.S. Results of surgery for spinal stenosis adjacent to previous lumbar fusion. J. Spinal Disord. 2000, 13, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Miwa, T.; Sakaura, H.; Yamashita, T.; Suzuki, S.; Ohwada, T. Surgical outcomes of additional posterior lumbar interbody fusion for adjacent segment disease after single-level posterior lumbar interbody fusion. Eur. Spine J. 2013, 22, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Cammisa, F.P.; Sandhu, H.S.; Girardi, F.P.; Khan, S.N. Factors predicting hospital stay, operative time, blood loss, and transfusion in patients undergoing revision posterior lumbar spine decompression, fusion, and segmental instrumentation. Spine 2002, 27, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Lapp, M.A.; Bridwell, K.H.; Lenke, L.G.; Riew, K.D.; Linville, D.A.; Eck, K.R.; Ungacta, F.F. Long-term complications in adult spinal deformity patients having combined surgery a comparison of primary to revision patients. Spine 2001, 26, 973–983. [Google Scholar] [CrossRef]
- Smorgick, Y.; Baker, K.C.; Bachison, C.C.; Herkowitz, H.N.; Montgomery, D.M.; Fischgrund, J.S. Hidden blood loss during posterior spine fusion surgery. Spine J. 2013, 13, 877–881. [Google Scholar] [CrossRef]
- Basques, B.A.; Ibe, I.; Samuel, A.M.; Lukasiewicz, A.M.; Webb, M.L.; Bohl, D.D.; Grauer, J.N. Predicting postoperative morbidity and readmission for revision posterior lumbar fusion. Clin. Spine Surg. 2017, 30, E770–E775. [Google Scholar] [CrossRef]
- Wang, M.Y.; Vasudevan, R.; Mindea, S.A. Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. J. Neurosurg. Spine 2014, 21, 861–866. [Google Scholar] [CrossRef]
- Phan, K.; Mobbs, R.J. Oblique lumbar interbody fusion for revision of nonunion following prior posterior surgery: A case report. Orthop. Surg. 2015, 7, 364–367. [Google Scholar] [CrossRef]
- Miscusi, M.; Trungu, S.; Ricciardi, L.; Forcato, S.; Ramieri, A.; Raco, A. The anterior-to-psoas approach for interbody fusion at the L5-S1 segment: Clinical and radiological outcomes. Neurosurg. Focus 2020, 49, E14. [Google Scholar] [CrossRef]
- Aichmair, A.; Alimi, M.; Hughes, A.P.; Sama, A.A.; Du, J.Y.; Härtl, R.; Burket, J.C.; Lampe, L.P.; Cammisa, F.P.; Girardi, F.P. Single-level lateral lumbar interbody fusion for the treatment of adjacent segment disease: A retrospective two-center study. Spine 2017, 42, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Hah, R.; Kang, H.P. Lateral and Oblique Lumbar Interbody Fusion-Current Concepts and a Review of Recent Literature. Curr. Rev. Musculoskelet. Med. 2019, 22, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Hao, Y.; Yu, L.; Cai, Y.; Yang, X. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease: A STROBE-compliant study. Medicine 2018, 97, e12680. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Xie, M.; He, L.; Xu, W.; Han, W.; Liang, W.; Qian, Y. Oblique lumbar interbody fusion for adjacent segment disease after posterior lumbar fusion: A case-controlled study. J. Orthop. Surg. Res. 2019, 14, 216. [Google Scholar] [CrossRef]
- Sakamoto, T.; Abe, K.; Orita, S.; Inage, K.; Suzuki, M.; Fujimoto, K.; Shiga, Y.; Kanamoto, H.; Inoue, M.; Kinoshita, H.; et al. Three cases of adjacent segment disease post posterior spinal fusion, treated successfully by oblique lateral interbody fusion: A clinical series. Clin. Case Rep. 2019, 7, 206–210. [Google Scholar] [CrossRef]
- Meyerding, H.W. Spondylolisthesis; surgical fusion of lumbosacral portion of spinal column and interarticular facets; use of autogenous bone grafts for relief of disabling backache. J. Int. Coll. Surg. 1956, 26, 566–591. [Google Scholar]
- Schizas, C.; Theumann, N.; Burn, A.; Tansey, R.; Wardlaw, D.; Smith, F.W.; Kulik, G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 2010, 35, 1919–1924. [Google Scholar] [CrossRef]
- Glassman, S.D.; Hamill, C.L.; Bridwell, K.H.; Schwab, F.J.; Dimar, J.R.; Lowe, T.G. The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine 2007, 32, 2764–2770. [Google Scholar] [CrossRef]
- Park, P.; Garton, H.J.; Gala, V.C.; Hoff, J.T.; McGillicuddy, J.E. Adjacent segment disease after lumbar or lumbosacral fusion: Review of the literature. Spine 2004, 29, 1938–1944. [Google Scholar] [CrossRef]
- Xia, X.-P.; Chen, H.-L.; Cheng, H.-B. Prevalence of adjacent segment degeneration after spine surgery. Spine 2013, 38, 597–608. [Google Scholar] [CrossRef]
- Radcliff, K.E.; Kepler, C.K.; Jakoi, A.; Sidhu, G.S.; Rihn, J.; Vaccaro, A.R.; Albert, T.J.; Hilibrand, A.S. Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J. 2013, 13, 1339–1349. [Google Scholar] [CrossRef]
- Ghiselli, G.; Wang, J.C.; Bhatia, N.N.; Hsu, W.K.; Dawson, E.G. Adjacent segment degeneration in the lumbar spine. J. Bone Joint Surg. Am. 2004, 86, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Shau, D.N.; Mendenhall, S.K.; McGirt, M.J. Factors influencing 2-year health care costs in patients undergoing revision lumbar fusion procedures. J. Neurosurg. Spine 2012, 16, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.S.; Sonig, A.; Thakur, J.D.; Bollam, P.; Nanda, A. Perioperative complications in patients undergoing open transforaminal lumbar interbody fusion as a revision surgery. J. Neurosurg. Spine 2013, 18, 260–264. [Google Scholar] [CrossRef]
- Jaikumar, S.; Kim, D.H.; Kam, A.C. History of minimally invasive spine surgery. Neurosurgery 2002, 51 (Suppl. 2), S2-1. [Google Scholar] [CrossRef]
- Pietrantonio, A.; Trungu, S.; Famà, I.; Forcato, S.; Miscusi, M.; Raco, A. Long-term clinical outcomes after bilateral laminotomy or total laminectomy for lumbar spinal stenosis: A single-institution experience. Neurosurg. Focus 2019, 46, E2. [Google Scholar] [CrossRef]
- Trungu, S.; Forcato, S.; Bruzzaniti, P.; Fraschetti, F.; Miscusi, M.; Cimatti, M.; Raco, A. Minimally Invasive Surgery for the Treatment of Traumatic Monosegmental Thoracolumbar Burst Fractures: Clinical and Radiologic Outcomes of 144 Patients With a 6-year Follow-Up Comparing Two Groups with or without Intermediate Screw. Clin. Spine Surg. 2019, 32, E171–E176. [Google Scholar] [CrossRef]
- Louie, P.K.; Varthi, A.G.; Narain, A.S.; Lei, V.; Bohl, D.D.; Shifflett, G.D.; Phillips, F.M. Stand-alone lateral lumbar interbody fusion for the treatment of symptomatic adjacent segment degeneration following previous lumbar fusion. Spine J. 2018, 18, 2025–2032. [Google Scholar] [CrossRef]
- Mayer, H.M. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine 1997, 22, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Miscusi, M.; Ramieri, A.; Forcato, S.; Giuffrè, M.; Trungu, S.; Cimatti, M.; Pesce, A.; Familiari, P.; Piazza, A.; Carnevali, C.; et al. Comparison of pure lateral and oblique lateral inter-body fusion for treatment of lumbar degenerative disk disease: A multicentric cohort study. Eur. Spine J. 2018, 27 (Suppl. 2), 222–228. [Google Scholar] [CrossRef]
- Mehren, C.; Korge, A. Minimally invasive anterior oblique lumbar interbody fusion (OLIF). Eur. Spine J. 2016, 25 (Suppl. 4), 471–472. [Google Scholar] [CrossRef]
- Sato, J.; Ohtori, S.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; Miyagi, M.; et al. Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. Eur. Spine J. 2017, 26, 671–678. [Google Scholar] [CrossRef]
- Li, J.X.; Phan, K.; Mobbs, R. Oblique lumbar interbody fusion: Technical aspects, operative outcomes, and complications. World Neurosurg. 2017, 98, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, S.; Hynes, R.A.; Otsuki, B.; Kimura, H.; Takemoto, M.; Matsuda, S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine 2015, 40, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Orita, S.; Mannoji, C.; Motegi, H.; Aramomi, M.; Ishikawa, T.; Kotani, T.; Akazawa, T.; Morinaga, T.; Fujiyoshi, T.; et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery perspectives and indications from a retrospective, multicenter survey. Spine 2017, 42, 55–62. [Google Scholar] [CrossRef]
- Reis, M.T.; Reyes, P.M.; Altun, I.; Newcomb, A.G.U.S.; Singh, V.; Chang, S.W.; Kelly, B.P.; Crawford, N.R. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J. Neurosurg. Spine 2016, 25, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Snyder, L.A.; Kalb, S.; Kakarla, U.K.; Porter, R.W.; Kaibara, T.; Dickman, C.A.; Theodore, N. Effects of Anterior Plating on Clinical Outcomes of Anterior Lumbar Interbody Fusion. Clin. Spine Surg. 2016, 29, 300–304. [Google Scholar] [CrossRef]
- Shasti, M.; Koenig, S.J.; Nash, A.B.; Bahrami, S.; Jauregui, J.J.; O’Hara, N.N.; Jazini, E.; Gelb, D.E.; Ludwig, S.C. Biomechanical evaluation of lumbar lateral interbody fusion for the treatment of adjacent segment disease. Spine J. 2019, 19, 545–551. [Google Scholar] [CrossRef]
- Huang, S.; Min, S.; Wang, S.; Jin, A. Biomechanical effects of an oblique lumbar interbody fusion combined with posterior augmentation: A finite element analysis. BMC Musculoskelet. Disord. 2022, 23, 611. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, B.; Wang, H.; Qi, J.; Gu, X.; Yu, J.; Ye, X.; Xu, G.; Xi, Y. Oblique lateral interbody fusion stand-alone vs. combined with percutaneous pedicle screw fixation in the treatment of discogenic low back pain. Front. Surg. 2022, 9, 1013431. [Google Scholar] [CrossRef]
- Cai, X.-Y.; Bian, H.-M.; Chen, C.; Ma, X.-L.; Yang, Q. Biomechanical study of oblique lumbar interbody fusion (OLIF) augmented with different types of instrumentation: A finite element analysis. J. Orthop. Surg. Res. 2022, 17, 269. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Lin, Y.; Wu, J.; Cui, W.; Zhang, S.; Guo, L.; Sang, H.; Huang, W. Biomechanical Comparison of Stand-Alone and Bilateral Pedicle Screw Fixation for Oblique Lumbar Interbody Fusion Surgery-A Finite Element Analysis. World Neurosurg. 2020, 141, e204–e212. [Google Scholar] [CrossRef] [PubMed]
OLIF Group | Posterior Group | |
---|---|---|
Total N° of Patients | 28 | 25 |
Mean age ± SD, yrs (range) | 65.1 ± 6.8 (54–75) | 67.5 ± 5.9 (59–77) |
Mean Follow-up ± SD, mos (range) | 36.1 ± 14 (14–56) | 32.6 ± 12.1 (14–56) |
Sex | ||
Female | 11 (39.3%) | 11 (44%) |
Male | 17 (60.7%) | 14 (56%) |
ASA Classification | ||
I | 2 (7.1%) | 0 |
II | 11 (39.3%) | 11 (44%) |
III | 14 (50.0%) | 12 (48%) |
IV | 1 (3.6%) | 2 (8%) |
V | 0 | 0 |
Smoking status | ||
Smoker | 12 (42.9%) | 10 (40%) |
Non-Smoker | 16 (57.1%) | 15 (60%) |
Clinical presentation * | ||
Low back pain | 28 (100%) | 25 (100%) |
Radiculopathy | 11 (39.3%) | 13 (60%) |
Neurogenic claudication | 8 (28.6%) | 16 (64%) |
Lower extremity weakness | 0 | 4 (16%) |
Comorbidity * | ||
Cardiovascular diseases | 19 (67.9%) | 16 (64%) |
Diabetes Mellitus | 12 (42.8%) | 9 (36%) |
Obesity | 9 (32.1%) | 8 (28%) |
Respiratory diseases | 8 (28.6%) | 6 (24%) |
OLIF Group | Posterior Group | p Value * | |
---|---|---|---|
Level of ASD | |||
L1–L2 | 1 (3.3%) | 2 (8%) | |
L2–L3 | 13 (43.3%) | 10 (40%) | |
L3–L4 | 16 (53.4%) | 13 (52%) | |
Levels treated | |||
One level | 26 (92.9%) | 21 (84%) | |
Two levels | 2 (7.1%) | 4 (16%) | |
ASD radiological presentation | |||
DDD | 22 (78.6%) | 20 (80%) | |
Segmental kyphosis | 15 (53.6%) | 12 (48%) | |
Spondylolisthesis | 12 (42.9%) | 10 (40%) | |
Foraminal stenosis | 10 (35.7%) | 8 (32%) | |
Mean length of surgery, min (range) | 67.1 ± 15.7 (55–130) | 192.8 ± 55.6 (62–150) | <0.0001 |
Mean length of stay (LOS), days (range) | 2 (2–4) | 4 (2–7) | <0.0001 |
Mean time of postoperative mobilization, days (range) | 1 (1–3) | 2 (1–5) | <0.0001 |
Estimated blood loss (ELB), mL (range) | 55.2 ± 13.9 (40–100) | 308.8 ± 108.7 (180–500) | <0.0001 |
Complication Rate | |||
Major | 0 | 1 (4%) | 0.14 |
Minor | 1 (3.6%) | 5 (20%) | 0.03 |
Reoperation Rate | 2 (7.1%) | 1 (4%) | 0.31 |
Mean ± SD | |||
---|---|---|---|
OLIF Group | Posterior Group | p Value * | |
Visual Analogue Scale (VAS) | |||
Preoperative | 8.2 ± 1.3 | 7.9 ± 1.2 | 0.39 |
Postoperative (6 weeks) | 3.3 ± 1.0 | 3.9 ± 1.1 | 0.04 |
Follow-up at 12 months | 2.6 ± 0.8 | 2.8 ± 0.9 | 0.40 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Oswestry Disability Index (ODI) | |||
Preoperative | 53.6 ± 15.2 | 55.1 ± 14.1 | 0.71 |
Postoperative (6 weeks) | 27.5 ± 7.2 | 28.9 ± 6.8 | 0.47 |
Follow-up at 12 months | 22.7 ± 6.5 | 23.2 ± 5.9 | 0.77 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
SF-36 (Physical and Mental) | |||
Preoperative | 36.5 ± 6.2 | 38.1 ± 6.0 | 0.35 |
Postoperative (6 weeks) | 66.2 ± 6.3 | 68.3 ± 5.9 | 0.22 |
Follow-up at 12 months | 70.5 ± 5.4 | 69.6 ± 6.1 | 0.57 |
p value (pre vs. follow-up) | <0.05 | <0.05 |
Mean Value ± SD | |||
---|---|---|---|
OLIF Group | Posterior Group | p Value * | |
Lumbar lordosis (LL) | |||
Preoperative | −39.4 ± 7.8 | −37.2 ± 6.8 | |
Postoperative (6 weeks) | −47.2 ± 8.9 | −46.2 ± 7.9 | |
Follow-up at 12 months | −46.1 ± 9.1 | −45.6 ± 8.7 | 0.84 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Segmental lordosis (SL) | |||
Preoperative | −5.4 ± 5.7 | −6.6 ± 5.9 | |
Postoperative (6 weeks) | −11.4 ± 4.7 | −11.8 ± 3.9 | |
Follow-up at 12 months | −9.9 ± 4.9 | −10.4 ± 4.2 | 0.69 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
PI-LL mismatch | |||
Preoperative | 15.2 ± 6.9 | 13.9 ± 6.1 | |
Postoperative (6 weeks) | 9.7 ± 4.6 | 9.9 ± 4.8 | |
Follow-up at 12 months | 10.5 ± 5.1 | 11.1 ± 4.9 | 0.67 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Segmental coronal angle | |||
Preoperative | 4.8 ± 1.8 | 5.4 ± 1.5 | |
Postoperative (6 weeks) | 4.2 ± 1.7 | 4.9 ± 2.0 | |
Follow-up at 12 months | 4.1 ± 2.0 | 4.6 ± 1.7 | 0.33 |
p value (pre vs. follow-up) | 0.155 | 0.08 | |
Disc height (DH) | |||
Preoperative | 5.3 ± 1.2 | 5.1 ± 1.0 | |
Postoperative (6 weeks) | 8.7 ± 1.0 | 8.1 ± 1.2 | |
Follow-up at 12 months | 8.4 ± 1.1 | 7.8 ± 0.9 | 0.04 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Fusion Rate (n, %) | 26 (92.9%) | 23 (92%) | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miscusi, M.; Trungu, S.; Ricciardi, L.; Forcato, S.; Piazza, A.; Ramieri, A.; Raco, A. Stand-Alone Oblique Lumbar Interbody Fusion (OLIF) for the Treatment of Adjacent Segment Disease (ASD) after Previous Posterior Lumbar Fusion: Clinical and Radiological Outcomes and Comparison with Posterior Revision Surgery. J. Clin. Med. 2023, 12, 2985. https://doi.org/10.3390/jcm12082985
Miscusi M, Trungu S, Ricciardi L, Forcato S, Piazza A, Ramieri A, Raco A. Stand-Alone Oblique Lumbar Interbody Fusion (OLIF) for the Treatment of Adjacent Segment Disease (ASD) after Previous Posterior Lumbar Fusion: Clinical and Radiological Outcomes and Comparison with Posterior Revision Surgery. Journal of Clinical Medicine. 2023; 12(8):2985. https://doi.org/10.3390/jcm12082985
Chicago/Turabian StyleMiscusi, Massimo, Sokol Trungu, Luca Ricciardi, Stefano Forcato, Amedeo Piazza, Alessandro Ramieri, and Antonino Raco. 2023. "Stand-Alone Oblique Lumbar Interbody Fusion (OLIF) for the Treatment of Adjacent Segment Disease (ASD) after Previous Posterior Lumbar Fusion: Clinical and Radiological Outcomes and Comparison with Posterior Revision Surgery" Journal of Clinical Medicine 12, no. 8: 2985. https://doi.org/10.3390/jcm12082985
APA StyleMiscusi, M., Trungu, S., Ricciardi, L., Forcato, S., Piazza, A., Ramieri, A., & Raco, A. (2023). Stand-Alone Oblique Lumbar Interbody Fusion (OLIF) for the Treatment of Adjacent Segment Disease (ASD) after Previous Posterior Lumbar Fusion: Clinical and Radiological Outcomes and Comparison with Posterior Revision Surgery. Journal of Clinical Medicine, 12(8), 2985. https://doi.org/10.3390/jcm12082985