More Prevalent and Severe Low Bone-Mineral Density in Boys with Severe Adolescent Idiopathic Scoliosis Than Girls: A Retrospective Study of 798 Surgical Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. BMD Evaluation
2.3. Assessment of Potential Risk Factors
2.4. Evaluation of Intraoperative Blood Loss
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Risk Factors of Low BMD in AIS Patients
3.3. Association of Low BMD with Intraoperative Blood Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Luk, K.D.; Lee, C.F.; Cheung, K.M.; Cheng, J.C.; Ng, B.K.; Lam, T.P.; Mak, K.H.; Yip, P.S.; Fong, D.Y. Clinical effectiveness of school screening for adolescent idiopathic scoliosis: A large population-based retrospective cohort study. Spine 2010, 35, 1607–1614. [Google Scholar] [CrossRef]
- Konieczny, M.R.; Senyurt, H.; Krauspe, R. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 2013, 7, 3–9. [Google Scholar] [CrossRef]
- McKay, H.A.; Bailey, D.A.; Mirwald, R.L.; Davison, K.S.; Faulkner, R.A. Peak bone mineral accrual and age at menarche in adolescent girls: A 6-year longitudinal study. J. Pediatr. 1998, 133, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.Y.; Mohamed, N.; Ima-Nirwana, S.; Chin, K.Y. A Review of Knowledge, Belief and Practice Regarding Osteoporosis among Adolescents and Young Adults. Int. J. Environ. Res. Public Health 2018, 15, 1727. [Google Scholar] [CrossRef]
- Hansen, M.A.; Overgaard, K.; Riis, B.J.; Christiansen, C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ 1991, 303, 961. [Google Scholar] [CrossRef]
- Ohashi, M.; Hirano, T.; Watanabe, K.; Katsumi, K.; Shoji, H.; Mizouchi, T.; Endo, N. Bone Mineral Density after Spinal Fusion Surgery for Adolescent Idiopathic Scoliosis at a Minimum 20-Year Follow-up. Spine Deform. 2018, 6, 170–176. [Google Scholar] [CrossRef]
- Gordon, C.M.; Leonard, M.B.; Zemel, B.S. 2013 Pediatric Position Development Conference: Executive summary and reflections. J. Clin. Densitom. 2014, 17, 219–224. [Google Scholar] [CrossRef]
- Di Iorgi, N.; Maruca, K.; Patti, G.; Mora, S. Update on bone density measurements and their interpretation in children and adolescents. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 477–498. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hung, V.W.Y.; Yu, F.W.P.; Hung, A.L.H.; Ng, B.K.W.; Cheng, J.C.Y.; Lam, T.P.; Yip, B.H.K. Persistent low-normal bone mineral density in adolescent idiopathic scoliosis with different curve severity: A longitudinal study from presentation to beyond skeletal maturity and peak bone mass. Bone 2020, 133, 115217. [Google Scholar] [CrossRef]
- Yi, K.H.; Hwang, J.S.; Kim, E.Y.; Lee, J.A.; Kim, D.H.; Lim, J.S. Reference values for bone mineral density according to age with body size adjustment in Korean children and adolescents. J. Bone Miner. Metab. 2014, 32, 281–289. [Google Scholar] [CrossRef]
- Hui, S.L.; Gao, S.; Zhou, X.H.; Johnston, C.C., Jr.; Lu, Y.; Glüer, C.C.; Grampp, S.; Genant, H. Universal standardization of bone density measurements: A method with optimal properties for calibration among several instruments. J. Bone Miner. Res. 1997, 12, 1463–1470. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Blondel, B.; Chay, E.; Demakakos, J.; Lenke, L.; Tropiano, P.; Ames, C.; Smith, J.S.; Shaffrey, C.I.; Glassman, S.; et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery 2014, 74, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Koerner, J.D.; Patel, A.; Zhao, C.; Schoenberg, C.; Mishra, A.; Vives, M.J.; Sabharwal, S. Blood loss during posterior spinal fusion for adolescent idiopathic scoliosis. Spine 2014, 39, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.G.; Lee, W.Y.W.; Hung, A.L.H.; Hung, V.W.Y.; Tang, M.F.; Leung, T.F.; Kong, A.P.S.; Cheng, J.C.Y.; Lam, T.P. Decreased cortical bone density and mechanical strength with associated elevated bone turnover markers at peri-pubertal peak height velocity: A cross-sectional and longitudinal cohort study of 396 girls with adolescent idiopathic scoliosis. Osteoporos. Int. 2022, 33, 725–735. [Google Scholar] [CrossRef]
- Cheng, J.C.; Guo, X. Osteopenia in adolescent idiopathic scoliosis. A primary problem or secondary to the spinal deformity? Spine 1997, 22, 1716–1721. [Google Scholar] [CrossRef]
- Diarbakerli, E.; Savvides, P.; Wihlborg, A.; Abbott, A.; Bergström, I.; Gerdhem, P. Bone health in adolescents with idiopathic scoliosis. Bone Joint J. 2020, 102-b, 268–272. [Google Scholar] [CrossRef]
- Lo, B.; Holm, J.P.; Vester-Andersen, M.K.; Bendtsen, F.; Vind, I.; Burisch, J. Incidence, Risk Factors and Evaluation of Osteoporosis in Patients with Inflammatory Bowel Disease: A Danish Population-Based Inception Cohort with 10 Years of Follow-up. J. Crohns Colitis 2020, 14, 904–914. [Google Scholar] [CrossRef]
- Conway, S.P.; Morton, A.M.; Oldroyd, B.; Truscott, J.G.; White, H.; Smith, A.H.; Haigh, I. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: Prevalence and associated factors. Thorax 2000, 55, 798–804. [Google Scholar] [CrossRef]
- Sheikh, S.; Gemma, S.; Patel, A. Factors associated with low bone mineral density in patients with cystic fibrosis. J. Bone Miner. Metab. 2015, 33, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Schlösser, T.P.; Vincken, K.L.; Rogers, K.; Castelein, R.M.; Shah, S.A. Natural sagittal spino-pelvic alignment in boys and girls before, at and after the adolescent growth spurt. Eur. Spine J. 2015, 24, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Gilsanz, V.; Boechat, M.I.; Roe, T.F.; Loro, M.L.; Sayre, J.W.; Goodman, W.G. Gender differences in vertebral body sizes in children and adolescents. Radiology 1994, 190, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Dvorák, J.; Vajda, E.G.; Grob, D.; Panjabi, M.M. Normal motion of the lumbar spine as related to age and gender. Eur. Spine J. 1995, 4, 18–23. [Google Scholar] [CrossRef]
- Wei-Jun, W.; Xu, S.; Zhi-Wei, W.; Xu-Sheng, Q.; Zhen, L.; Yong, Q. Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis. Eur. Spine J. 2012, 21, 77–83. [Google Scholar] [CrossRef]
- Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onofrio, L.; Lauria Pantano, A.; Napoli, N.; Pozzilli, P.; Manfrini, S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int. J. Environ. Res. Public Health 2016, 13, 544. [Google Scholar] [CrossRef]
- Tariq, S.; Tariq, S.; Lone, K.P.; Khaliq, S. Alkaline phosphatase is a predictor of Bone Mineral Density in postmenopausal females. Pak. J. Med. Sci. 2019, 35, 749–753. [Google Scholar] [CrossRef]
- Shu, J.; Tan, A.; Li, Y.; Huang, H.; Yang, J. The correlation between serum total alkaline phosphatase and bone mineral density in young adults. BMC Musculoskelet. Disord. 2022, 23, 467. [Google Scholar] [CrossRef]
- Jehle, S.; Hulter, H.N.; Krapf, R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 207–217. [Google Scholar] [CrossRef]
- Macdonald, H.M.; New, S.A.; Fraser, W.D.; Campbell, M.K.; Reid, D.M. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am. J. Clin. Nutr. 2005, 81, 923–933. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, J.H.; Hong, A.R.; Lee, J.H.; Kim, S.W.; Shin, C.S. Dietary potassium intake is beneficial to bone health in a low calcium intake population: The Korean National Health and Nutrition Examination Survey (KNHANES) (2008–2011). Osteoporos. Int. 2017, 28, 1577–1585. [Google Scholar] [CrossRef]
- Gupta, A.; Cha, T.; Schwab, J.; Fogel, H.; Tobert, D.; Razi, A.E.; Hecht, A.; Bono, C.M.; Hershman, S. Osteoporosis increases the likelihood of revision surgery following a long spinal fusion for adult spinal deformity. Spine J. 2021, 21, 134–140. [Google Scholar] [CrossRef]
- Lam, T.P.; Yang, G.; Pang, H.; Yip, B.; Lee, W.; Hung, A.; Tang, N.; To, K.; Qiu, Y.; Cheng, J. A six years longitudinal cohort study on the changes in bone density and bone quality up to peak bone mass in adolescent idiopathic scoliosis (AIS) with and without 2 years of Calcium and Vit-D supplementation. Stud. Health Technol. Inform. 2021, 280, 31–34. [Google Scholar] [PubMed]
- Greene, D.A.; Naughton, G.A.; Briody, J.N.; Kemp, A.; Woodhead, H.; Corrigan, L. Bone strength index in adolescent girls: Does physical activity make a difference? Br. J. Sports Med. 2005, 39, 622–627. [Google Scholar] [CrossRef]
- Shirasawa, E.; Saito, W.; Miyagi, M.; Imura, T.; Nakazawa, T.; Mimura, Y.; Yokozeki, Y.; Kuroda, A.; Kawakubo, A.; Uchida, K.; et al. Intraoperative Blood Loss at Different Surgical-Procedure Stages during Posterior Spinal Fusion for Idiopathic Scoliosis. Medicina 2023, 59, 387. [Google Scholar] [CrossRef] [PubMed]
- Soini, V.; Syvänen, J.; Helenius, I.; Helenius, L.; Raitio, A. Perioperative Risk Factors for Bleeding in Adolescents Undergoing Pedicle Screw Instrumentation for Scoliosis. Children 2023, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Kalkwarf, H.J.; Zemel, B.S.; Gilsanz, V.; Lappe, J.M.; Horlick, M.; Oberfield, S.; Mahboubi, S.; Fan, B.; Frederick, M.M.; Winer, K.; et al. The bone mineral density in childhood study: Bone mineral content and density according to age, sex, and race. J. Clin. Endocrinol. Metab. 2007, 92, 2087–2099. [Google Scholar] [CrossRef]
Total (n = 798) Mean ± SD * | Girls (n = 658) | Boys (n = 140) | p-Value * | |
---|---|---|---|---|
Age, y | 14.0 ± 1.6 | 13.8 ± 1.6 | 15.1 ± 1.3 | <0.001 |
Height, cm | 161.9 ± 8.5 | 160.0 ± 7.0 | 171.0 ± 9.1 | <0.001 |
Height Z-score | 0.41 ± 1.0 | 0.41 ± 1.0 | 0.41 ± 1.1 | 0.99 |
BMI, kg/m2 | 18.2 ± 1.9 | 18.1 ± 2.7 | 18.9 ± 3.5 | 0.01 |
BMI Z-score | −0.65 ± 1.2 | −0.64 ± 1.1 | −0.69 ± 1.5 | 0.66 |
Cobb angle, degrees | 53.8 ± 11.3 | 53.7 ± 11.3 | 54.0 ± 11.4 | 0.66 |
Curve pattern | 0.017 | |||
Lenke 1, n | 435 | 368 | 67 | |
Lenke 2, n | 75 | 51 | 24 | |
Lenke 3, n | 37 | 29 | 8 | |
Lenke 4, n | 6 | 4 | 2 | |
Lenke 5, n | 208 | 174 | 34 | |
Lenke 6, n | 37 | 32 | 5 | |
Femoral neck BMD, g/cm2 | 0.82 ± 0.12 | 0.81 ± 0.12 | 0.85 ± 0.12 | 0.001 |
Femoral neck BMD Z-score | −0.68 ± 0.96 | −0.57 ± 0.92 | −1.2 ± 0.96 | <0.001 |
BMD Z-score ≤ −2, % | 8.1 | 5.2 | 22.1 | <0.001 |
BMD Z-score ≤ −1, % | 37.5 | 32.8 | 59.3 | <0.001 |
Z-Score ≤ −2 (n = 65) | Z-Score > −2 (n = 733) | p-Value * | Z-Score ≤ −1 (n = 299) | Z-Score > −1 (n = 499) | p-Value # | |
---|---|---|---|---|---|---|
Baseline characteristics | ||||||
Age, y | 14.7 ± 1.3 | 13.9 ± 1.6 | 0.001 | 14.2 ± 1.6 | 13.9 ± 1.6 | 0.015 |
Boy, n | 31 (22.1%) | 109 (77.9%) | <0.001 | 83 (59.3%) | 57 (40.7%) | <0.001 |
Girls, n | 34 (5.2%) | 624 (94.8%) | 216 (32.8%) | 442 (67.2%) | ||
BMI, kg/m2 | 16.7 ± 2.3 | 18.4 ± 2.9 | <0.001 | 17.3 ± 2.5 | 18.8 ± 2.9 | <0.001 |
BMI Z-score | −1.6 ± 1.3 | −0.6 ± 1.1 | <0.001 | −1.1 ± 1.2 | −0.36 ± 1.1 | <0.001 |
Cobb angle | 54.2 ± 12.8 | 53.7 ± 11.2 | 0.99 | 54.9 ± 12.2 | 53.1 ± 10.7 | 0.04 |
Femoral neck BMD, g/cm2 | 0.66 ± 0.06 | 0.83 ± 0.11 | <0.001 | 0.72 ± 0.07 | 0.88 ± 0.10 | <0.001 |
Femoral neck BMD Z-score | −2.4 ± 0.4 | −0.5 ± 0.8 | <0.001 | −1.6 ± 0.5 | −0.1 ± 0.7 | <0.001 |
Laboratory values | ||||||
Total calcium, mmol/L | 2.47 ± 0.14 | 2.43 ± 0.12 | 0.051 | 2.44 ± 0.13 | 2.43 ± 0.12 | 0.32 |
Phosphorous, mmol/L | 1.46 ± 0.14 | 1.47 ± 0.16 | 0.50 | 1.49 ± 0.16 | 1.47 ± 0.16 | 0.020 |
Potassium, mmol/L | 4.05 ± 0.28 | 4.12 ± 0.28 | 0.11 | 4.08 ± 0.27 | 4.13 ± 0.28 | 0.023 |
Alkaline phosphatase, U/L | 172.8 ± 58.6 | 148.3 ± 72.9 | 0.027 | 170.5 ± 77.5 | 137.5 ± 65.2 | <0.001 |
Albumin, g/L | 43.1 ± 2.8 | 42.4 ± 2.6 | 0.10 | 42.6 ± 2.9 | 42.4 ± 2.3 | 0.33 |
Total cholesterol, mmol/L | 3. 51 ± 0.71 | 3.65 ± 0.67 | 0.16 | 3.60 ± 0.64 | 3.67 ± 0.69 | 0.27 |
Triglyceride, mmol/L | 0.75 ± 0.21 | 0.82 ± 0.38 | 0.05 | 0.81 ± 0.30 | 0.81 ± 0.40 | 0.95 |
Total bilirubin, umol/L | 11.91 ± 6.34 | 9.29 ± 4.56 | 0.009 | 10.2 ± 5.1 | 9.1 ± 4.6 | 0.007 |
Creatinine, umol/L | 51.5 ± 13.4 | 47.5 ± 9.6 | 0.056 | 47.8 ± 11.0 | 47.9 ± 9.3 | 0.92 |
Total bile acid, umol/L | 4.65 ± 3.61 | 4.70 ± 3.69 | 0.93 | 4.9 ± 4.1 | 4.6 ± 3.4 | 0.31 |
Variables | OR (95% CI) | p-Value |
---|---|---|
Age | 0.97 (0.71–1.33) | 0.86 |
Gender | ||
Girl | 1 | |
Boy | 5.27 (2.17–12.8) | <0.0001 |
BMI Z-score | 0.47 (0.34–0.65) | <0.0001 |
Laboratory values | ||
Alkaline phosphatase, U/L | 1.00 (0.996–1.007) | 0.66 |
Total bilirubin, umol/L | 1.03 (0.97–1.10) | 0.36 |
Variables | OR (95% CI) | p-Value |
---|---|---|
Age | 1.14 (0.95–1.37) | 0.16 |
Cobb | 1.02 (0.998–1.03) | 0.09 |
Gender | ||
Girl | 1 | |
Boy | 2.43 (1.32–4.48) | 0.005 |
BMI Z-score | 0.54 (0.45–0.66) | <0.001 |
Laboratory values | ||
Alkaline phosphatase, U/L | 1.008 (1.004–1.012) | <0.001 |
Total bilirubin, umol/L | 0.99 (0.95–1.04) | 0.68 |
Potassium, mmol/L | 0.37 (0.17–0.79) | 0.01 |
Phosphorus, mmol/L | 0.75 (0.18–3.13) | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zhu, X.; Xu, L.; Liu, Z.; Feng, Z.; Hung, V.W.Y.; Cheng, J.C.Y.; Qiu, Y.; Lee, W.Y.W.; Lam, T.P.; et al. More Prevalent and Severe Low Bone-Mineral Density in Boys with Severe Adolescent Idiopathic Scoliosis Than Girls: A Retrospective Study of 798 Surgical Patients. J. Clin. Med. 2023, 12, 2991. https://doi.org/10.3390/jcm12082991
Wu Z, Zhu X, Xu L, Liu Z, Feng Z, Hung VWY, Cheng JCY, Qiu Y, Lee WYW, Lam TP, et al. More Prevalent and Severe Low Bone-Mineral Density in Boys with Severe Adolescent Idiopathic Scoliosis Than Girls: A Retrospective Study of 798 Surgical Patients. Journal of Clinical Medicine. 2023; 12(8):2991. https://doi.org/10.3390/jcm12082991
Chicago/Turabian StyleWu, Zhichong, Xiufen Zhu, Leilei Xu, Zhen Liu, Zhenhua Feng, Vivian Wing Yin Hung, Jack Chun Yiu Cheng, Yong Qiu, Wayne Y. W. Lee, Tsz Ping Lam, and et al. 2023. "More Prevalent and Severe Low Bone-Mineral Density in Boys with Severe Adolescent Idiopathic Scoliosis Than Girls: A Retrospective Study of 798 Surgical Patients" Journal of Clinical Medicine 12, no. 8: 2991. https://doi.org/10.3390/jcm12082991
APA StyleWu, Z., Zhu, X., Xu, L., Liu, Z., Feng, Z., Hung, V. W. Y., Cheng, J. C. Y., Qiu, Y., Lee, W. Y. W., Lam, T. P., & Zhu, Z. (2023). More Prevalent and Severe Low Bone-Mineral Density in Boys with Severe Adolescent Idiopathic Scoliosis Than Girls: A Retrospective Study of 798 Surgical Patients. Journal of Clinical Medicine, 12(8), 2991. https://doi.org/10.3390/jcm12082991