Identification of Distinct Clinical Phenotypes of Critically Ill COVID-19 Patients: Results from a Cohort Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Definitions, Selection of Participants and Data Collection
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Cluster Analysis
3.2. Phenotype’s Characterization and Clinical Outcomes
3.3. Phenotype’s Biomarker Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Overmyer, K.A.; Shishkova, E.; Miller, I.J.; Balnis, J.; Bernstein, M.N.; Peters-Clarke, T.M.; Meyer, J.G.; Quan, Q.; Muehlbauer, L.K.; Trujillo, E.A.; et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst. 2021, 12, 23–40.e27. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Arish, M.; Naz, F. Personalized therapy: Can it tame the COVID-19 monster? Per. Med. 2021, 18, 583–593. [Google Scholar] [CrossRef]
- Azoulay, E.; Zafrani, L.; Mirouse, A.; Lengliné, E.; Darmon, M.; Chevret, S. Clinical phenotypes of critically ill COVID-19 patients. Intensive Care Med. 2020, 46, 1651–1652. [Google Scholar] [CrossRef]
- Fish, M.; Rynne, J.; Jennings, A.; Lam, C.; Lamikanra, A.A.; Ratcliff, J.; Cellone-Trevelin, S.; Timms, E.; Jiriha, J.; Tosi, I.; et al. Coronavirus disease 2019 subphenotypes and differential treatment response to convalescent plasma in critically ill adults: Secondary analyses of a randomized clinical trial. Intensive Care Med. 2022, 48, 1525–1538. [Google Scholar] [CrossRef]
- Bruse, N.; Kooistra, E.J.; Jansen, A.; van Amstel, R.B.E.; de Keizer, N.F.; Kennedy, J.N.; Seymour, C.; van Vught, L.A.; Pickkers, P.; Kox, M. Clinical sepsis phenotypes in critically ill COVID-19 patients. Crit. Care 2022, 26, 244. [Google Scholar] [CrossRef]
- Siepel, S.; Dam, T.A.; Fleuren, L.M.; Girbes, A.R.J.; Hoogendoorn, M.; Thoral, P.J.; Elbers, P.W.G.; Bennis, F.C. Evolution of Clinical Phenotypes of COVID-19 Patients During Intensive Care Treatment: An Unsupervised Machine Learning Analysis. J. Intensive Care Med. 2023. [Google Scholar] [CrossRef]
- Portacci, A.; Carpagnano, G.E.; Tummolo, M.G.; Santomasi, C.; Palma, L.; Fasano, D.; Resta, E.; Lozupone, M.; Solfrizzi, V.; Panza, F.; et al. COVID-19 clinical phenotypes and short-term outcomes: Differences between the first and the second wave of pandemic in Italy. Expert Rev. Respir. Med. 2021, 15, 1619–1625. [Google Scholar] [CrossRef]
- Da Silva, J.F.; Hernandez-Romieu, A.C.; Browning, S.D.; Bruce, B.B.; Natarajan, P.; Morris, S.B.; Gold, J.A.W.; Neblett Fanfair, R.; Rogers-Brown, J.; Rossow, J.; et al. COVID-19 Clinical Phenotypes: Presentation and Temporal Progression of Disease in a Cohort of Hospitalized Adults in Georgia, United States. Open Forum Infect. Dis. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Lusczek, E.R.; Ingraham, N.E.; Karam, B.S.; Proper, J.; Siegel, L.; Helgeson, E.S.; Lotfi-Emran, S.; Zolfaghari, E.J.; Jones, E.; Usher, M.G.; et al. Characterizing COVID-19 clinical phenotypes and associated comorbidities and complication profiles. PLoS ONE 2021, 16, e0248956. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Ruiz-Botella, M.; Martín-Loeches, I.; Jimenez Herrera, M.; Solé-Violan, J.; Gómez, J.; Bodí, M.; Trefler, S.; Papiol, E.; Díaz, E.; et al. Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain. Crit. Care 2021, 25, 63. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, Z.; Zheng, F.; Pan, P.; Hong, N.; Liu, C.; He, J.; Zhu, W.; Long, Y.; Liu, D. Five novel clinical phenotypes for critically ill patients with mechanical ventilation in intensive care units: A retrospective and multi database study. Respir. Res. 2020, 21, 325. [Google Scholar] [CrossRef]
- de Prost, N.; Audureau, E.; Heming, N.; Gault, E.; Pham, T.; Chaghouri, A.; de Montmollin, N.; Voiriot, G.; Morand-Joubert, L.; Joseph, A.; et al. Clinical phenotypes and outcomes associated with SARS-CoV-2 variant Omicron in critically ill French patients with COVID-19. Nat. Commun. 2022, 13, 6025. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin. Chem. Lab. Med. 2020, 58, 1063–1069. [Google Scholar] [CrossRef]
- Van der Zee, P.; Rietdijk, W.; Somhorst, P.; Endeman, H.; Gommers, D. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. Crit. Care 2020, 24, 243. [Google Scholar] [CrossRef]
- Letelier, P.; Encina, N.; Morales, P.; Riffo, A.; Silva, H.; Riquelme, I.; Guzmán, N. Role of biochemical markers in the monitoring of COVID-19 patients. J. Med. Biochem. 2021, 40, 115–128. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- McElvaney, O.J.; McEvoy, N.L.; McElvaney, O.F.; Carroll, T.P.; Murphy, M.P.; Dunlea, D.M.; Ní Choileáin, O.; Clarke, J.; O’Connor, E.; Hogan, G.; et al. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am. J. Respir. Crit. Care Med. 2020, 202, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, D.; Yuan, D.; Lausted, C.; Choi, J.; Dai, C.L.; Voillet, V.; Duvvuri, V.R.; Scherler, K.; Troisch, P.; et al. Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell 2020, 183, 1479–1495.e1420. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Gao, M.; Fan, H.; Wang, Y.; Xu, X.; Chen, C.; Liu, J.; Kim, J.; Aliyari, R.; et al. Interleukin-8 as a Biomarker for Disease Prognosis of Coronavirus Disease-2019 Patients. Front. Immunol. 2020, 11, 602395. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Zhang, L.; Ye, X.; Chen, J.; Yu, J.; Zhuang, L.; Weng, C.; Petersen, F.; Wang, Z.; Yu, X. High Levels of Circulating IL-8 and Soluble IL-2R Are Associated With Prolonged Illness in Patients With Severe COVID-19. Front. Immunol. 2021, 12, 626235. [Google Scholar] [CrossRef]
- Blair, P.W.; Brandsma, J.; Chenoweth, J.; Richard, S.A.; Epsi, N.J.; Mehta, R.; Striegel, D.; Clemens, E.G.; Alharthi, S.; Lindholm, D.A.; et al. Distinct blood inflammatory biomarker clusters stratify host phenotypes during the middle phase of COVID-19. Sci. Rep. 2022, 12, 22471. [Google Scholar] [CrossRef]
- Bakkerus, L.; Pickkers, P. Personalized medicine in COVID-19. Intensive Care Med. 2022, 48, 1607–1610. [Google Scholar] [CrossRef]
- Dopazo, J.; Maya-Miles, D.; García, F.; Lorusso, N.; Calleja, M.; Pareja, M.J.; López-Miranda, J.; Rodríguez-Baño, J.; Padillo, J.; Túnez, I.; et al. Implementing Personalized Medicine in COVID-19 in Andalusia: An Opportunity to Transform the Healthcare System. J. Pers. Med. 2021, 11, 475. [Google Scholar] [CrossRef]
- Teodori, L.; Osimani, B.; Isidoro, C.; Ramakrishna, S. Mass versus personalized medicine against COVID-19 in the “system sciences” era. Cytom. A 2022, 101, 995–999. [Google Scholar] [CrossRef]
- Zhou, A.; Sabatello, M.; Eyal, G.; Lee, S.S.-J.; Rowe, J.W.; Stiles, D.F.; Swanson, A.; Appelbaum, P.S. Is precision medicine relevant in the age of COVID-19? Genet. Med. 2021, 23, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- DeMerle, K.; Angus, D.C.; Seymour, C.W. Precision Medicine for COVID-19: Phenotype Anarchy or Promise Realized? JAMA 2021, 325, 2041–2042. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- O’Kelly, M.; Ratitch, B. Clinical Trials with Missing Data: A Guide for Practitioners; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Hagen, D.R.; Tidor, B. Efficient Bayesian estimates for discrimination among topologically different systems biology models. Mol. Biosyst. 2015, 11, 574–584. [Google Scholar] [CrossRef]
- Henkens, M.; Raafs, A.G.; Verdonschot, J.A.J.; Linschoten, M.; van Smeden, M.; Wang, P.; van der Hooft, B.H.M.; Tieleman, R.; Janssen, M.L.F.; Ter Bekke, R.M.A.; et al. Age is the main determinant of COVID-19 related in-hospital mortality with minimal impact of pre-existing comorbidities, a retrospective cohort study. BMC Geriatr. 2022, 22, 184. [Google Scholar] [CrossRef]
- Bonanad, C.; García-Blas, S.; Tarazona-Santabalbina, F.; Sanchis, J.; Bertomeu-González, V.; Fácila, L.; Ariza, A.; Núñez, J.; Cordero, A. The Effect of Age on Mortality in Patients With COVID-19: A Meta-Analysis With 611,583 Subjects. J. Am. Med. Dir. Assoc. 2020, 21, 915–918. [Google Scholar] [CrossRef]
- Lentner, J.; Adams, T.; Knutson, V.; Zeien, S.; Abbas, H.; Moosavi, R.; Manuel, C.; Wallace, T.; Harmon, A.; Waters, R.; et al. C-reactive protein levels associated with COVID-19 outcomes in the United States. J. Osteopath. Med. 2021, 121, 869–873. [Google Scholar] [CrossRef]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid. Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef]
- Loomba, R.S.; Villarreal, E.G.; Farias, J.S.; Aggarwal, G.; Aggarwal, S.; Flores, S. Serum biomarkers for prediction of mortality in patients with COVID-19. Ann. Clin. Biochem. 2022, 59, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Fayed, M.; Patel, N.; Angappan, S.; Nowak, K.; Vasconcelos Torres, F.; Penning, D.H.; Chhina, A.K. Sequential Organ Failure Assessment (SOFA) Score and Mortality Prediction in Patients With Severe Respiratory Distress Secondary to COVID-19. Cureus 2022, 14, e26911. [Google Scholar] [CrossRef] [PubMed]
- Beigmohammadi, M.T.; Amoozadeh, L.; Rezaei Motlagh, F.; Rahimi, M.; Maghsoudloo, M.; Jafarnejad, B.; Eslami, B.; Salehi, M.R.; Zendehdel, K. Mortality Predictive Value of APACHE II and SOFA Scores in COVID-19 Patients in the Intensive Care Unit. Can. Respir. J. 2022, 2022, 5129314. [Google Scholar] [CrossRef] [PubMed]
- Tong-Minh, K.; van der Does, Y.; Engelen, S.; de Jong, E.; Ramakers, C.; Gommers, D.; van Gorp, E.; Endeman, H. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 2022, 22, 165. [Google Scholar] [CrossRef] [PubMed]
- Twe, C.W.; Khoo, D.K.Y.; Law, K.B.; Ahmad Nordin, N.S.B.; Sathasivan, S.; Lim, K.C.; Atikah, S.K.; Syed Badaruddin, S.; Chidambaram, S.K. The role of procalcitonin in predicting risk of mechanical ventilation and mortality among moderate to severe COVID-19 patients. BMC Infect. Dis. 2022, 22, 378. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. C-reactive protein and clinical outcomes in patients with COVID-19. Eur. Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef] [PubMed]
- Ali, N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 2020, 92, 2409–2411. [Google Scholar] [CrossRef]
- Gomez, C.A.; Kalil, A.C. Immunomodulators in Mechanically Ventilated Patients With COVID-19: Lessons Learned From Underpowered Trials. Crit. Care Med. 2022, 50, 1821–1828. [Google Scholar] [CrossRef]
- Avni, T.; Leibovici, L.; Cohen, I.; Atamna, A.; Guz, D.; Paul, M.; Gafter-Gvili, A.; Yahav, D. Tocilizumab in the treatment of COVID-19-a meta-analysis. QJM 2021, 114, 577–586. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- Boppana, T.K.; Mittal, S.; Madan, K.; Mohan, A.; Hadda, V.; Guleria, R. Tocilizumab for COVID-19: A systematic review and meta-analysis of randomized controlled trials. Monaldi Arch. Chest Dis. 2022, 92. [Google Scholar] [CrossRef]
- Mahroum, N.; Watad, A.; Bridgewood, C.; Mansour, M.; Nasr, A.; Hussein, A.; Khamisy-Farah, R.; Farah, R.; Gendelman, O.; Lidar, M.; et al. Systematic Review and Meta-Analysis of Tocilizumab Therapy versus Standard of Care in over 15,000 COVID-19 Pneumonia Patients during the First Eight Months of the Pandemic. Int. J. Env. Res. Public Health 2021, 18, 9149. [Google Scholar] [CrossRef] [PubMed]
PHENOTYPE A (n = 407; 60%) | PHENOTYPE B (n = 244; 24%) | PHENOTYPE C (n = 163; 16%) | p ¥ | |
---|---|---|---|---|
Age, years, (median (IQR)) | 81 (65–97) | 62 (47–79) | 63 (47–80) | <0.001 |
Gender, males, (n, %) | 221 (54.3%) | 131 (53.7%) | 78 (47.9%) | 0.08 |
Previous Medical Comorbidities | ||||
Chronic Obstructive Pulmonary Disease (n, %) | 37 (9.1%) | 18 (7.4%) | 14 (8.9%) | 0.528 |
Asthma (n, %) | 18 (4.4%) | 8 (3.3%) | 5 (3.1%) | 0.347 |
Chronic Kidney Disease (n, %) | 89 (21.9%) | 29 (11.9%) | 23 (14.1%) | 0.125 |
Obesity (n, %) | 64 (15.7%) | 36 (14.8%) | 27 (16.7%) | 0.214 |
Diabetes Mellitus (n, %) | 129 (31.7%) | 82 (33.6%) | 47 (28.8%) | 0.08 |
Ischemic Cardiopathy (n, %) | 147 (36.1%) | 64 (26.2%) | 39 (23.9%) | 0.04 |
SOFA at admission (median (IQR)) | 10 (5; 13) | 3 (2; 5) | 1 (0; 3) | <0.001 |
SAPS III at admission (mean ± SD) | 78 ± 10 | 50 ± 7 | 47 ± 12 | <0.001 |
Mechanical Ventilation (n, %) | 173 (42.5%) | 11 (4.6%) | 11 (6.9%) | <0.001 |
Vasopressor Support (n, %) | 112 (27.5%) | 38 (15.6%) | 38 (14.4%) | <0.001 |
Renal replacement therapy (n, %) | 58 (14.2%) | 19 (7.8%) | 19 (11.6%) | 0.152 |
Laboratory results | ||||
C reactive Protein at admission, mg/dL (median (IQR)) | 32.3 (24.8; 81.5) | 20.0 (10.3; 40.6) | 17.20 (4.0; 23.7) | 0.013 |
Max registered C-Reactive protein, mg/dL (mean ± SD) | 32.3 ± 11.0 | 25.3 ± 10.4 | 18.6 ± 12.5 | <0.001 |
Procalcitonin at admission, ng/mL (median (IQR)) | 3.30 (0.55; 3.35) | 0.17 (0.05; 0.23) | 0.22 (0.12; 0.23) | <0.001 |
Max registered Procalcitonin, ng/mL (median (IQR)) | 9.73 (0.86; 13.54) | 0.34 (0.06; 0.74) | 1.30 (0.70; 1.40) | <0.001 |
D-dimer level at admission, ng/mL (median (IQR)) | 1165 (587; 1663) | 610 (97; 753) | 202 (119; 262) | 0.003 |
Max D-dimer registered, ng/mL (median (IQR) | 2778 (875; 3822) | 655 (48; 1305) | 303 (78; 307) | 0.018 |
Minimum Leucocyte count registered, ×109 (mean ± SD) | 11.0 ± 7.09 | 5.0 ± 2.03 | 5.3 ± 2.2 | <0.001 |
Minimum Lymphocyte count registered, ×109 (median (IQR)) | 0.52 (0.32; 0.62) | 0.36 (0.12; 0.39) | 0.57 (0.68; 1.09) | 0.146 |
IL-6 serum levels, mg/mL (median (IQR)) | 57.9 (5.7; 61.0) | 35.4 (6.6; 42.7) | 41.0 (16.0; 49.0) | 0.01 |
Remdesivir, (n, %) | 359 (88.2%) | 243 (99.6%) | 147 (90.2%) | 0.167 |
Corticosteroid therapy (n, %) | 176 (43.2%) | 137 (97.9%) | 147 (90.0%) | 0.001 |
Ventilator-free days, days, (median (IQR)) | 23 (20; 24) | 12 (4; 20) | 10 (4; 17) | 0.001 |
ICU length of stay, days, (median (IQR)) | 14 (11; 15) | 6 (5; 11) | 10 (3; 10) | <0.001 |
Hospital Length of stay, days, (mean ± sd) | 18 (7; 20) | 9 (1; 14) | 13 (2; 14) | 0.001 |
Number of Individuals per Class/Phenotype | |||||||
---|---|---|---|---|---|---|---|
Number of Classes | BIC ¥ | Entropy * | N1 | N2 | N3 | N4 | p-Value ** |
2 | 6034.4 | 0.77 | 787 | 27 | 0.227 | ||
3 | 2094.1 | 0.87 | 244 | 163 | 407 | 0.007 | |
4 | 8056.7 | 0.52 | 11 | 44 | 757 | 6 | 0.183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cidade, J.P.; de Souza Dantas, V.C.; de Figueiredo Thompson, A.; de Miranda, R.C.C.C.; Mamfrim, R.; Caroli, H.; Escudini, G.; Oliveira, N.; Castro, T.; Póvoa, P. Identification of Distinct Clinical Phenotypes of Critically Ill COVID-19 Patients: Results from a Cohort Observational Study. J. Clin. Med. 2023, 12, 3035. https://doi.org/10.3390/jcm12083035
Cidade JP, de Souza Dantas VC, de Figueiredo Thompson A, de Miranda RCCC, Mamfrim R, Caroli H, Escudini G, Oliveira N, Castro T, Póvoa P. Identification of Distinct Clinical Phenotypes of Critically Ill COVID-19 Patients: Results from a Cohort Observational Study. Journal of Clinical Medicine. 2023; 12(8):3035. https://doi.org/10.3390/jcm12083035
Chicago/Turabian StyleCidade, José Pedro, Vicente Cés de Souza Dantas, Alessandra de Figueiredo Thompson, Renata Carnevale Carneiro Chermont de Miranda, Rafaela Mamfrim, Henrique Caroli, Gabriela Escudini, Natalia Oliveira, Taiza Castro, and Pedro Póvoa. 2023. "Identification of Distinct Clinical Phenotypes of Critically Ill COVID-19 Patients: Results from a Cohort Observational Study" Journal of Clinical Medicine 12, no. 8: 3035. https://doi.org/10.3390/jcm12083035
APA StyleCidade, J. P., de Souza Dantas, V. C., de Figueiredo Thompson, A., de Miranda, R. C. C. C., Mamfrim, R., Caroli, H., Escudini, G., Oliveira, N., Castro, T., & Póvoa, P. (2023). Identification of Distinct Clinical Phenotypes of Critically Ill COVID-19 Patients: Results from a Cohort Observational Study. Journal of Clinical Medicine, 12(8), 3035. https://doi.org/10.3390/jcm12083035