Plasma and Urinary Biomarkers Improve Prediction of Mortality through 1 Year in Intensive Care Patients: An Analysis from FROG-ICU
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Outcomes
2.3. Model Development
- -
- Model 1 (Clinical): An initial model was developed considering standard clinical parameters including demographics, cardiovascular and non-cardiovascular co-morbidities, admission diagnosis, and conventional lab results measured either locally or centrally.
- -
- Model 2 (Clinical + scores): Scores including SOFA, SAPS II, Glasgow Coma Scale (GCS), Charlson Comorbidity Index, APACHE II, and Kidney Disease Improving Global Outcomes Acute Kidney Injury (KDIGO AKI) Staging Score were added to final Model 1 and backward selection, forcing final Model 1 predictors to stay in the model, was run.
- -
- Model 3 (Clinical + scores + biomarkers): Plasma and urine biomarkers, as well as biomarkers derived from a urinary proteomic panel (HF1, HF2, CAD238, CKD273, and ACM128) [18,19,20,21,22], were added to final Model 2 and backwards selection, forcing final Model 2 predictors to stay in the model, was run.
- -
- Model 4 (Clinical + scores + biomarkers + treatments): Chronic treatments and medications administered between admission and study inclusion were added to those predictors included in final Model 3 and backwards selection, forcing the final Model 3 predictors to stay in the model, was run.
2.4. Model Diagnostics
3. Results
3.1. Participants
3.2. Outcomes
3.3. In-ICU Mortality
3.4. In-Hospital Mortality
3.5. One Year Mortality
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APACHE | Acute Physiology and Chronic Health Evaluation |
bio-ADM | Bio-active adrenomedullin |
CI | Confidence interval |
eGFR | Estimated glomerular filtration rate |
FROG-ICU | French and European Outcome reGistry in Intensive Care Units |
HR | Hazard ratio |
ICU | Intensive care unit |
IL-6 | Interleukin 6 |
NT-proBNP | N-terminal pro-B type natriuretic peptide |
OR | Odds ratio |
PCT | Procalcitonin |
ROC | Receiver operating characteristic |
SAPS | Simplified Acute Physiology Score |
SOFA | Sequential Organ Failure Assessment |
sST2 | Soluble-ST2 |
References
- Zimmerman, J.E.; Kramer, A.A.; Knaus, W.A. Changes in Hospital Mortality for United States Intensive Care Unit Admissions from 1988 to 2012. Crit. Care 2013, 17, R81. [Google Scholar] [CrossRef]
- Mebazaa, A.; Casadio, M.C.; Azoulay, E.; Guidet, B.; Jaber, S.; Levy, B.; Payen, D.; Vicaut, E.; Resche-Rigon, M.; Gayat, E. Post-ICU Discharge and Outcome: Rationale and Methods of the The French and EuRopean Outcome ReGistry in Intensive Care Units (FROG-ICU) Observational Study. BMC Anesthesiol. 2015, 15, 143. [Google Scholar] [CrossRef] [PubMed]
- Luangasanatip, N.; Hongsuwan, M.; Lubell, Y.; Limmathurotsakul, D.; Teparrukkul, P.; Chaowarat, S.; Day, N.P.J.; Graves, N.; Cooper, B.S. Long-Term Survival after Intensive Care Unit Discharge in Thailand: A Retrospective Study. Crit. Care 2013, 17, R219. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Dobb, G.J.; Finn, J.C.; Knuiman, M.W.; Geelhoed, E.; Lee, K.Y.; Webb, S.A.R. Determinants of Long-Term Survival after Intensive Care. Crit. Care Med. 2008, 36, 1523–1530. [Google Scholar] [CrossRef]
- Williams, T.A.; Dobb, G.J.; Finn, J.C.; Webb, S.A.R. Long-Term Survival from Intensive Care: A Review. Intensive Care Med. 2005, 31, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, M.; Kari, A.; Halonen, P.; Iisalo, E.; Kaukinen, L.; Nikki, P.; Rauhala, V.; Saarela, E. Five-Year Survival after Intensive Care-Comparison of 12,180 Patients with the General Population. Crit. Care Med. 1996, 24, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Flaatten, H.; Kvåle, R. Survival and Quality of Life 12 Years after ICU. A Comparison with the General Norwegian Population. Intensive Care Med. 2001, 27, 1005–1011. [Google Scholar] [CrossRef]
- Wright, J.C.; Plenderleith, L.; Ridley, S.A. Long-Term Survival Following Intensive Care: Subgroup Analysis and Comparison with the General Population. Anaesthesia 2003, 58, 637–642. [Google Scholar] [CrossRef]
- Gayat, E.; Cariou, A.; Deye, N.; Vieillard-Baron, A.; Jaber, S.; Damoisel, C.; Lu, Q.; Monnet, X.; Rennuit, I.; Azoulay, E.; et al. Determinants of Long-Term Outcome in ICU Survivors: Results from the FROG-ICU Study. Crit. Care 2018, 22, 8. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A Severity of Disease Classification System. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Capuzzo, M.; Valpondi, V.; Sgarbi, A.; Bortolazzi, S.; Pavoni, V.; Gilli, G.; Candini, G.; Gritti, G.; Alvisi, R. Validation of Severity Scoring Systems SAPS II and APACHE II in a Single-Center Population. Intensive Care Med. 2000, 26, 1779–1785. [Google Scholar] [CrossRef]
- Gall, J.R.; Lemeshow, S.; Saulnier, F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA J. Am. Med. Assoc. 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. Rms: Regression Modeling Strategies. R Package Version 6.1-0. Available online: https://cran.r-project.org/package=rms (accessed on 25 January 2021).
- Nkuipou-Kenfack, E.; Latosinska, A.; Yang, W.Y.; Fournier, M.C.; Blet, A.; Mujaj, B.; Thijs, L.; Feliot, E.; Gayat, E.; Mischak, H.; et al. A Novel Urinary Biomarker Predicts 1-Year Mortality after Discharge from Intensive Care. Crit. Care 2020, 24, 10. [Google Scholar] [CrossRef]
- Campbell, R.T.; Jasilek, A.; Mischak, H.; Nkuipou-Kenfack, E.; Latosinska, A.; Welsh, P.I.; Jackson, C.E.; Cannon, J.; McConnachie, A.; Delles, C.; et al. The Novel Urinary Proteomic Classifier HF1 Has Similar Diagnostic and Prognostic Utility to BNP in Heart Failure. ESC Hearth Fail. 2020, 7, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Staessen, J.A.; Thijs, L.; Gu, Y.; Liu, Y.; Jacobs, L.; Koeck, T.; Zürbig, P.; Mischak, H.; Kuznetsova, T. Left Ventricular Diastolic Function in Relation to the Urinary Proteome: A Proof-of-Concept Study in a General Population. Int. J. Cardiol. 2014, 176, 158–165. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Mischak, H.; Mullen, W.; Staessen, J.A. Urinary Proteome Analysis in Hypertensive Patients with Left Ventricular Diastolic Dysfunction. Eur. Heart J. 2012, 33, 2342–2350. [Google Scholar] [CrossRef]
- Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.L.; Currie, G.; Delles, C.; Dimos, I.; et al. Early Detection of Diabetic Kidney Disease by Urinary Proteomics and Subsequent Intervention with Spironolactone to Delay Progression (PRIORITY): A Prospective Observational Study and Embedded Randomised Placebo-Controlled Trial. Lancet. Diabetes Endocrinol. 2020, 8, 301–312. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing 2020; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Vincent, J.L.; Takala, J.; Moreno, R.P.; Sakr, Y.; Marshall, J.C. The Richmond Agitation-Sedation Scale Should Not Be Used to Evaluate Neurologic Function. Crit. Care Med. 2016, 44, e450. [Google Scholar] [CrossRef] [PubMed]
- Lambden, S.; Laterre, P.F.; Levy, M.M.; Francois, B. The SOFA Score—Development, Utility and Challenges of Accurate Assessment in Clinical Trials. Crit. Care 2019, 23, 374. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.-L. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef]
- Levy, B.; Clere-Jehl, R.; Legras, A.; Morichau-Beauchant, T.; Leone, M.; Frederique, G.; Quenot, J.P.; Kimmoun, A.; Cariou, A.; Lassus, J.; et al. Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 173–182. [Google Scholar] [CrossRef]
- Ko, M.; Shim, M.; Lee, S.M.; Kim, Y.; Yoon, S. Performance of APACHE IV in Medical Intensive Care Unit Patients: Comparisons with APACHE II, SAPS 3, and MPM 0 III. Acute Crit. Care 2018, 33, 216–221. [Google Scholar] [CrossRef]
- Elias, M.; Oropello, J.M. Controversies: Scoring Systems in Critical Care. In Critical Care; Oropello, J.M., Pastores, S.M., Kvetan, V., Eds.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Ter Maaten, J.M.; Kremer, D.; Demissei, B.G.; Struck, J.; Bergmann, A.; Anker, S.D.; Ng, L.L.; Dickstein, K.; Metra, M.; Samani, N.J.; et al. Bio-Adrenomedullin as a Marker of Congestion in Patients with New-Onset and Worsening Heart Failure. Eur. J. Heart Fail. 2019, 21, 732–743. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Ma, J.; Pang, X.; Dong, M. Adrenomedullin Promotes Angiogenesis in Epithelial Ovarian Cancer through Upregulating Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor. Sci. Rep. 2017, 7, 40524. [Google Scholar] [CrossRef]
- Hu, W.; Shi, L.; Li, M.Y.; Zhou, P.H.; Qiu, B.; Yin, K.; Zhang, H.H.; Gao, Y.; Kang, R.; Qin, S.L.; et al. Adrenomedullin Protects Leydig Cells against Lipopolysaccharide-Induced Oxidative Stress and Inflammatory Reaction via MAPK/NF-ΚB Signalling Pathways. Sci. Rep. 2017, 7, 16479. [Google Scholar] [CrossRef]
- Papaspyridonos, M.; McNeill, E.; De Bono, J.P.; Smith, A.; Burnand, K.G.; Channon, K.M.; Greaves, D.R. Galectin-3 Is an Amplifier of Inflammation in Atherosclerotic Plaque Progression Through Macrophage Activation and Monocyte Chemoattraction. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 433–440. [Google Scholar] [CrossRef]
- Slack, R.J.; Mills, R.; Mackinnon, A.C. The Therapeutic Potential of Galectin-3 Inhibition in Fibrotic Disease. Int. J. Biochem. Cell Biol. 2021, 130, 105881. [Google Scholar] [CrossRef]
- Türköz, H.K.; Öksüz, H.; Yurdakul, Z.; Özcan, D. Galectin-3 Expression in Tumor Progression and Metastasis of Papillary Thyroid Carcinoma. Endocr. Pathol. 2008, 19, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Fiuzat, M.; Shaw, L.K.; Clare, R.; Whellan, D.J.; Bettari, L.; Shirolkar, S.C.; Donahue, M.; Kitzman, D.W.; Zannad, F.; et al. Galectin-3 in Ambulatory Patients with Heart Failure Results from the HF-ACTION Study. Circ. Heart Fail. 2012, 5, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zheng, S.G. Hall of Fame among Pro-Inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms. Front. Immunol. 2016, 7, 604. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Jover, E.; Matilla, L.; Alvarez, V.; Fernández-Celis, A.; Beunza, M.; Escribano, E.; Gainza, A.; Sádaba, R.; López-Andrés, N. Soluble ST2 as a New Oxidative Stress and Inflammation Marker in Metabolic Syndrome. Int. J. Environ. Res. Public Health 2023, 20, 2579. [Google Scholar] [CrossRef] [PubMed]
- Sharim, J.; Daniels, L.B. Soluble ST2 and Soluble Markers of Fibrosis: Emerging Roles for Prognosis and Guiding Therapy. Curr. Cardiol. Rep. 2020, 22, 41. [Google Scholar] [CrossRef] [PubMed]
- Bayés-Genis, A.; González, A.; Lupón, J. ST2 in Heart Failure. Circ. Heart Fail. 2018, 11, e005582. [Google Scholar] [CrossRef]
- Castell, J.V.; Gómez-lechón, M.J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P.C. Acute-Phase Response of Human Hepatocytes: Regulation of Acute-Phase Protein Synthesis by Interleukin-6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef]
- Jones, A.E.; Fiechtl, J.F.; Brown, M.D.; Ballew, J.J.; Kline, J.A. Procalcitonin Test in the Diagnosis of Bacteremia: A Meta-Analysis. Ann. Emerg. Med. 2007, 50, 34–41. [Google Scholar] [CrossRef]
- Dieplinger, B.; Mueller, T. Soluble ST2 in Heart Failure. Clin. Chim. Acta 2015, 443, 57–70. [Google Scholar] [CrossRef]
- Elster, S.K.; Braunwald, E.; Wood, H.F. A Study of C-Reactive Protein in the Serum of Patients with Congestive Heart Failure. Am. Heart J. 1956, 51, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.; Pejchinovski, M.; Markoska, K.; Banasik, M.; Klinger, M.; Švec-Billá, D.; Rychlík, I.; Rroji, M.; Restivo, A.; Capasso, G.; et al. Association of Kidney Fibrosis with Urinary Peptides: A Path towards Non-Invasive Liquid Biopsies? Sci. Rep. 2017, 7, 16915. [Google Scholar] [CrossRef] [PubMed]
Covariates in Final Model | Model Performance Measures * | Statistical Comparisons with Preceding Nested Model † | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Label | Effect Size for Unit Change of: ‡ | Transform | OR | Lower CI | Upper CI | p-Value | df | Nagelkerke R2 | C-Index | Difference AUC (95% CI) | p-Value Difference LR | |
Model 1 Covars | Age (year) | 5 years | 1.12 | 1.06 | 1.18 | <0.001 | 1 | |||||
Male gender | Yes vs. No | 1.51 | 1.13 | 2.02 | 0.006 | 1 | ||||||
Expired Volume (mL) § | 10 mL | 0.98 | 0.97 | 1.00 | 0.01 | 1 | ||||||
Diastolic BP (mmHg) | 70 vs. 53 | spline @ 70 | 0.66 | 0.51 | 0.87 | 0.01 | 2 | |||||
Diuresis of 24 h | doubling | log2 | 0.87 | 0.79 | 0.95 | 0.002 | 1 | |||||
Fraction of inspired oxygen (%) | 50 vs. 30 | spline @ 32 | 0.96 | 0.81 | 1.13 | <0.001 | 2 | |||||
Hemoglobin (g/dL) | 1 g/dL | 0.93 | 0.86 | 1.00 | 0.05 | 1 | ||||||
Heart Rate (bpm) | 5 bpm | 1.04 | 1.01 | 1.08 | 0.02 | 1 | ||||||
Lactate (mmol/L) | 1.9 vs. 0.984 | quadratic polynomial | 1.25 | 1.06 | 1.48 | 0.008 | 2 | |||||
PaO2/FiO2 Ratio | 25 | 0.96 | 0.93 | 0.99 | 0.003 | 1 | ||||||
PEEP (cmH2O) | 1 cmH2O | 1.04 | 0.99 | 1.10 | 0.13 | 1 | ||||||
Temperature (Celsius) | 1 degree Celsius | 0.85 | 0.75 | 0.97 | 0.01 | 1 | ||||||
Urea (mmol/L) | 1 mmol/L | 1.07 | 0.91 | 1.26 | 0.40 | 1 | ||||||
White blood cell count | doubling | spline @ log2(10500) | 0.75 | 0.63 | 0.90 | <0.001 | 2 | |||||
Diagnosis at admission: Cardiac disease | vs. Other | 1.36 | 0.83 | 2.25 | <0.001 | 1 | ||||||
Diagnosis at admission: Acute neurological disorder | vs. Other | 1.87 | 1.07 | 3.27 | 1 | |||||||
Diagnosis at admission: Acute respiratory failure | vs. Other | 1.30 | 0.83 | 2.03 | 1 | |||||||
Diagnosis at admission: Sepsis | vs. Other | 0.94 | 0.63 | 1.40 | 1 | |||||||
Diagnosis at admission: Trauma | vs. Other | 0.40 | 0.22 | 0.73 | 1 | |||||||
CV Co-morbidities: Diabetes mellitus | Yes vs. No | 0.68 | 0.49 | 0.94 | 0.02 | 1 | ||||||
Non-CV Co-morbidities: Active recent malignant tumors | Yes vs. No | 1.78 | 1.26 | 2.49 | <0.001 | 1 | ||||||
Non-CV Co-morbidities: Chronic liver disease | Yes vs. No | 1.65 | 1.06 | 2.56 | 0.03 | 1 | ||||||
Non-CV Co-morbidities: COPD | Yes vs. No | 1.77 | 1.24 | 2.52 | 0.002 | 1 | ||||||
Non-CV Co-morbidities: Smoking | Yes vs. No | 0.69 | 0.50 | 0.94 | 0.02 | 1 | 0.3110 | 0.8084 (0.8036, 0.8133) | N/A | N/A | ||
Model 2 Add Covars | SAPS II | 2 | 1.02 | 1.00 | 1.03 | 0.02 | 1 | 0.3165 | 0.8117 (0.8067, 0.8167) | 0.0033 (0.0023, 0.0043) | 0.003 | |
Model 3 Add Covars | IL-6 | doubling | log2 | 1.17 | 1.09 | 1.26 | <0.001 | 1 | ||||
PCT | doubling | spline @ log2(1.9) | 0.98 | 0.87 | 1.10 | <0.001 | 2 | |||||
Soluble-ST2 | doubling | log2 | 1.20 | 1.04 | 1.39 | 0.01 | 1 | |||||
Proteomic Classifier: HF1 | 0.1 | 1.08 | 1.01 | 1.15 | 0.01 | 1 | ||||||
Proteomic Classifier: CKD273 | 0.1 | 1.03 | 1.01 | 1.05 | <0.001 | 1 | 0.3564 | 0.8269 (0.8220, 0.8318) | 0.0152 (0.0163, 0.0207) | <0.001 | ||
Model 4 Add Covars | Cardiac arrest before admission | Yes vs. No | 2.44 | 1.44 | 4.16 | 0.001 | 1 | |||||
Chronic Treatment: Aldosterone antagonists | Yes vs. No | 4.93 | 1.51 | 16.03 | 0.008 | 1 | ||||||
Meds from admission to inclusion: Feeding Enteral | Yes vs. No | 1.37 | 1.04 | 1.80 | 0.03 | 1 | ||||||
Meds from admission to inclusion: Feeding Parenteral | Yes vs. No | 1.74 | 1.26 | 2.41 | <0.001 | 1 | 0.3707 | 0.8388 (0.8334, 0.8442) | 0.0119 (0.0095, 0.0142) | <0.001 |
Covariates in Final Model | Model Performance Measures * | Statistical Comparisons with Preceding Nested Model † | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Label | Effect Size for Unit Change of: ‡ | Transform | OR | Lower CI | Upper CI | p-Value | df | Nagelkerke R2 | C-Index | Difference AUC (95% CI) | p-Value Difference LR | |
Model 1 Covars | Age (year) | 5 years | 1.16 | 1.11 | 1.22 | <0.001 | 1 | |||||
Male gender | Yes vs. No | 1.61 | 1.22 | 2.12 | <0.001 | 1 | ||||||
Diastolic BP (mmHg) | 70 vs. 53 | spline @ 70 | 0.69 | 0.54 | 0.88 | 0.01 | 2 | |||||
Diuresis of 24 h | doubling | log2 | 0.88 | 0.81 | 0.96 | 0.003 | 1 | |||||
Expired Volume (mL) § | 10 mL | 0.98 | 0.97 | 1.00 | 0.01 | 1 | ||||||
Fraction of inspired oxygen (%) | 50 vs. 30 | cubic polynomial | 0.72 | 0.55 | 0.94 | 0.001 | 3 | |||||
Hemoglobin (g/dL) | 1 g/dL | 0.94 | 0.88 | 1.01 | 0.11 | 1 | ||||||
Heart Rate (bpm) | 5 bpm | 1.01 | 0.98 | 1.04 | 0.42 | 1 | ||||||
Lactate (mmol/L) | 1.9 vs. 0.984 | quadratic polynomial | 1.16 | 0.99 | 1.37 | 0.12 | 2 | |||||
PaO2/FiO2 Ratio | 25 | 0.96 | 0.93 | 0.99 | 0.003 | 1 | ||||||
Temperature (Celsius) | 1 degree Celsius | 0.89 | 0.79 | 1.01 | 0.07 | 1 | ||||||
Urea | 3.8074 vs. 2.3998 | cubic polynomial | 1.15 | 0.87 | 1.54 | 0.76 | 3 | |||||
White blood cell count | doubling | spline @ log2(10500) | 0.69 | 0.58 | 0.81 | <0.001 | 2 | |||||
Diagnosis at admission: Cardiac disease | vs. Other | 1.21 | 0.76 | 1.93 | <0.001 | 1 | ||||||
Diagnosis at admission: Acute neurological disorder | vs. Other | 1.66 | 1.00 | 2.74 | 1 | |||||||
Diagnosis at admission: Acute respiratory failure | vs. Other | 1.20 | 0.80 | 1.81 | 1 | |||||||
Diagnosis at admission: Sepsis | vs. Other | 0.84 | 0.58 | 1.21 | 1 | |||||||
Diagnosis at admission: Trauma | vs. Other | 0.42 | 0.25 | 0.73 | 1 | |||||||
Non-CV Co-morbidities: Active recent malignant tumors | Yes vs. No | 1.62 | 1.18 | 2.22 | 0.003 | 1 | ||||||
Non-CV Co-morbidities: Chronic liver disease | Yes vs. No | 1.78 | 1.17 | 2.70 | 0.007 | 1 | ||||||
Non-CV Co-morbidities: COPD | Yes vs. No | 1.51 | 1.07 | 2.11 | 0.02 | 1 | ||||||
Non-CV Co-morbidities: Loss of autonomy | Yes vs. No | 1.95 | 1.13 | 3.36 | 0.02 | 1 | ||||||
Non-CV Co-morbidities: Smoking (active or stopped past year) | Yes vs. No | 0.74 | 0.56 | 0.99 | 0.04 | 1 | 0.3097 | 0.8021 (0.7975, 0.8066) | N/A | N/A | ||
Model 2 Add Covars | SAPS II | 2 | 1.01 | 1.00 | 1.02 | 0.17 | 1 | 0.3132 | 0.8039 (0.7994, 0.8083) | 0.0018 (0.0013, 0.0024) | 0.02 | |
Model 3 Add Covars | Bioactive-adrenomedullin | doubling | log2 | 1.13 | 1.00 | 1.29 | 0.05 | 1 | ||||
Galectin-3 | doubling | log2 | 1.32 | 1.09 | 1.59 | 0.004 | 1 | |||||
IL-6 | doubling | log2 | 1.13 | 1.06 | 1.21 | <0.001 | 1 | |||||
PCT | doubling | spline @ log2(1.9) | 0.98 | 0.89 | 1.09 | <0.001 | 2 | |||||
Soluble-ST2 | doubling | log2 | 1.24 | 1.08 | 1.41 | 0.002 | 1 | |||||
Proteomic Classifier: HF1 | 0.1 | 1.03 | 1.01 | 1.05 | <0.001 | 1 | 0.3605 | 0.8269 (0.8227, 0.8311) | 0.0230 (0.0214, 0.0246) | <0.001 | ||
Model 4 Add Covars | Cardiac arrest before admission | Yes vs. No | 2.38 | 1.44 | 3.94 | <0.001 | 1 | |||||
Chronic Treatment: Antidiabetics | Yes vs. No | 0.61 | 0.42 | 0.89 | 0.01 | 1 | ||||||
Meds from admission to inclusion: Morphine | Yes vs. No | 0.70 | 0.54 | 0.91 | 0.009 | 1 | ||||||
Meds from admission to inclusion: Feeding Parenteral | Yes vs. No | 1.43 | 1.06 | 1.92 | 0.02 | 1 | 0.3651 | 0.8356 (0.8307, 0.8405) | 0.0087 (0.0067, 0.0107) | <0.001 |
Covariates in Final Model | Model Performance Measures * | Statistical Comparisons with Preceding Nested Model † | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Label | Effect Size for Unit Change of: ‡ | Transform | HR | Lower CI | Upper CI | p-Value | df | Nagelkerke R2 | C-Index | Difference C-Index (95% CI) | p-Value Difference LR | |
Model 1 Covars | Age (year) | 5 years | 1.10 | 1.05 | 1.14 | <0.001 | 1 | |||||
Male gender | Yes vs. No | 1.38 | 1.17 | 1.63 | <0.001 | 1 | ||||||
Bicarbonates (mmol/L) | 26 vs. 21 | spline @ 27 | 0.90 | 0.79 | 1.02 | 0.02 | 2 | |||||
Diastolic BP (mmHg) | 70 vs. 53 | spline @ 75 | 0.82 | 0.71 | 0.95 | 0.02 | 2 | |||||
Diuresis of 24 h | doubling | log2 | 0.91 | 0.87 | 0.96 | <0.001 | 1 | |||||
Fraction of inspired oxygen (%) | 50 vs. 30 | spline @ 45 | 0.71 | 0.58 | 0.86 | <0.001 | 2 | |||||
Hemoglobin (g/dL) | 1 g/dL | 0.96 | 0.92 | 1.00 | 0.06 | 1 | ||||||
Heart Rate (bpm) | 5 bpm | 1.01 | 0.99 | 1.04 | 0.18 | 1 | ||||||
Lactate (mmol/L) | 1.9 vs. 0.984 | quadratic polynomial | 1.06 | 0.97 | 1.17 | 0.007 | 2 | |||||
PaO2/FiO2 Ratio | 25 | 0.97 | 0.96 | 0.99 | 0.003 | 1 | ||||||
PEEP (cmH2O) | 1 cmH2O | 1.04 | 1.00 | 1.07 | 0.04 | 1 | ||||||
Temperature (Celsius) | 1 degree Celsius | quadratic polynomial | 0.90 | 0.81 | 0.99 | 0.03 | 2 | |||||
Urea (mmol/L) | 1 mmol/L | 0.99 | 0.90 | 1.09 | 0.80 | 1 | ||||||
Weight (Kg) | 5 Kg | 0.96 | 0.93 | 0.98 | <0.001 | 1 | ||||||
White blood cell count | doubling | spline @ log2(10900) | 0.81 | 0.73 | 0.90 | <0.001 | 2 | |||||
Diagnosis at admission: Cardiac disease | vs. Other | 1.49 | 1.11 | 2.01 | <0.001 | 1 | ||||||
Diagnosis at admission: Acute neurological disorder | vs. Other | 1.39 | 1.00 | 1.94 | 1 | |||||||
Diagnosis at admission: Acute respiratory failure | vs. Other | 1.38 | 1.06 | 1.78 | 1 | |||||||
Diagnosis at admission: Sepsis | vs. Other | 1.13 | 0.90 | 1.42 | 1 | |||||||
Diagnosis at admission: Trauma | vs. Other | 0.67 | 0.48 | 0.95 | 1 | |||||||
Oxygen at home | Yes vs. No | 1.73 | 1.04 | 2.88 | 0.03 | 1 | ||||||
Non-CV Co-morbidities: Active recent malignant tumors | Yes vs. No | 1.46 | 1.19 | 1.80 | <0.001 | 1 | ||||||
Non-CV Co-morbidities: Chronic liver disease | Yes vs. No | 1.17 | 0.87 | 1.59 | 0.30 | 1 | ||||||
Non-CV Co-morbidities: Loss of autonomy | Yes vs. No | 1.87 | 1.38 | 2.55 | <0.001 | 1 | 0.2584 | 0.7557 (0.7519, 0.7596) | N/A | N/A | ||
Model 2 Add Covars | SAPS II | 2 | 1.01 | 1.00 | 1.02 | 0.002 | 1 | |||||
Charlson Comorbidity Index | doubling | log2 | 1.18 | 1.02 | 1.37 | 0.03 | 1 | 0.2617 | 0.7602 (0.7564, 0.7639) | 0.0044 (0.0029, 0.0059) | <0.001 | |
Model 3 Add Covars | Bioactive-adrenomedullin | doubling | log2 | 1.09 | 1.00 | 1.18 | 0.04 | 1 | ||||
Galectin-3 | doubling | log2 | 1.21 | 1.07 | 1.36 | 0.002 | 1 | |||||
IL-6 | doubling | log2 | 1.13 | 1.08 | 1.18 | <0.001 | 1 | |||||
PCT | doubling | spline @ log2(1.9) | 0.92 | 0.86 | 0.99 | <0.001 | 2 | |||||
Soluble-ST2 | doubling | log2 | 1.14 | 1.04 | 1.24 | 0.004 | 1 | |||||
Proteomic Classifier: HF1 | 0.1 | 1.02 | 1.01 | 1.03 | 0.004 | 1 | ||||||
Proteomic Classifier: ACM128 | 0.1 | 1.03 | 1.01 | 1.04 | <0.001 | 1 | 0.3187 | 0.7796 (0.7767, 0.7826) | 0.0195 (0.0168, 0.0222) | <0.001 | ||
Model 4 Add Covars | Cardiac arrest before admission | Yes vs. No | 1.39 | 1.01 | 1.93 | 0.05 | 1 | |||||
Chronic Treatment: Aldosterone antagonists | Yes vs. No | 2.29 | 1.18 | 4.43 | 0.01 | 1 | ||||||
Chronic Treatment: Morphine | Yes vs. No | 1.60 | 1.10 | 2.35 | 0.01 | 1 | ||||||
Chronic Treatment: Nitrates | Yes vs. No | 0.31 | 0.13 | 0.78 | 0.01 | 1 | ||||||
Meds from admission to inclusion: Morphine | Yes vs. No | 0.84 | 0.71 | 0.99 | 0.04 | 1 | ||||||
Meds from admission to inclusion: Renal replacement therapy | Yes vs. No | 0.74 | 0.58 | 0.94 | 0.01 | 1 | ||||||
Meds from admission to inclusion: Feeding Parenteral | Yes vs. No | 1.27 | 1.05 | 1.53 | 0.01 | 1 | 0.3304 | 0.7864 (0.7830, 0.7899) | 0.0068 (0.0044, 0.0092) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davison, B.A.; Edwards, C.; Cotter, G.; Kimmoun, A.; Gayat, É.; Latosinska, A.; Mischak, H.; Takagi, K.; Deniau, B.; Picod, A.; et al. Plasma and Urinary Biomarkers Improve Prediction of Mortality through 1 Year in Intensive Care Patients: An Analysis from FROG-ICU. J. Clin. Med. 2023, 12, 3311. https://doi.org/10.3390/jcm12093311
Davison BA, Edwards C, Cotter G, Kimmoun A, Gayat É, Latosinska A, Mischak H, Takagi K, Deniau B, Picod A, et al. Plasma and Urinary Biomarkers Improve Prediction of Mortality through 1 Year in Intensive Care Patients: An Analysis from FROG-ICU. Journal of Clinical Medicine. 2023; 12(9):3311. https://doi.org/10.3390/jcm12093311
Chicago/Turabian StyleDavison, Beth A., Christopher Edwards, Gad Cotter, Antoine Kimmoun, Étienne Gayat, Agnieszka Latosinska, Harald Mischak, Koji Takagi, Benjamin Deniau, Adrien Picod, and et al. 2023. "Plasma and Urinary Biomarkers Improve Prediction of Mortality through 1 Year in Intensive Care Patients: An Analysis from FROG-ICU" Journal of Clinical Medicine 12, no. 9: 3311. https://doi.org/10.3390/jcm12093311
APA StyleDavison, B. A., Edwards, C., Cotter, G., Kimmoun, A., Gayat, É., Latosinska, A., Mischak, H., Takagi, K., Deniau, B., Picod, A., & Mebazaa, A. (2023). Plasma and Urinary Biomarkers Improve Prediction of Mortality through 1 Year in Intensive Care Patients: An Analysis from FROG-ICU. Journal of Clinical Medicine, 12(9), 3311. https://doi.org/10.3390/jcm12093311