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Abstract: Background: The assumption of this work is the achievement of objective results of the
movement structure, which forms the basis for in-depth analysis and, consequently, for determining
the upper limb movements that are most affected by stroke compared to healthy people. Methods:
An analysis of relevant and systematically identified features of upper limb movement in post-stroke
adults is presented based on scalable hypothesis tests. The basic features were calculated using
movements defined by the x, y, and z coordinates (i.e., 3D trajectory time series) and compared to the
results of post-stroke patients with healthy controls of similar age. Results: After automatic feature
selection, out of the 1004 common features of upper limb movement, the most differentiated were the
upper arm movements in reaching kinematics. In terms of movement type, movements in the frontal
plane (shoulder abduction and adduction) were the most sensitive to changes. The largest number
of discriminating features was determined on the basis of acceleration time series. Conclusions: In
the 3D assessment of functional activities of the upper limb, the upper arm turned out to be the
most differentiated body segment, especially during abduction and adduction movements. The
results indicate a special need to pay attention to abduction and adduction movements to improve
the activities of daily living of the upper limbs after a stroke.

Keywords: upper limb; quantification of movement; post-stroke movement features

1. Introduction

Stroke is the leading cause of acquired disability in adults worldwide [1]. A total of
2 million patients are diagnosed with stroke each year in China, over 1 million in Europe,
and over 690,000 in the United States. It is estimated that these numbers will increase
dramatically due to the aging of societies [2,3].

Stroke survivors often exhibit upper limb motor impairments that affect the per-
formance of their functional activities such as reaching [4]. In clinical settings, motor
impairment is mainly assessed using tools based on the examiner’s observations, such as
the Fugl-Meyer Assessment and Action Research Arm Test for the upper limbs. Both are
important instruments for clinical evaluation; however, their results are strongly influenced
by the observer’s experience [5,6]. Moreover, these tools mainly focus on task performance
without analyzing the way a given task is performed; therefore, they fail to describe the
specific types of motor deficits [7,8].

The kinematic analysis enables an accurate and objective evaluation of motor functions
by providing objective and quantitative movement structure information [9,10]. However, it
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requires special equipment and more complex identification and interpretation of kinematic
indicators. Optoelectronic systems based on visual markers are often considered the gold
standard for kinematic analysis due to their high accuracy and reliability [11,12]. Kinematic
assessments are expected to allow the precise quantification of motion and distinguish
between restitution and compensation [13–15].

Current studies underpin the necessity of assessing different relevant functional move-
ments close to real-world conditions rather than relying solely on clinical measures [16].
Motor control research has shown that upper-arm reach movements tend to maintain a
uniform pattern based on a straight hand path with a smooth bell-shaped velocity profile.
Therefore, in order to generate such a tracking reference, the minimal jerk trajectory method
described in [17,18] was implemented. The tracking reference has been successfully used
in rehabilitation assisting devices [19,20].

Despite its many advantages, the standard clinical measures that are commonly
used by therapists do not account for movement quality and are, therefore, insensitive to
detection or changes due to restitution or behavioral compensation. Technologies enabling
the objective measurement of motion kinematics and kinetics have been suggested as
the best way to solve this problem [21]. Considering the above data, there is a need
to implement more innovative and advanced methods of diagnosing, monitoring, and
rehabilitation of post-stroke patients. To a large extent, this need can be addressed by
the development of imaging techniques [22] as well as motion tracking using appropriate
technical devices, including those based on 3D systems or wearable inertial sensors, which
make it possible to record human motions.

The upper limb movement analysis is essential to objectively monitor rehabilitation
interventions and contribute to improving the overall treatment outcomes. Motion quan-
tification using kinematic analysis can help to understand the mechanisms underlying
functional improvement following an intervention. For this purpose, the discriminant
analysis of movements of post-stroke patients with healthy controls of similar age was used.
The systematically determined and statistically selected features of the acquired upper limb
motion data treated as time series were used. The data were obtained from the OptiTrack
optometric system.

2. Materials and Methods

The assumption of this work is the achievement of objective results of the patient’s
movement structure, which forms the basis for in-depth analysis and, consequently, for
determining the upper limb movement that are most affected by stroke compared to healthy
people [21,23]. For such a need, the analysis of relevant and systematically identified
features of upper limb movement in post-stroke adults is presented. For this purpose, the
basic features were calculated using movements defined by the x, y, and z coordinates
(i.e., 3D trajectory) and compared to the results of post-stroke patients with healthy controls
of similar age.

The upper limb kinematic chain monitored by the system included three classes as
follows: the non-affected (G0) and the affected (G1) upper limb in stroke patients; the
dominant and non-dominant upper limb in healthy controls (G2). The study involved
a large set of time signal features to describe the statistical differences among the three
data classes. The kinematic model of the upper limb consisted of seven markers on each
side of the body (Figure 1) [24,25]. Completion of the grasping and drinking task was
recommended for people with moderate to mild hemiparesis (32 out of 66 upper limb
(FM-UE) scores using the Fugl-Meyer Assessment) [26,27]. A total of 54 participants
were recruited for the study, including 35 stroke patients (stroke group) and 19 healthy
individuals (control group). The inclusion and exclusion criteria were the same as those
used in our earlier studies [24,25]. Among the 35 participants affected by ischemic stroke,
there were 16 women and 19 men (mean age 67 ± 8.9 years). These patients were treated
3–16 months after their first stroke. Stroke type was as follows: PACI (parietal anterior
cerebral ischemia)—23; TACI (total anterior cerebral ischemia)—10; LACI (lacunar cerebral
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ischemia)—2. Time after stroke (days) 287.8/40.8. The control group consisted of 19
recruited healthy participants, whose ages matched the post-stroke patients, and included
14 women and 5 men (mean age: 64 ± 9.0 years). The following criteria were met for
the post-stroke group of participants: spasticity ≤ 2, in accordance with the modified
Ashworth scale, who were able to stretch the affected arms out; no apraxia or shoulder
pain that may interfere with task accomplishment; no neuromuscular, orthopedic disorders,
major visual attention problems, or major perceptual or cognitive deficits; ability to provide
informed consent; disturbances in cognitive functions measured by the Mini-Mental State
Examination (MMSE ≥ 24); NIHSS (National Institutes of Health Stroke Scale) total score:
median 4 (2–5) [24,25].
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The main advantage of the OptiTrack system is its mobility because it consists of cameras 
placed on a tripod, which can be set up in any place in accordance with the procedure 
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the upper body marker placement schema of the OptiTrack described in the system man-
ual [29]. Markers were located on both upper limbs (right R/L left). Marker CLAVR/L (cla-
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the sternum starts. Marker ACRR/L (acromion process) was placed on top of each shoul-
der for the protruding bone. The prominence is usually located at the end of the 

Figure 1. Markers scheme during the recording of the drinking task by the post-stroke participant.
Markers lokations: CLAVR/L—clavicular heads, ACRR/L—acromion process, MPHR/L—middle
part of the humeri, LEPR/L—lateral epicondyle, RSR/L—radial styloid, USR/L—ulnar styloid,
FNR/L—index finger nails, R/L—right/left upper limb.

The experiment constituted an observational study of chronic stroke patients with mild
to moderate upper limb motor impairment. All participants received detailed information
regarding the experimental procedure and gave their written consent to participate, and
informed consent was obtained from all subjects and/or their legal guardian(s). The
research project was approved by the Bioethics Committee of the Opole Medical Chamber
(No. 215, 25 March 2015), and the study was conducted in accordance with the Helsinki
Declaration recommendations for clinical trials on humans.

Study Protocol

The study was carried out at the Rehabilitation Department, Hospital Saint Roch in
Ozimek, Poland. The study took place in a specially prepared room equipped with a table
and a chair in the middle and eight OptiTrack high-speed and high-resolution cameras. The
main advantage of the OptiTrack system is its mobility because it consists of cameras placed
on a tripod, which can be set up in any place in accordance with the procedure described
in the system documentation [28]. The markers were placed in accordance with the upper
body marker placement schema of the OptiTrack described in the system manual [29].
Markers were located on both upper limbs (right R/L left). Marker CLAVR/L (clavicular
heads) was located at the end of the corresponding clavicle bone just above where the
sternum starts. Marker ACRR/L (acromion process) was placed on top of each shoulder
for the protruding bone. The prominence is usually located at the end of the corresponding
clavicle bone just above where the upper arm starts. Marker MPHR/L (middle part of the
humeri) was placed in the groove between the triceps muscles where skin movements are
relatively minimal. Marker LEPR/L (lateral epicondyle) was placed on the medial side of
the elbow axis. Marker RSR/L (radial styloid) was placed on the medial side of the wrist
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axis. Marker USR/L (ulnar styloid) was placed on the lateral side of the wrist axis. Marker
FNR/L (index finger nails) was placed on the nail of the phalanx of the distal index finger.

The placement spots for the items were marked on the table. Before taking a seat
at the table, each participant had markers glued directly to the skin. Next, an examiner
performed a demonstration, and the participant was calibrated and placed behind the
table. The participant remained sitting with a straight back and the upper arms bent at
right angles in the elbow, thumbs under the edge of the table and the other fingers (2 to 5)
extended while resting on the edge of the table. The participant was positioned at a forearm
distance from the table. Then, the examiner placed the object to be lifted from the table
on a marked spot. Before the lifting test, the participant received verbal instructions and
then performed one try before the actual examination. Each participant performed three
recorded movements for each upper limb (i.e., 6 movements). The protocol was performed
similarly to the Frenchay Arm Test (FAT) and consisted of the following tasks: drinking
from a glass, lifting a small and a large cylinder, closing and unscrewing a jar, removing
a clip, combing hair, and drawing lines. Only 3 selected activities were analyzed. Three
lifting motions were assessed as follows: (1) lifting a large cylinder (34 mm diameter, 7 cm
long, weighing 450 g); (2) lifting a small cylinder (12 mm diameter cylinder, 5 cm long,
weighing 190 g); and (3) drinking from a glass. These activities were assessed due to their
simplicity, repeatability, and ease of analysis [30].

Activity 1 and 2 consisted of the following steps: grasp the cylinder, set it on its side
approximately 15 cm from the table edge, lift it as high as possible (preferably to extend the
upper limb in the elbow joint), and replace it without dropping. Activity 3 was as follows:
pick up a glass, positioned about 15 to 30 cm from the edge of the table; the first phase
was to reach out for the glass from the starting position and then to grasp and bring the
glass close to the mouth to drink, and to place it back on the table behind a marked line,
followed by returning the glass to the initial position.

3. Results
Data Analysis

Motion data were recorded using an optical motion capture system and used for
further analysis in a time series of upper limb kinematic chain marker positions in a 3D
space. A time series is a sequence of observations taken sequentially over time [27]. In
order to use a set of time series as input for supervised or unsupervised machine learning
algorithms, each time series needs to be mapped into a well-defined feature space. The
Python tsfresh package (time series feature extraction based on scalable hypothesis tests)
was used to systematically identify and extract meaningful features from the time series.
The relevant features were selected on the basis of automatically configured hypothesis
tests (FRESH algorithm) with respect to the multiclass classification problem with defined
classes G0, G1, and G2 [31]. Automated feature extraction using a vast number of possibly
meaningful statistics can be applied in the context of biomechanical data analysis [32].
However, the extracted features are often nested, complex, and hard to interpret, and
thus show limited comparability. Our proposal is a quantitative analysis of the selected
significant systematically extracted features.

The data acquired by OptiTrack were the position data (following values of the x, y,
and z coordinates) of the FN, LEP, MPH, and ACR markers constituting the kinematic
chain of the upper limb. Captured motion signals were recorded at a frequency of 100 Hz.
The time series was cropped to raise an upper limb only. The z-axis (longitudinal axis)
represents the up and down motions. Based on the change in the z-coordinate value of the
FN marker, only the lifting and lowering of upper limb data were cropped. Figure 2a,b
show exemplary time series during the lifting of a large cylinder. From all input time series,
only samples between the start and end times of the activity based on the change in FNz
values (z coordinates of FN marker) were cropped. These are samples that had z coordinate
value greater than the z value in the activity starting position plus the threshold value. The
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threshold value was 10% of the value of the entire range of FN marker movements along
the z-axis during a given recording.

On the basis of such trajectories of the markers in 3D, the displacement, velocity,
acceleration signals, displacement module, velocity module, and acceleration module
signals were calculated. The module was calculated as the length of the vector. For
example, the calculation for the magnitude of an FN marker acceleration is as follows:

FNA =
√

FNax2 + FNay2 + FNaz2

The next step was normalization using the min-max method to a range of [0, 1].
The side of the movement was also unified through the sagittal plane (yz) reflection
transformation of the right upper limb movement.

The input of the method used to systematically determine the features was a set of
normalized time series (Table 1) for each recording of the upper limb that was lifting the
object (small cylinder, large cylinder, and cup).

Table 1. Set of determined time series (T).

Marker
Signals FNR, FNL LEPR, LEPL MPHR, MPHL ACRR, ACRL

3D trajectories (coordinates) of markers FNx, FNy, FNz LEPx, LEPy, LEPz MPHx, MPHy, MPHz ACRx, ACRy, ACRz

3D displacement of markers FNdx, FNdy, FNdz LEPdx, LEPdy, LEPdz MPHdx, MPHdy, MPHdz ACRdx, ACRdy, ACRdz

Displacement module FND LEPD MPHD ACRD

3D velocities of markers FNvx, FNvy, FNvz LEPvx, LEPvy, LEPvz MPHvx, MPHvy, MPHvz ACRvx, ACRvy, ACRvz

Speed FNV LEPV MPHV ACRV

3D accelerations of markers FNax, FNay, FNaz LEPax, LEPay, LEPaz MPHax, MPHay, MPHaz ACRax, ACRay, ACRaz

Acceleration module FNA LEPA MPHA ACRA
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Figure 2. Cropped and normalized marker trajectory signals during the lifting of a large cylinder of
one participant from class G0 (non-affected participant’s upper limb). Left plot (a)—trajectory of FN
and LEP markers. Right plot (b)—trajectory of MPH and ACR markers.

The input time series T = {χi}60
1 was mapped into a feature space with a dimen-

sionality of 794 and a feature vector xi = (xi,1, xi,2 . . . , xi,794). Finally, 47,640 features were
extracted. Such a set was prepared for each recording. An overview of the extracted
features can be found in the tfresh documentation (https://tsfresh.readthedocs.io/en/
latest/text/list_of_features.html (accessed on 5 February 2022). The prepared input data
were divided into three data classes as presented in Table 2.

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Table 2. The division of recordings into classes.

Class Number of Participants Recorded Upper Limb Number of Recordings

G0 35 after stroke non-affected 105

G1 35 after stroke affected 105

G2 19 control group the left and right healthy upper limb 114

In the second step, each feature was individually and independently evaluated with
respect to its significance in the classification task. The result of these tests was a vector
of p-values, quantifying the significance of each feature for predicting the label (G0, G1,
and G2) using nonparametric automated hypothesis tests. For the calculation of the feature
significance for a real-valued feature, the Mann–Whitney U test was used, and for the
binary-valued feature, the two-sided univariate Fisher test was used. For the classification
of three defined labels, the selection problem was divided into three separate binary one-
versus-rest classification problems. Next, the vector of p-values was evaluated on the basis
of the multiple testing Benjamini–Yekutieli procedure with an FDR (false discovery rate)
level equal to 0.05 [33] in order to decide which features to keep.

A total of 47,640 extracted features and 11,882 statistically significant features were
found for discrimination class G2 from classes G0 and G1; 2022—for discrimination class
G1 from G2 and G0; and 15,658—for discrimination class G0 from G2 and G1. The number
of common features was 1004. Class G0 (non-affected upper limb) had the most different
features from G1 (affected upper limb) and G2 (dominant and non-dominant upper limb in
healthy controls) [25].

The detailed statistics of the significant common features are presented as follows:
338 features on the ACR marker, 459 features on the MPH marker, 104 features on the
LEP marker, and 103 features on the FN marker. The movements of the ACR and MPH
segments turned out to be the most differentiated.

With regard to the plane of movement, 368 features were recorded on the x-axis
movement (transverse movements—left/right), 123 features on the y-axis movement (sagit-
tal movements—forward/backward), and 241 features on the z-axis movement (vertical
movements—up/down).

The most significant features for the movement on the x-axis were based on the ACR
and MPH markers, and on the z-axis based on the FN marker.

With regard to the type of signals, 335 features were identified for the acceleration
time series, 287 for velocity, 198 for displacement, and 184 for the trajectory time series. The
most statistically significant features were determined on the basis of acceleration signals.
The exact statistics of the significant features are presented in Table 3.

Table 3. The number of significant features depending on the maker, axis of movement, and type of
time series.

Module Trajectory Acceleration Velocity Displacement

ACR

38 A 52 X 26 X 29 X 42 X

35 V 0 Y 14 Y 9 Y 11 Y

13 D 0 Z 35 Z 30 Z 4 Z

MPH

62 A 47 X 34 X 42 X 37 X

62 V 6 Y 12 Y 7 Y 30 Y

15 D 14 Z 35 Z 53 Z 3 Z

LEP

18 A 31 X 2 X 3 X 14 X

7 V 3 Y 3 Y 0 Y 3 Y

3 D 11 Z 4 Z 0 Z 2 Z
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Table 3. Cont.

Module Trajectory Acceleration Velocity Displacement

FN

7 A 1 X 5 X 3 X 0 X

0 V 8 Y 11 Y 0 Y 6 Y

12 D 11 Z 29 Z 7 Z 3 Z

(ACR—acromion process, MPH—middle part of the humeri, LEP—lateral epicondyle, FN—index finger nails,
A—acceleration; V—velocity; D—displacement. Module—length of 3D vector).

Figure 3 presents a boxplot of four exemplary features that were significantly differen-
tiated in the three defined classes.
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are in accordance with the tsfresh systematic feature extraction algorithm and are listed in package
documentation (https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html (accessed on
5 February 2022).

4. Discussion

In the past, motion capture systems were adapted for rehabilitation procedures in
the treatment of various diseases. Advances in machine learning and the emergence of
newer motion capture solutions have contributed to the development of more automatic
assessments of patient performance and recovery progress [25,33]. In the present study, the
quantitative characteristics of the participants’ movements were assessed to generate the
required trajectories and kinematics of the upper limb to accurately perform a functional
task (lifting an object or lifting a cup to drink). Although these were simple activities, the
required movement turned out to be dependent on the participant’s ability levels of body
functions. The task of picking up items and drinking was chosen because it had already
been learned, and could be easily standardized and accomplished with minimal investment
in tracking equipment [21].

There is currently no consensus on the use of kinetic and kinematic measures (metrics)
to restore mobility. In their analysis of 225 studies, Schwarz et al. found 151 different
metrics used to measure upper limb movement [13].

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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The present study compared the performance of a simple ADL task by post-stroke
patients (G0 and G1) with healthy people of similar age (G2). The numbers of identified
statistically significant features were: 11,882 for the G2 class, 2022 for the G1 class, and
15,658 for the G0 class. The number of common features was 1004. The obtained results
indicate that the upper arm movement (ACR and MPH markers) turned out to be the
most differentiated. The most significant features were determined on the basis of the
acceleration signals of the markers. The presented comparative analysis showed significant
differences in the movement pattern, not only in relation to the limb affected by a stroke
but also showed that the upper limb not affected by a stroke is motorically different from
the upper limb of a healthy person of the same age. This indicates a motor disorder in
both upper limbs in stroke patients. In the present study, the measurement of acceleration
turned out to be an important tool for assessing differences in the activities studied. In
practice, such a solution can be obtained by using a simple accelerometer attached to the
upper arm. According to the present research, this segment of the body is most sensitive to
changes in the trajectory of movement, especially in abduction and adduction movements.

The Computational Approaches to Patient Performance Assessment in Rehabilitation
Programs using Motion Capture Systems may play a key role in complementing traditional
rehabilitation assessments by trained clinicians and in assisting patients in home-based
rehabilitation. The computational methods for assessing exercises discussed in the literature
are usually grouped into three main categories: discrete motion score, rule-based, and
template-based approaches [33]. The ideal solution would incorporate systems based on
the location of one sensor, or a maximum of three sensors, on the patient’s body, due to
which trained staff would be able to track the patient’s progress. Thus, the determination of
the most differentiated segment of the body may be a sensitive measure of changes taking
place following the applied rehabilitation methods.

Upper limb movement restoration during stroke recovery is a particularly important
pillar of rehabilitation practice. An increasing number of popular methods are based on
wearable sensors, especially those based on accelerometers, and the research shows that the
accelerometer signal can be best used on the MPH segment than on popular wrists. In fact,
rehabilitating upper limb movements is usually much more difficult compared to lower
limb movements. For these reasons, researchers have been developing new methods and
technologies to make the assessment modalities more accurate, faster, and easier for the
patient to accept [34–37]. Thus, any motor control strategy must be capable of guiding the
entire kinematic chain in such a way as to achieve the desired movement and compensate
for any movement disturbances, e.g., the onset of muscle fatigue, as well as a strong non-
linear and time-varying musculoskeletal response [37–39]. In addition, with the current
development of motion-tracking techniques, we have better tools to assess the functional
status of patients. This creates the possibility of an objective and accurate qualitative
and quantitative assessment of the human movement. An ideal solution would be to
create simple solutions based on MoCap systems that can be used in everyday therapeutic
practice.

The present research shows that the brachial area is the most sensitive site to changes
in the movement pattern, and the abduction and adduction movements proved to be
most sensitive to movement changes. Brain repair is best represented by fine-grained
quantification of motion, which is sensitive and specific, i.e., capable of picking up small
but real changes in behavior. To date, there has been disagreement on how to use kine-
matics and kinetics to achieve this goal. Researchers suggest that only by measuring these
movement traits can neural changes associated with behavior restitution be distinguished
from compensatory strategies [21,39].

5. Conclusions

In the present study, the 1004 identified features distinguished three statistically
significant classes of the upper limb (G0, G1, and G2). Analyzing the features in terms
of segment type, most were concerned with the arm (MPH marker). Taking into account
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the type of data, the most important features were determined on the basis of acceleration
signals. As for the movement plane, the most significant features were movements in
the frontal plane (arm abduction and adduction). The present study indicates that arm
abduction and adduction movements require special attention from therapists, in both
the affected and non-affected limbs. In addition, the obtained differences in acceleration
indicate the possibility of monitoring the progress of rehabilitation through the use of an
acceleration sensor placed on the arm.
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