Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults
Abstract
:1. Introduction
2. Clinical Manifestations of Acute COVID-19 in Children with Successive SARS-CoV-2 Waves
3. Multisystem Inflammatory Syndrome
4. Viral Coinfections
5. Post-Acute Sequelae of COVID-19
6. What Makes the Acute and Post-Acute Response to SARS-CoV-2 Different in Children?
7. Conclusions
8. Future Directions and Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-converting enzyme-2 |
CDC | Center for Disease Control |
cfDNA | Cell-free DNA |
COVID-NET | US COVID-19-Associated Hospitalization Surveillance Network |
ICU | intensive care unit |
MIS-C | multisystem inflammatory syndrome in children |
PASC | post-acute sequelae of SARS-CoV-2 infection |
TMPRSS2 | transmembrane protease serine 2 |
References
- Centers for Disease Control and Prevention-COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker/#datatracker-home (accessed on 6 September 2023).
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e19. [Google Scholar] [CrossRef] [PubMed]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; El Burai Felix, S.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, January 22–May 30, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Wanga, V.; Gerdes, M.E.; Shi, D.S.; Choudhary, R.; Dulski, T.M.; Hsu, S.; Idubor, O.I.; Webber, B.J.; Wendel, A.M.; Agathis, N.T.; et al. Characteristics and Clinical Outcomes of Children and Adolescents Aged <18 Years Hospitalized with COVID-19—Six Hospitals, United States, July–August 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1766–1772. [Google Scholar] [CrossRef]
- Erdede, O.; Sarı, E.; Uygur Külcü, N.; Uyur Yalçın, E.; Sezer Yamanel, R.G. An overview of smell and taste problems in paediatric COVID-19 patients. Acta Paediatr. 2020, 109, 2184–2186. [Google Scholar] [CrossRef] [PubMed]
- Jelic, M.; Silveira, L.; Lang, S.; Curran-Hays, S.; Boyer, S.; Carter, B.; Choi, Y.J.; Fresia, J.; Maeda, L.C.; Nerguizian, D.; et al. Changing Characteristics of Children with COVID-19 in Colorado Admitted during Different Variant Periods. Pediatr. Infect. Dis. J. 2023, 42, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Sumner, M.W.; Xie, J.; Zemek, R.; Winston, K.; Freire, G.; Burstein, B.; Kam, A.; Emsley, J.; Gravel, J.; Porter, R.; et al. Comparison of Symptoms Associated with SARS-CoV-2 Variants among Children in Canada. JAMA Netw. Open 2023, 6, e232328. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.; Langer, S.; Acker, K.P.; Rosenblatt, S.D.; Simmons, W.; Wu, A.; Han, J.Y.; Abramson, E.L.; Grinspan, Z.M.; Levine, D.A. COVID-19 is Observed in Older Children during the Omicron Wave in New York City. J. Emerg. Med. 2023, 64, 195–199. [Google Scholar] [CrossRef]
- Martin, B.; DeWitt, P.E.; Russell, S.; Sanchez-Pinto, L.N.; Haendel, M.A.; Moffitt, R.; Bennett, T.D. Acute Upper Airway Disease in Children with the Omicron (B.1.1.529) Variant of SARS-CoV-2—A Report From the US National COVID Cohort Collaborative. JAMA Pediatr. 2022, 176, 819–821. [Google Scholar] [CrossRef]
- Iijima, H.; Kubota, M.; Ogimi, C. Change in Seizure Incidence in Febrile Children with COVID-19 in the Era of Omicron Variant of Concern. J. Pediatr. Infect. Dis. Soc. 2022, 11, 514–517. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, J.H.; Lee, J.K.; Eun, B.W.; Song, S.H.; Ahn, B.; Kim, Y.K.; Yun, K.W. Clinical Characteristics and Outcomes of Children with SARS-CoV-2 Infection during the Delta and Omicron Variant-Dominant Periods in Korea. J. Korean Med. Sci. 2023, 38, e65. [Google Scholar] [CrossRef]
- Han, M.S.; Kim, K.M.; Oh, K.J.; Chang, J.Y.; Lee, S.Y.; Choi, J.E.; Shin, S.M.; Sun, J. Distinct Clinical and Laboratory Features of COVID-19 in Children during the Pre-Delta, Delta and Omicron Wave. Pediatr. Infect. Dis. J. 2023, 42, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Marks, K.J.; Whitaker, M.; Agathis, N.T.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Kirley, P.D.; Kawasaki, B.; Meek, J.; et al. Hospitalization of Infants and Children Aged 0–4 Years with Laboratory-Confirmed COVID-19—COVID-NET, 14 States, March 2020–February 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Shoji, K.; Akiyama, T.; Tsuzuki, S.; Matsunaga, N.; Asai, Y.; Suzuki, S.; Iwamoto, N.; Funaki, T.; Ohmagari, N. Clinical characteristics of COVID-19 in hospitalized children during the Omicron variant predominant period. J. Infect. Chemother. 2022, 28, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.S.; Whitaker, M.; Marks, K.J.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Chai, S.J.; Kawasaki, B.; Meek, J.; et al. Hospitalizations of Children Aged 5–11 Years with Laboratory-Confirmed COVID-19—COVID-NET, 14 States, March 2020–February 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.A.; Dargham, S.R.; Loka, S.; Shaik, R.M.; Chemaitelly, H.; Tang, P.; Hasan, M.R.; Coyle, P.V.; Yassine, H.M.; Al-Khatib, H.A.; et al. Coronavirus Disease 2019 Disease Severity in Children Infected with the Omicron Variant. Clin. Infect. Dis. 2022, 75, e361–e367. [Google Scholar] [CrossRef]
- Vashishtha, V.M.; Kumar, P. Conjunctival Involvement in Infants as an Unusual Symptom of Omicron XBB.1.16 Driven Surge. Indian Pediatr. 2023, 60, 861–862. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Yu, Y.; Wan, Z.; Chiu, M.C.; Liu, X.; Zhang, S.; Cai, J.P.; Chu, H.; Li, G.; et al. Human airway and nasal organoids reveal escalating replicative fitness of SARS-CoV-2 emerging variants. Proc. Natl. Acad. Sci. USA 2023, 120, e2300376120. [Google Scholar] [CrossRef]
- Gili, R.; Burioni, R. SARS-CoV-2 before and after Omicron: Two different viruses and two different diseases? J. Transl. Med. 2023, 21, 251. [Google Scholar] [CrossRef]
- Meng, B.; Abdullahi, A.; Ferreira, I.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef]
- Saito, A.; Irie, T.; Suzuki, R.; Maemura, T.; Nasser, H.; Uriu, K.; Kosugi, Y.; Shirakawa, K.; Sadamasu, K.; Kimura, I.; et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 2022, 602, 300–306. [Google Scholar] [CrossRef]
- Zimmerman, D.; Shwayder, M.; Souza, A.; Su, J.A.; Votava-Smith, J.; Wagner-Lees, S.; Kaneta, K.; Cheng, A.; Szmuszkovicz, J. Cardiovascular Follow-up of Patients Treated for MIS-C. Pediatrics 2023, 152, e2023063002. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.; Greve-Isdahl, M.; Bøås, H.; Suren, P.; Buanes, E.A.; Veneti, L. COVID-19 Hospitalization among Children <18 Years by Variant Wave in Norway. Pediatrics 2022, 150, e2022057564. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Harahsheh, A.S.; Handoko, R.; Raghuveer, G.; Portman, M.A.; Khoury, M.; Newburger, J.W.; Lee, S.; Jain, S.S.; Khare, M.; et al. SARS-CoV-2 Variants and Multisystem Inflammatory Syndrome in Children. N. Engl. J. Med. 2023, 388, 1624–1626. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Zhang, S.; Porritt, R.A.; Noval Rivas, M.; Paschold, L.; Willscher, E.; Binder, M.; Arditi, M.; Bahar, I. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 25254–25262. [Google Scholar] [CrossRef] [PubMed]
- Andargie, T.E.; Roznik, K.; Redekar, N.; Hill, T.; Zhou, W.; Apalara, Z.; Kong, H.; Gordon, O.; Meda, R.; Park, W.; et al. Cell-free DNA reveals distinct pathology of multisystem inflammatory syndrome in children. J. Clin. Investig. 2023, 133, e171719. [Google Scholar] [CrossRef]
- Vella, L.A.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Diorio, C.; Kuri-Cervantes, L.; Alanio, C.; Pampena, M.B.; Wu, J.E.; Chen, Z.; et al. Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. Sci. Immunol. 2021, 6, eabf7570. [Google Scholar] [CrossRef]
- Conway, S.R.; Lazarski, C.A.; Field, N.E.; Jensen-Wachspress, M.; Lang, H.; Kankate, V.; Durkee-Shock, J.; Kinoshita, H.; Suslovic, W.; Webber, K.; et al. SARS-CoV-2-Specific T Cell Responses Are Stronger in Children with Multisystem Inflammatory Syndrome Compared to Children with Uncomplicated SARS-CoV-2 Infection. Front. Immunol. 2022, 12, 793197. [Google Scholar] [CrossRef]
- Kozak, K.; Pavlyshyn, H.; Kamyshnyi, O.; Shevchuk, O.; Korda, M.; Vari, S.G. The Relationship between COVID-19 Severity in Children and Immunoregulatory Gene Polymorphism. Viruses 2023, 15, 2093. [Google Scholar] [CrossRef]
- Tulling, A.J.; Lugthart, G.; Mooij, M.G.; Brackel, C.L.H.; Terheggen-Lagro, S.W.J.; Oostenbrink, R.; Buysse, C.M.P.; Hashimoto, S.; Armbrust, W.; Bannier, M.A.G.E.; et al. Severe Pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children from Wild-type to Population Immunity: A Prospective Multicenter Cohort Study with Real-time Reporting. Pediatr. Infect. Dis. J. 2023, 42, 1077–1085. [Google Scholar] [CrossRef]
- Hamad Saied, M.; van der Griend, L.; van Straalen, J.W.; Wulffraat, N.M.; Vastert, S.; Jansen, M.H.A. The protective effect of COVID-19 vaccines on developing multisystem inflammatory syndrome in children (MIS-C): A systematic literature review and meta-analysis. Pediatr. Rheumatol. Online J. 2023, 21, 80. [Google Scholar] [CrossRef]
- Yousaf, A.R.; Miller, A.D.; Lindsey, K.; Shah, A.B.; Wu, M.J.; Melgar, M.; Zambrano, L.D.; Campbell, A.P. Multisystem Inflammatory Syndrome in Children among Persons Who Completed a Two-dose COVID-19 Vaccine Primary Series Compared with Those Reporting No COVID-19 Vaccination, US National MIS-C Surveillance. Pediatr. Infect. Dis. J. 2023, 42, e476–e478. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.M.; Oliveira, C.R.; Guerguis, S.; Eisenberg, R.; Choi, J.; Kim, M.; Abdelhemid, A.; Agha, R.; Agarwal, S.; Aschner, J.L.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Clinical Syndromes and Predictors of Disease Severity in Hospitalized Children and Youth. J. Pediatr. 2021, 230, 23–31.e10. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Mihaylova, V.T.; Landry, M.L.; Foxman, E.F. Interference between rhinovirus and influenza A virus: A clinical data analysis and experimental infection study. Lancet Microbe 2020, 1, e254–e262. [Google Scholar] [CrossRef] [PubMed]
- Cheemarla, N.R.; Watkins, T.A.; Mihaylova, V.T.; Wang, B.; Zhao, D.; Wang, G.; Landry, M.L.; Foxman, E.F. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J. Exp. Med. 2021, 218, e20210583. [Google Scholar] [CrossRef] [PubMed]
- Cheemarla, N.R.; Watkins, T.A.; Mihaylova, V.T.; Foxman, E.F. Viral interference during influenza A-SARS-CoV-2 coinfection of the human airway epithelium and reversal by oseltamivir. J. Infect. Dis. 2023, jiad402. [Google Scholar] [CrossRef] [PubMed]
- Agathis, N.T.; Patel, K.; Milucky, J.; Taylor, C.A.; Whitaker, M.; Pham, H.; Anglin, O.; Chai, S.J.; Alden, N.B.; Meek, J.; et al. Codetections of Other Respiratory Viruses among Children Hospitalized with COVID-19. Pediatrics 2023, 151, e2022059037. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, M.D.; Green, D.A.; Berry, G.J.; Wu, F. Assessing respiratory viral exclusion and affinity interactions through co-infection incidence in a pediatric population during the 2022 resurgence of influenza and RSV. Front. Cell. Infect. Microbiol. 2023, 13, 1208235. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Stephenson, T.; Shafran, R.; De Stavola, B.; Rojas, N.; Aiano, F.; Amin-Chowdhury, Z.; McOwat, K.; Simmons, R.; Zavala, M.; Consortium, C.; et al. Long COVID and the mental and physical health of children and young people: National matched cohort study protocol (the CLoCk study). BMJ Open 2021, 11, e052838. [Google Scholar] [CrossRef]
- Stephenson, T.; Pinto Pereira, S.M.; Shafran, R.; de Stavola, B.L.; Rojas, N.; McOwat, K.; Simmons, R.; Zavala, M.; O’Mahoney, L.; Chalder, T.; et al. Physical and mental health 3 months after SARS-CoV-2 infection (long COVID) among adolescents in England (CLoCk): A national matched cohort study. Lancet Child. Adolesc. Health 2022, 6, 230–239. [Google Scholar] [CrossRef]
- Stephenson, T.; Pinto Pereira, S.M.; Nugawela, M.D.; McOwat, K.; Simmons, R.; Chalder, T.; Ford, T.; Heyman, I.; Swann, O.V.; Fox-Smith, L.; et al. Long COVID-six months of prospective follow-up of changes in symptom profiles of non-hospitalised children and young people after SARS-CoV-2 testing: A national matched cohort study (The CLoCk) study. PLoS ONE 2023, 18, e0277704. [Google Scholar] [CrossRef] [PubMed]
- Weakley, K.E.; Schikler, A.; Green, J.V.; Blatt, D.B.; Barton, S.M.; Statler, V.A.; Feygin, Y.; Marshall, G.S. Clinical Features and Follow-up of Referred Children and Young People With Long COVID. Pediatr. Infect. Dis. J. 2023, 42, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Yildirim Arslan, S.; Avcu, G.; Sahbudak Bal, Z.; Arslan, A.; Ozkinay, F.F.; Kurugol, Z. Evaluation of post-COVID symptoms of the SARS-CoV-2 Delta and Omicron variants in children: A prospective study. Eur. J. Pediatr. 2023, 182, 4565–4571. [Google Scholar] [CrossRef] [PubMed]
- Lokanuwatsatien, T.; Satdhabudha, A.; Tangsathapornpong, A.; Bunjoungmanee, P.; Sinlapamongkolkul, P.; Chaiyakulsil, C.; Sritipsukho, P.; Tantiyavarong, P. Prevalence and associating factors of long COVID in pediatric patients during the Delta and the Omicron variants. Front. Pediatr. 2023, 11, 1127582. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, P.; Naucler, P. Post COVID-19 condition after SARS-CoV-2 infections during the omicron surge compared with the delta, alpha, and wild-type periods in Stockholm, Sweden. J. Infect. Dis. 2023, jiad382. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Lau, R.I.; Liu, Q.; Chan, F.K.L.; Ng, S.C. Post-acute COVID-19 syndrome and gut dysbiosis linger beyond 1 year after SARS-CoV-2 clearance. GUT 2023, 72, 1230–1232. [Google Scholar] [CrossRef] [PubMed]
- Brannock, M.D.; Chew, R.F.; Preiss, A.J.; Hadley, E.C.; Redfield, S.; McMurry, J.A.; Leese, P.J.; Girvin, A.T.; Crosskey, M.; Zhou, A.G.; et al. Long COVID risk and pre-COVID vaccination in an EHR-based cohort study from the RECOVER program. Nat. Commun. 2023, 14, 2914. [Google Scholar] [CrossRef]
- Altmann, D.M.; Reynolds, C.J.; Joy, G.; Otter, A.D.; Gibbons, J.M.; Pade, C.; Swadling, L.; Maini, M.K.; Brooks, T.; Semper, A.; et al. Persistent symptoms after COVID-19 are not associated with differential SARS-CoV-2 antibody or T cell immunity. Nat. Commun. 2023, 14, 5139. [Google Scholar] [CrossRef]
- Pierce, C.A.; Sy, S.; Galen, B.; Goldstein, D.Y.; Orner, E.; Keller, M.J.; Herold, K.C.; Herold, B.C. Natural mucosal barriers and COVID-19 in children. JCI Insight 2021, 6, e148694. [Google Scholar] [CrossRef]
- Pierce, C.A.; Preston-Hurlburt, P.; Dai, Y.; Aschner, C.B.; Cheshenko, N.; Galen, B.; Garforth, S.J.; Herrera, N.G.; Jangra, R.K.; Morano, N.C.; et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci. Transl. Med. 2020, 12, eabd5487. [Google Scholar] [CrossRef]
- McLean, H.Q.; Grijalva, C.G.; Hanson, K.E.; Zhu, Y.; Deyoe, J.E.; Meece, J.K.; Halasa, N.B.; Chappell, J.D.; Mellis, A.M.; Reed, C.; et al. Household Transmission and Clinical Features of SARS-CoV-2 Infections. Pediatrics 2022, 149, e2021054178. [Google Scholar] [CrossRef]
- Neeland, M.R.; Bannister, S.; Clifford, V.; Dohle, K.; Mulholland, K.; Sutton, P.; Curtis, N.; Steer, A.C.; Burgner, D.P.; Crawford, N.W.; et al. Innate cell profiles during the acute and convalescent phase of SARS-CoV-2 infection in children. Nat. Commun. 2021, 12, 1084. [Google Scholar] [CrossRef]
- Loske, J.; Rohmel, J.; Lukassen, S.; Stricker, S.; Magalhaes, V.G.; Liebig, J.; Chua, R.L.; Thurmann, L.; Messingschlager, M.; Seegebarth, A.; et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat. Biotechnol. 2022, 40, 319–324. [Google Scholar] [CrossRef]
- Yoshida, M.; Worlock, K.B.; Huang, N.; Lindeboom, R.G.H.; Butler, C.R.; Kumasaka, N.; Dominguez Conde, C.; Mamanova, L.; Bolt, L.; Richardson, L.; et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 2022, 602, 321–327. [Google Scholar] [CrossRef]
- Renk, H.; Dulovic, A.; Seidel, A.; Becker, M.; Fabricius, D.; Zernickel, M.; Junker, D.; Gross, R.; Muller, J.; Hilger, A.; et al. Robust and durable serological response following pediatric SARS-CoV-2 infection. Nat. Commun. 2022, 13, 128. [Google Scholar] [CrossRef]
- Garrido, C.; Hurst, J.H.; Lorang, C.G.; Aquino, J.N.; Rodriguez, J.; Pfeiffer, T.S.; Singh, T.; Semmes, E.C.; Lugo, D.J.; Rotta, A.T.; et al. Asymptomatic or mild symptomatic SARS-CoV-2 infection elicits durable neutralizing antibody responses in children and adolescents. JCI Insight 2021, 6, e150909. [Google Scholar] [CrossRef]
- Petrara, M.R.; Bonfante, F.; Costenaro, P.; Cantarutti, A.; Carmona, F.; Ruffoni, E.; Di Chiara, C.; Zanchetta, M.; Barzon, L.; Donà, D.; et al. Asymptomatic and Mild SARS-CoV-2 Infections Elicit Lower Immune Activation and Higher Specific Neutralizing Antibodies in Children Than in Adults. Front. Immunol. 2021, 12, 741796. [Google Scholar] [CrossRef]
- Xu, Q.; Milanez-Almeida, P.; Martins, A.J.; Radtke, A.J.; Hoehn, K.B.; Oguz, C.; Chen, J.; Liu, C.; Tang, J.; Grubbs, G.; et al. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. Nat. Immunol. 2023, 24, 186–199. [Google Scholar] [CrossRef]
- Reis, G.; Moreira Silva, E.A.S.; Medeiros Silva, D.C.; Thabane, L.; Campos, V.H.S.; Ferreira, T.S.; Santos, C.V.Q.; Nogueira, A.M.R.; Almeida, A.; Savassi, L.C.M.; et al. Early Treatment with Pegylated Interferon Lambda for COVID-19. N. Engl. J. Med. 2023, 388, 518–528. [Google Scholar] [CrossRef]
- Almendares, O.M.; Ruffin, J.D.; Collingwood, A.H.; Nolen, L.D.; Lanier, W.A.; Dash, S.R.; Ciesla, A.A.; Wiegand, R.; Tate, J.E.; Kirking, H.L. Previous Infection and Effectiveness of COVID-19 Vaccination in Middle- and High-School Students. Pediatrics 2023, 152, e2023062422. [Google Scholar] [CrossRef]
- Kim, M.; Cheng, W.A.; Congrave-Wilson, Z.; Ruiz, C.J.M.; Turner, L.; Mendieta, S.; Jumarang, J.; Del Valle, J.; Lee, Y.; Fabrizio, T.; et al. Comparisons of Pediatric and Adult SARS-CoV-2-Specific Antibodies up to 6 Months after Infection, Vaccination, or Hybrid Immunity. J. Pediatr. Infect. Dis. Soc. 2023, piad107. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Barrett, B.S.; Mickens, K.L.; Vladar, E.K.; Morrison, J.H.; Hasenkrug, K.J.; Poeschla, E.M.; Santiago, M.L. Interferon Resistance of Emerging SARS-CoV-2 Variants. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
Host Feature | Children versus Adults |
---|---|
Rates of infection and initial SARS-CoV-2 RNA copies | No differences |
ACE-2 and TMPRSS2 expression | No differences |
Innate responses nasal mucosa ↑expression IFN signaling, NLRP3 inflammasome transcripts | Increased in children |
Systemic cytokine inflammatory response | Increased in adults |
SARS-CoV-2 systemic neutralizing antibodies | No differences |
Activated T cell responses | Increased in adults |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirhan, S.; Goldman, D.L.; Herold, B.C. Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. J. Clin. Med. 2024, 13, 128. https://doi.org/10.3390/jcm13010128
Demirhan S, Goldman DL, Herold BC. Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. Journal of Clinical Medicine. 2024; 13(1):128. https://doi.org/10.3390/jcm13010128
Chicago/Turabian StyleDemirhan, Salih, David L. Goldman, and Betsy C. Herold. 2024. "Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults" Journal of Clinical Medicine 13, no. 1: 128. https://doi.org/10.3390/jcm13010128
APA StyleDemirhan, S., Goldman, D. L., & Herold, B. C. (2024). Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. Journal of Clinical Medicine, 13(1), 128. https://doi.org/10.3390/jcm13010128