Red Blood Cell Distribution Width, Erythrocyte Indices, and Elongation Index at Baseline in a Group of Trained Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Higgins, J.M. Red blood cell population dynamics. Clin. Lab. Med. 2015, 35, 43–57. [Google Scholar] [CrossRef]
- Patel, H.H.; Patel, H.R.; Higgins, J.M. Modulation of red blood cell population dynamics is a fundamental homeostatic response to disease. Am. J. Hematol. 2015, 90, 422–428. [Google Scholar] [CrossRef]
- Benedik, P.S.; Hamlin, S.K. The physiologic role of erythrocytes in oxygen delivery and implications for blood storage. Crit. Care Nurs. Clin. N. Am. 2014, 26, 325–335. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Loenneke, J.P.; Abe, T. The association between muscle strengthening activities and red blood cell distribution width among a national sample of U.S. adults. Prev. Med. 2015, 73, 130–132. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Hall, M.E. Physical activity and dietary behavior with red blood cell distribution width. Physiol. Behav. 2015, 149, 35–38. [Google Scholar] [CrossRef]
- Edwards, M.K.; Loprinzi, P.D. Associations between accelerometer-assessed sedentary behavior, physical activity and objectively-measured cardiorespiratory fitness with red blood cell distribution width. Int. J. Cardiol. 2016, 221, 755–758. [Google Scholar] [CrossRef]
- Edwards, M.K.; Loprinzi, P.D. Reply to: Is physical activity really associated with reduced odds of elevated red cell distribution width? Int. J. Cardiol. 2017, 229, 51–52. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Tarperi, C.; Guidi, G.C.; Schena, F. Variation of red blood cell distribution width and mean platelet volume after moderate endurance exercise. Adv. Hematol. 2014, 2014, 192173. [Google Scholar] [CrossRef]
- Alis, R.; Romagnoli, M.; Primo-Carrau, C.; Pareja-Galeano, H.; Blesa, J.R.; Sanchis-Gomar, F. Effect of exhaustive running exercise on red blood cell distribution width. Clin. Chem. Lab. Med. 2015, 53, e29–e31. [Google Scholar] [CrossRef]
- Hammam, N.; Ezeugwu, V.E.; Manns, P.J.; Pritchard-Wiart, L. Relationships between sedentary behaviour, physical activity levels and red blood cell distribution width in children and adolescents. Health Promot. Perspect. 2018, 8, 147–154. [Google Scholar] [CrossRef]
- Brun, J.F.; Varlet-Marie, E.; Romain, A.J.; Guiraudou, M.; Raynaud de Mauverger, E. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Clin. Hemorheol. Microcirc. 2013, 55, 15–27. [Google Scholar] [CrossRef]
- Ernst, E.; Weihmayr, T.; Schmid, M.; Baumann, M.; Matrai, A. Cardiovascular risk factors and hemorheology. Physical fitness, stress and obesity. Atherosclerosis 1986, 59, 263–269. [Google Scholar] [CrossRef]
- Wood, S.C.; Doyle, M.P.; Appenzeller, O. Effects of endurance training and long distance running on blood viscosity. Med. Sci. Sports Exerc. 1991, 23, 1265–1269. [Google Scholar] [CrossRef]
- Kamada, T.; Tokuda, S.; Aozaki, S.; Otsuji, S. Higher levels of erythrocyte membrane fluidity in sprinters and long-distance runners. J. Appl. Physiol. 1993, 74, 354–358. [Google Scholar] [CrossRef]
- Smith, J.A.; Martin, D.T.; Telford, R.D.; Ballas, S.K. Greater erythrocyte deformability in world-class endurance athletes. Am. J. Physiol. 1999, 276, H2188–H2193. [Google Scholar] [CrossRef]
- Nakano, T.; Wada, Y.; Matsumura, S. Membrane lipid components associated with increased filterability of erythrocytes from long-distance runners. Clin. Hemorheol. Microcirc. 2001, 24, 85–92. [Google Scholar]
- Cazzola, R.; Russo-Volpe, S.; Cervato, G.; Cestaro, B. Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur. J. Clin. Invest. 2003, 33, 924–930. [Google Scholar] [CrossRef]
- Melnikov, A.A.; Vikulov, A.D.; Bagrakova, S.V. Relationships between von Willebrand factor and hemorheology in sportsmen. Clin. Hemorheol. Microcirc. 2003, 29, 19–24. [Google Scholar]
- Caimi, G.; Canino, B.; Amodeo, G.; Ingargiola, P.; Lucido, D.; Calandrino, V.; Lo Presti, R.L. Erythrocyte deformability and nitric oxide metabolites in athletes before and after a cardiopulmonary test. Clin. J. Sport. Med. 2009, 19, 306–310. [Google Scholar] [CrossRef]
- Kilic-Toprak, E.; Ardic, F.; Erken, G.; Unver-Kocak, F.; Kucukatay, V.; Bor-Kucukatay, M. Hemorheological responses to progressive resistance exercise training in healthy young males. Med. Sci. Monit. 2012, 18, CR351–CR360. [Google Scholar] [CrossRef]
- Tomschi, F.; Bizjak, D.; Bloch, W.; Latsch, J.; Predel, H.G.; Grau, M. Deformability of different red blood cell populations and viscosity of differently trained young men in response to intensive and moderate running. Clin. Hemorheol. Microcirc. 2018, 69, 503–514. [Google Scholar] [CrossRef]
- Tomschi, F.; Bloch, W.; Grau, M. Impact of Type of Sport, Gender and Age on Red Blood Cell Deformability of Elite Athletes. Int. J. Sports Med. 2018, 39, 12–20. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Tomschi, F.; Bales, G.; Nader, E.; Romana, M.; Connes, P.; Bloch, W.; Grau, M. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals? J. Sport. Health Sci. 2020, 9, 595–603. [Google Scholar] [CrossRef]
- Alis, R.; Sanchis-Gomar, F.; Ferioli, D.; La Torre, A.; Blesa, J.R.; Romagnoli, M. Exercise effects on erythrocyte deformability in exercise-induced arterial hypoxemia. Int. J. Sports Med. 2015, 36, 286–291. [Google Scholar] [CrossRef]
- Romagnoli, M.; Alis, R.; Martinez-Bello, V.; Sanchis-Gomar, F.; Aranda, R.; Gómez-Cabrera, M.C. Blood rheology effect of submaximal exercise on young subjects. Clin. Hemorheol. Microcirc. 2014, 56, 111–117. [Google Scholar] [CrossRef]
- Mardyła, M.; Teległów, A.; Ptaszek, B.; Jekiełek, M.; Mańko, G.; Marchewka, J. Effects of Rowing on Rheological Properties of Blood. Int. J. Environ. Res. Public Health 2023, 20, 5159. [Google Scholar] [CrossRef]
- El-Sayed, M.S. Effects of exercise and training on blood rheology. Sports Med. 1998, 26, 281–292. [Google Scholar] [CrossRef]
- El-Sayed, M.S.; Ali, N.; El-Sayed Ali, Z. Haemorheology in exercise and training. Sports Med. 2005, 35, 649–670. [Google Scholar] [CrossRef]
- Findikoglu, G.; Kilic-Toprak, E.; Kilic-Erkek, O.; Senol, H.; Bor-Kucukatay, M. Acute effects of continuous and intermittent aerobic exercises on hemorheological parameters: A pilot study. Biorheology 2014, 51, 293–303. [Google Scholar] [CrossRef]
- Smith, J.A. Exercise, training and red blood cell turnover. Sports Med. 1995, 19, 9–31. [Google Scholar] [CrossRef]
- Muravyov, A.V.; Draygin, S.V.; Eremin, N.N.; Muravyov, A.A. The microrheological behavior of young and old red blood cells in athletes. Clin. Hemorheol. Microcirc. 2002, 26, 183–188. [Google Scholar] [PubMed]
- Patel, K.V.; Mohanty, J.G.; Kanapuru, B.; Hesdorffer, C.; Ershler, W.B.; Rifkind, J.M. Association of the red cell distribution width with red blood cell deformability. Adv. Exp. Med. Biol. 2013, 765, 211–216. [Google Scholar] [CrossRef]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Lin, W. Effects of exercise training on red blood cell production: Implications for anemia. Acta Haematol. 2012, 127, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Lundby, C. Red cell volume response to exercise training: Association with aging. Scand. J. Med. Sci. Sports 2017, 27, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Lundby, C. Regulation of Red Blood Cell Volume with Exercise Training. Compr. Physiol. 2018, 9, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Breenfeldt-Andersen, A.; Oberholzer, L.; Haider, T.; Goetze, J.P.; Meinild-Lundby, A.K.; Lundby, C. Erythropoiesis with endurance training: Dynamics and mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R894–R902. [Google Scholar] [CrossRef]
- Vogt, S.; Altehoefer, C.; Bueltermann, D.; Pottgiesser, T.; Prettin, S.; Schmid, A.; Roecker, K.; Schmidt, W.; Heinicke, K.; Heinrich, L. Magnetic resonance imaging of the lumbar spine and blood volume in professional cyclists. Eur. J. Appl. Physiol. 2008, 102, 411–416. [Google Scholar] [CrossRef]
- Selleri, C.; Maciejewski, J.P.; Sato, T.; Young, N.S. Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood 1996, 87, 4149–4157. [Google Scholar] [CrossRef]
- Jahromi, A.S.; Zar, A.; Ahmadi, F.; Krustrup, P.; Ebrahim, K.; Hovanloo, F.; Amani, D. Effects of Endurance Training on the Serum Levels of Tumour Necrosis Factor-α and Interferon-γ in Sedentary Men. Immune Netw. 2014, 14, 255–259. [Google Scholar] [CrossRef]
- Rundqvist, H.; Rullman, E.; Sundberg, C.J.; Fischer, H.; Eisleitner, K.; Ståhlberg, M.; Sundblad, P.; Jansson, E.; Gustafsson, T. Activation of the erythropoietin receptor in human skeletal muscle. Eur. J. Endocrinol. 2009, 161, 427–434. [Google Scholar] [CrossRef]
- Weight, L.M.; Alexander, D.; Elliot, T.; Jacobs, P. Erythropoietic adaptations to endurance training. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, S.; Kobayashi, M.; Konishi, N.; Sato, T.; Ueda, K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br. J. Haematol. 2000, 109, 555–562. [Google Scholar] [CrossRef]
- Kadri, Z.; Lefevre, C.; Goupille, O.; Penglong, T.; Granger-Locatelli, M.; Fucharoen, S.; Maouche-Chretien, L.; Leboulch, P.; Chretien, S. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis. Genes Dev. 2015, 29, 2603–2616. [Google Scholar] [CrossRef] [PubMed]
- Fornal, M.; Wizner, B.; Cwynar, M.; Królczyk, J.; Kwater, A.; Korbut, R.A.; Grodzicki, T. Association of red blood cell distribution width, inflammation markers and morphological as well as rheological erythrocyte parameters with target organ damage in hypertension. Clin. Hemorheol. Microcirc. 2014, 56, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Vayá, A.; Alis, R.; Suescún, M.; Rivera, L.; Murado, J.; Romagnoli, M.; Solá, E.; Hernandez-Mijares, A. Association of erythrocyte deformability with red blood cell distribution width in metabolic diseases and thalassemia trait. Clin. Hemorheol. Microcirc. 2015, 61, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Suh, J.S.; Kim, Y.K. Red Blood Cell Deformability and Distribution Width in Patients with Hematologic Neoplasms. Clin. Lab. 2022, 68, 2118–2124. [Google Scholar] [CrossRef]
- Gligoroska, J.P.; Gontarev, S.; Dejanova, B.; Todorovska, L.; Stojmanova, D.S.; Manchevska, S. Red Blood Cell Variables in Children and Adolescents regarding the Age and Sex. Iran. J. Public Health 2019, 48, 704–712. [Google Scholar]
- Vayá, A.; Sarnago, A.; Fuster, O.; Alis, R.; Romagnoli, M. Influence of inflammatory and lipidic parameters on red blood cell distribution width in a healthy population. Clin. Hemorheol. Microcirc. 2015, 59, 379–385. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Liu, Y.; Wang, H.; Liu, B.; Shi, L. Association between red blood cell distribution width and left ventricular hypertrophy in pediatric essential hypertension. Front. Pediatr. 2023, 11, 1088535. [Google Scholar] [CrossRef]
- von Tempelhoff, G.F.; Schelkunov, O.; Demirhan, A.; Tsikouras, P.; Rath, W.; Velten, E.; Csorba, R. Correlation between blood rheological properties and red blood cell indices (MCH, MCV, MCHC) in healthy women. Clin. Hemorheol. Microcirc. 2016, 62, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Connes, P.; Tripette, J.; Mukisi-Mukaza, M.; Baskurt, O.K.; Toth, K.; Meiselman, H.J.; Hue, O.; Antoine-Jonville, S. Relationships between hemodynamic, hemorheological and metabolic responses during exercise. Biorheology 2009, 46, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Koliamitra, C.; Holtkamp, B.; Zimmer, P.; Bloch, W.; Grau, M. Impact of training volume and intensity on RBC-NOS/NO pathway and endurance capacity. Biorheology 2017, 54, 37–50. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD | Range | |
---|---|---|
RDW (%) | 13.46 ± 0.69 | 12.20–15.80 |
Ht (%) | 43.88 ± 3.43 | 35.60–52.70 |
Hb (g/dL) | 14.39 ± 1.16 | 11.70–17.50 |
MCV (fl) | 89.00 ± 3.61 | 80.80–97.40 |
MCH (pg) | 29.18 ± 1.40 | 26.20–33.10 |
MCHC (g/dL) | 32.79 ± 1.18 | 30.40–34.80 |
EI 6 Pa | 26.44 ± 4.30 | 13.57–38.03 |
EI 12 Pa | 34.55 ± 4.54 | 20.55–45.57 |
EI 30 Pa | 42.87 ± 4.68 | 28.30–52.64 |
EI 60 Pa | 46.97 ± 4.53 | 32.82–56.10 |
Untrained Subjects | Trained Subjects | |
---|---|---|
RDW (%) | 13.57 ± 0.78 | 13.46 ± 0.69 |
Ht (%) | 44.15 ± 3.76 | 43.88 ± 3.43 |
Hb (g/dL) | 14.47 ± 1.20 | 14.39 ± 1.16 |
MCV (fl) | 86.56 ± 3.37 | 89.00 ± 3.61 ** |
MCH (pg) | 28.37 ± 1.23 | 29.18 ± 1.40 * |
MCHC (g/dL) | 32.79 ± 1.15 | 32.79 ± 1.18 |
EI 6 Pa | 24.08 ± 4.23 | 26.44 ± 4.30 * |
EI 12 Pa | 31.84 ± 4.51 | 34.55 ± 4.54 * |
EI 30 Pa | 39.94 ± 4.64 | 42.87 ± 4.68 ** |
EI 60 Pa | 43.86 ± 4.56 | 46.97 ± 4.53 ** |
VO2max < Median | VO2max ≥ Median | |
---|---|---|
RDW (%) | 13.48 ± 0.69 | 13.43 ± 0.70 |
Ht (%) | 43.80 ± 3.90 | 43.97 ± 2.94 |
Hb (g/dL) | 14.63 ± 1.32 | 14.15 ± 0.94 |
MCV (fl) | 88.51 ± 3.90 | 89.48 ± 3.28 |
MCH (pg) | 29.57 ± 1.48 | 28.80 ± 1.21 * |
MCHC (g/dL) | 33.41 ± 0.73 | 32.19 ± 1.23 *** |
EI 6 Pa | 25.21 ± 3.79 | 27.64 ± 4.47 * |
EI 12 Pa | 33.35 ± 4.20 | 35.72 ± 4.61 * |
EI 30 Pa | 41.70 ± 4.50 | 44.00 ± 4.63 ** |
EI 60 Pa | 46.02 ± 4.54 | 47.90 ± 4.39 |
vs. | RDW | EI 6 | EI 12 | EI 30 | EI 60 |
---|---|---|---|---|---|
Age | −0.0361 | −0.0504 | −0.0367 | −0.0219 | −0.0156 |
VO2max | 0.1052 | 0.2823 * | 0.2493 * | 0.2099 | 0.1676 |
Ht | 0.0735 | −0.3061 ** | −0.3499 ** | −0.4113 *** | −0.4342 *** |
Hb | −0.0343 | −0.4898 *** | −0.5263 *** | −0.5747 *** | −0.5816 *** |
MCV | −0.0986 | 0.4945 *** | 0.4847 *** | 0.4554 *** | 0.4439 *** |
MCH | −0.2681 * | 0.0794 | 0.0811 | 0.0757 | 0.0928 |
MCHC | −0.2410 * | −0.4458 *** | −0.4331 *** | −0.4081 *** | −0.3721 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caimi, G.; Carlisi, M.; Presti, R.L. Red Blood Cell Distribution Width, Erythrocyte Indices, and Elongation Index at Baseline in a Group of Trained Subjects. J. Clin. Med. 2024, 13, 151. https://doi.org/10.3390/jcm13010151
Caimi G, Carlisi M, Presti RL. Red Blood Cell Distribution Width, Erythrocyte Indices, and Elongation Index at Baseline in a Group of Trained Subjects. Journal of Clinical Medicine. 2024; 13(1):151. https://doi.org/10.3390/jcm13010151
Chicago/Turabian StyleCaimi, Gregorio, Melania Carlisi, and Rosalia Lo Presti. 2024. "Red Blood Cell Distribution Width, Erythrocyte Indices, and Elongation Index at Baseline in a Group of Trained Subjects" Journal of Clinical Medicine 13, no. 1: 151. https://doi.org/10.3390/jcm13010151
APA StyleCaimi, G., Carlisi, M., & Presti, R. L. (2024). Red Blood Cell Distribution Width, Erythrocyte Indices, and Elongation Index at Baseline in a Group of Trained Subjects. Journal of Clinical Medicine, 13(1), 151. https://doi.org/10.3390/jcm13010151